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Abstract— In this paper, we study the problem of cooperative
target tracking among a group of ground robots. Cooperative
target tracking control laws are presented that achieve
tracking of a moving target with known position, velocity, and
acceleration, for both single-integrator and double-integrator
robot models. When the target’s motion information are
unknown constant, vision-based estimation schemes are
applied to obtain estimates of the target’s position and
velocity. The effectiveness of the proposed control laws and
their vision-based counterparts to achieve desired formations
is demonstrated by numerical simulation examples using
nonholonomic robots.
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I. INTRODUCTION

Cooperative control of multiple autonomous agents has

become an important topic of robotics and control the-

ory research. The main theme is to analyze and synthe-

size spatially distributed control architectures to coordinate

groups of autonomous agents. A typical assumption is that

each agent communicates its position and/or velocity to its

neighbors [1]–[10]. Among these, cyclic pursuit strategies,

where each agent pursues its leading neighbor with the

network topology forming a unidirectional ring, are particu-

larly simple. Three pursuit formations can be achieved, i.e.,

rendezvous to a point, evenly-spaced circular formation, and

evenly-spaced logarithmic spirals, depending on the value

of a common offset angle and some control gains [2]. The

results in [2] were extended in [4] from 2D to 3D and to

the general network topology. Recent results in [9] allows

the center of formation to be any point instead of being

determined by the initial positions of the agents.

Cooperative target tracking is one form of motion co-

ordination where a group of agents reach desired relative

positions and orientations with respect to the target [11]. The

problem considered in this paper is to achieve cooperative

target tracking of a moving target with multiple mobile

robots in pursuit formation. That is, the agents coordinate

their motion to achieve the above-mentioned three collective

formations to “capture” the target. Different from existing

works that pursue a static point (or track a static target),

we present coordinated control laws for a group of agents
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that track a target moving with known position, velocity,

and acceleration. When the target’s motion information are

unknown, each agent is assumed to have monocular vision

and estimates of the target’s motion information will be

used in the control laws to achieve the pursuit formations.

Currently, we further assume that the target’s velocity is an

unknown constant when using vision-based estimates.

Similar to most of the work on coordinated control and

cyclic pursuit [1]–[9], explicit communication among agents

is required in this work. Computation of the control law

is based on 1) communication among agents about the

leading agent’s position and velocity and 2) sensing and data

processing carried out locally for estimation of the target’s

unknown size and unknown velocity by equipping each agent

with a single camera. More specifically, a conventional pin-

hole camera is used and the camera is calibrated beforehand.

The paper is organized as follows. Section II reviews

relevant cyclic pursuit strategies for both single and double

integrators whose center of formation converges to any

specified location. Section IV presents our cooperative target

tracking control laws that achieve tracking of a moving target

with known position, velocity, and acceleration, for both

single-integrator and double-integrator robot models. When

the target’s motion information are unknown, estimation of

the target’s unknown velocity is presented in Sec. IV for two

cases. The first case assumes that vision-based estimation is

performed solely locally on each agent via a single camera.

The second case assumes that the agent i + 1 also sends

its visual measurements to agent i such that a stereo-vision

setup is formulated. Simulation results are shown in Sec. V.

Finally, Section VI concludes the paper, discussing several

remaining questions for future research.

II. EXISTING RESULTS OF CYCLIC PURSUIT

Consider n mobile robots in the plane, where agent i pur-

sues the next i+1, modulo n. Let xi(t) = [xi(t), yi(t)]
⊤ ∈

R
2 be the position of the agent i at time t ≥ 0.

A. Single-Integrator Robot Model

If the kinematics of each agent is described by

ẋi(t) = ui(t), (1)

consider the following control input [9]

ui(t) = R(ϑ)(xi+1 − xi) − kcxi, kc > 0, (2)
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with the common offset angle ϑ ∈ [−π, π] and

R(ϑ) =

[
cos ϑ sinϑ
− sin ϑ cos ϑ

]

. (3)

The overall system can be written in compact form as [9]

ẋ(t) = [L ⊗ R(ϑ) − kc I2n]
︸ ︷︷ ︸

A(ϑ)

x(t), (4)

where x(t) = [x⊤
1 (t), x⊤

2 (t), . . . , x⊤
n (t)]⊤, L is the circular

matrix

L =








−1 1 0 . . . 0
0 −1 1 . . . 0
...

...

1 0 0 . . . −1








, and I2n =










1 0
0 1
...

...

1 0
0 1










2n×2

.

(5)

It is shown in [9] that the control law in (2) constructs

the cyclic pursuit strategy such that the agents’ positions

starting at any initial condition in R
2 exponentially converge

to formations centered at the origin. In particular, the agents’

positions converge [9]:

1) if 0 ≤ |ϑ| ≤ π/n, to a single limit point;

2) if π/n < |ϑ| < 2π/n:

a) if kc > 2 sin(π/n) sin(ϑ−π/n), to a single limit

point.

b) if kc = 2 sin(π/n) sin(ϑ − π/n), to an evenly-

spaced circle formation.

c) if kc < 2 sin(π/n) sin(ϑ − π/n), to an evenly-

spaced logarithmic spiral formation.

B. Double-Integrator Robot Model

If the dynamics of each agent are now described by a

double-integrator model

ẍi(t) = ui(t), (6)

the following feedback control law [9]

ui(t) = KR(ϑ)(xi+1 − xi) + R(ϑ)(ẋi+1 − ẋi)

− Kkcxi − (K + kc)ẋi, kc > 0, K > 0,
(7)

ensures that the agents’ positions starting at any initial

condition in R
2 evolves exponentially to formations centered

at the origin, if −K is not an eigenvalue of A(ϑ) as defined

in (4).

III. TRACKING OF A MOVING TARGET

In this section, we present the cyclic pursuit control law to

track a target that moves with known position, velocity, and

acceleration where the agents are modeled by both single-

integrator and double-integrator.

A. Single-Integrator Robot Model

Let xt(t) denote the target’s position and ẋt(t) =
[vx(t), vy(t)]⊤ be the target’s velocity. We have the follow-

ing results.

Theorem 1: For the single-integrator model in (1), the

control law

ui(t) = R(ϑ)(xi+1 −xi)− kc(xi −xt) + ẋt, kc > 0, (8)

ensures that the agents’ positions starting at any initial con-

ditions exponentially converge to formations centered at the

target’s trajectory in the three pursuit formations described

in Sec. II-A.

Proof. The proof is a simple consequence of Corollary 3.2.4

of [9]. The control law in (8) can be rewritten as

ui = R(ϑ)[(xi+1−xt)−(xi−xt)]−kc(xi−xt)+ẋt. (9)

Then the overall system consisting of the robot model (1)

and the control law (8) can be rewritten in the compact form

as

ẋ(t) = A(ϑ)(x(t) − I2n xt(t)) + I2n ẋt(t), (10)

where A(ϑ) is given in (4). By letting

ei(t) = xi(t) − xt(t), e(t) = x(t) − I2n xt(t), (11)

we have the error dynamics ė(t) = A(ϑ)e(t), which is in

a similar form as (4). Thus, the agents’ positions converge

to pursuit formations centered at the target’s positions xt(t).
This completes the proof. �

In summary, for the single-integrator robot model (1),

the control law (8) guarantees cooperative tracking of a

moving target via cyclic pursuit, that is via rendezvous to

a point, evenly-spaced circle formation, or evenly-spaced

logarithmic spirals, dependent on the values of ϑ and kc.

This control law requires that each agent knows its leader’s

motion information and the target’s position and velocity.

B. Double-Integrator Robot Model

In the next, we extend the previous cyclic pursuit control

law to double integrators. Consider the double-integrator

model in (6) and let

vi(t) = ẋi(t),

vd
i (t) = R(ϑ)(xi+1 − xi) − kc(xi − xt) + ẋt

be the velocity and the desired velocity of agent i, respec-

tively. Choosing ui(t) = −Kvi(t) + ri(t), K > 0 results

in the first-order system

v̇i(t) + Kvi(t) = ri(t).

If we choose

ri(t) = v̇d
i (t) + Kvd

i (t)

= R(ϑ)(ẋi+1 − ẋi) − kc(ẋi − ẋt) + ẍt

+ KR(ϑ)(xi+1 − xi) − Kkc(xi − xt) + Kẋt,
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we have the following first-order differential equation:

˙̃vi(t) + Kṽi(t) = 0, (12)

where ṽi(t) = vi(t) − vd
i (t). If K > 0, the error dynamics

is exponentially stable. Therefore, the following control law

applied to (6)

ui(t) = −Kẋi(t) + ri(t)

= K[R(ϑ)(xi+1 − xi) − ẋi] + R(ϑ)(ẋi+1 − ẋi)

− Kkc(xi − xt) − kc(ẋi − ẋt) + Kẋt + ẍt,

(13)

for K > 0 and kc > 0 exponentially provides the vehicle

velocity and guarantees globally stable rendezvous to a point,

globally stable evenly-spaced circle formation, and globally

stable evenly-spaced logarithmic spirals, depending on the

values of ϑ,K, kc, if −K is not an eigenvalue of A(ϑ) as

defined in (4).

IV. VISION-BASED ESTIMATION

The cyclic pursuit algorithm in (13) requires knowledge

of the target’s motion information. When the information are

unknown, vision sensors can be used to obtain its estimates.

In this section, vision-based estimation is formulated in a

2D setting (Fig. 1). It is further assumed that the target’s

velocity is constant and the target is within the sensing range

of all agents. It is also assumed that some image processing

algorithm is available to extract the subtended angle αi(t)
and the bearing angle βi(t) for the agent i. For the estimation

task, the available information and measurements are:

1) The bearing angle βi(t) and the subtended angle αi(t).
2) Each agent’s own motion information from onboard

sensors, i.e., its linear velocity and orientation.
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Fig. 1. Vision-based estimation.

Consider the motion of the vehicle and a target in the 2D

Cartesian space. Let zi(t) = [zix(t), ziy(t)]⊤ = xt(t) −
xi(t) be the vector of relative position between the agent i
and the target. In the kinematic setting, the relative dynamics

can be described by:
[
żix(t)
żiy(t)

]

= −vi(t)

[
cos(θi(t))
sin(θi(t))

]

+

[
vx

vy

]

. (14)

Recall that vx, vy are the components of the velocity vector

of the target in the X and Y axis, respectively. Each agent has

no knowledge of the target, including its velocity components

vx, vy and its characteristic length Lt, except maybe for some

conservative upper and lower bounds. Here, the subscript t
denotes “target”.

Assume that the bearing angle βi(t) and the subtended
angle αi(t) can be obtained by some image processing
algorithm

{
βi(t) = θi(t) − arctan (ziy(t)/zix(t)),

αi(t) = 2 arctan (Lt/(2di(t))),
(15)

where di(t) is the relative range between the agent i and the

target

di(t) = Lt/[2 tan(αi(t)/2)]. (16)

With equations (15) and (16), the coordinates of the relative

motion can be expressed as
[
zi,x(t)
zi,y(t)

]

= di(t)

[
cos(θi(t) − βi(t))
sin(θi(t) − βi(t))

]

. (17)

A. Estimation via Single Camera

It follows from equations (14) and (17) that







∂zix(t)

∂αi(t)
α̇i(t) +

∂zix(t)

∂βi(t)
β̇i(t) +

∂zix(t)

∂θi(t)
θ̇i(t) = vx − ẋi(t),

∂ziy(t)

∂αi(t)
α̇i(t) +

∂ziy(t)

∂βi(t)
β̇i(t) +

∂ziy(t)

∂θi(t)
θ̇i(t) = vy − ẏi(t).

(18)

Let the vector of unknown parameters be

ηi(t) , [η1(t), η2(t), η3(t)]
⊤ = [1, vx, vy]⊤/L, (19)

where both the target’s characteristic length Lt and its

unknown velocity are assumed to be constant. Solving (18)

for α̇i(t) and β̇i(t) leads to

[
α̇i(t)

β̇i(t)

]

= F (t)

[
ẋi(t) −1 0
ẏi(t) 0 −1

]

︸ ︷︷ ︸

w⊤

i
(t)

ηi(t) +

[
0

θ̇i(t)

]

︸ ︷︷ ︸

̺
i
(t)

, (20)

where

F (t) =

[

4 sin2(αi

2
) cos(θi − βi) 4 sin2(αi

2
) sin(θi − βi)

−2 tan(αi

2
) sin(θi − βi) 2 tan(αi

2
) cos(θi − βi)

]

.

(21)

The estimation objective is to estimate the unknown param-

eter ηi(t) using visual measurements αi(t), βi(t) and the

vehicle’s own control ẋi(t), ẏi(t), and θ̇i(t).
It can be noticed that the matrix wi(t) and the vector ̺i(t)

in (20) are known. As a result, the system in (20) exhibits the

structure to which an existing nonlinear observer, the IBO

in [12], can be applied to estimate ηi(t). To apply the IBO,

the following assumption is needed.

Assumption 1: Let mi(τ) denote the ith column of w⊤(t)
in (20). There are no nontrivial constants κi (for i = 1, 2, 3)

such that
∑3

i=1 κimi(τ) = 0, for all τ ∈ [t, t + µ], where

µ > 0 is a sufficiently small constant.
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Let η̂i(t) = η̂i(t) = [η̂1(t), η̂2(t), η̂3(t)]
⊤ be the estimate

of η(t). The following observer can be designed for (20):






[
˙̂αi(t)
˙̂
βi(t)

]

= GAm

[
α̂i(t) − αi(t)

β̂i(t) − βi(t)

]

+ w⊤

i (t)η̂i(t) + ̺i(t),

˙̂ηi(t) = −G2w⊤

i (t)P
[

α̂i(t) − αi(t), β̂i(t) − βi(t)
]⊤

,
(22)

where G is a scalar constant and Am is a 2 × 2 Hurwitz

matrix. The matrix P is the positive definite solution of the

Lyapunov equation A⊤
mP + PAm = −Q for some choice

of matrix Q > 0. According to Theorem 2.3 in [12] (page

65), there exists a positive constant G0 such that choosing

G > G0 ensures the estimation errors η̂i(t)−ηi(t) converge

to zero exponentially.

B. Estimation via Stereo Vision

If agent i + 1 communicates its visual measurements

αi+1(t), βi+1(t) to its partner agent i, the target’s position

can be computed based on these two agents’ positions and

visual measurements for agent i. In particular, the relative

range between the target and agent i can be first computed,

followed by the computation of the relative position zi(t).
This process is described next.

When agent i receives the visual measurements αi+1(t)
and βi+1(t) from agent i + 1, we can have

xt = xi+1 +
Lt

2 tan(αi+1/2)

[
cos(θi+1 − βi+1), sin(θi+1 − βi+1)

]
⊤

,

= xi +
Lt

2 tan(αi/2)

[
cos(θi − βi), sin(θi − βi)

]
⊤

,

(23)

which leads to

xi − xi+1 =
Lt

2






cos(θi+1 − βi+1)

tan(αi+1/2)
−

cos(θi − βi)

tan(αi/2)
sin(θi+1 − βi+1)

tan(αi+1/2)
−

sin(θi − βi)

tan(αi/2)




 ,

from where Lt can be computed by pseudo-inverse. Then

the relative range di(t) and the relative position zi(t) can be

computed from equations (16) and (17), respectively. Finally,

the target’s position can be obtained as xt(t) = xi(t)+zi(t).
As a result, the estimation problem reduces to estimating the

target’s unknown velocity, as detailed below, considering the

relative dynamics in (14). These steps were described in [13]

but are included here for the purpose of completeness.

Let

η̄i(t) = [vx, vy]⊤, η̄i(0) = η̄i0. (24)

Since the moving ground target is a mechanical system,

subject to Newton’s second law, its velocity and acceleration

are bounded. Thus there exist constants µη̄ and dη̄ such that

‖η̄i(t)‖ ≤ µη̄ < ∞, ∀ t ≥ 0,

‖ ˙̄ηi(t)‖ ≤ dη̄ < ∞, ∀ t ≥ 0.
(25)

The estimates of the target’s velocity (denoted by v̂x(t) and

v̂y(t)) can be obtained through the following steps [13], [14]:

1) State Predictor:

˙̂zi(t) = Amz̃i(t) − vi(t)
[
cos(θi(t)), sin(θi(t))

]⊤
+ ˆ̄ηi(t),

z̃i(t) = ẑi(t) − zi(t), ẑi(0) = zi0,
(26)

where Am is a known Hurwitz matrix.

2) Update Law:

˙̄̂ηi(t) = Γc Proj (ˆ̄ηi(t),−P z̃i(t)), ˆ̄ηi(0) = ˆ̄ηi0, (27)

where Γc ∈ R
+ is the adaptation gain and P is the

solution of the algebraic equation A⊤
mP +PAm = −Q

for some choice of matrix Q > 0.

3) Low-Pass Filter: Let

η̄ie(s) = [η̄ie,1(s), η̄ie,2(s)]
⊤ = C(s) ˆ̄ηi(s), η̄ie(0) = ˆ̄ηi0,

(28)

where C(s) is a diagonal matrix, whose ith diagonal

element Ci(s) is a strictly proper, stable transfer func-

tion with low-pass gain Ci(0) = 1 for i = 1, 2, with

s being the Laplace variable. Let Ci(s) = c
s+c

, i =
1, 2, c > 0.

4) Extraction of v̂x(t) and v̂y(t) from η̄ie(t):

v̂x(t) = η̄ie,1(t), v̂y(t) = η̄ie,2(t). (29)

V. SIMULATION RESULTS

Cyclic pursuit with vision-based estimation is imple-
mented in Matlab using nonholonomic robots where each
robot is described by the following state-space model:








ẋi(t)
ẏi(t)

θ̇i(t)
v̇i(t)
ω̇i(t)








=








vi(t) cos(θi(t))
vi(t) sin(θi(t))

ωi(t)
0
0








+








0 0
0 0
0 0

1/m 0
0 1/J








[
Fi(t)
τi(t)

]

, (30)

where xi(t) = [xi(t), yi(t)]
⊤ is the inertial position of the

robot i, θi(t) is the orientation, vi(t) is the linear velocity,
ωi(t) is the angular velocity, m is the mass, J is the
moment of inertia, Fi(t) is the force input, and τi(t) is
the torque input. The objective is to maintain in formation
the “hand” position of all agents, defined to be the point
hi(t) = [hix(t), hiy(t)]⊤ on distance l 6= 0 along the line
that is normal to the wheel axis and intersects the wheel axis
at the center point (Fig. 1). Applying the following feedback
linearizing controller [2], [3]:

[
Fi(t)
τi(t)

]

=

[
1

m
cos(θi(t)) −

l
J

sin(θi(t))
1

m
sin(θi(t))

l
J

cos(θi(t))

]−1

(

ui(t) −

[
−vi(t)ωi(t) sin(θi(t)) − l ω2

i (t) cos(θi(t))
vi(t)ωi(t) cos(θi(t)) − l ω2

i (t) sin(θi(t))

])

.

(31)

the hand position dynamics becomes a double-integrator

system given by ḧi(t) = ui(t). Choosing ui according

to (13) achieve desired hand velocity for cooperative target

tracking.
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Choosing ui(t) according to (13) provides the desired

hand velocity for cooperative target tracking. Please see [3]

for more details about this robot.

The following settings are used in the simulations:

1) Formation setup: n = 6, ϑ = 1.2π/n.

2) Robot parameters: m = 1, J = 1, l = 0.1, La = 1,

where La denotes the size of each robot.

3) Robot initial conditions:

x1(0) = [8.84, 14.90]⊤, x2(0) = [−21.92, −0.93]⊤,

x3(0) = [−7.00, 11.90]⊤, x4(0) = [−8.01, −6.96]⊤,

x5(0) = [−10.95, −0.04]⊤, x6(0) = [−1.94, −7.88]⊤.

4) Formation control parameters: K = 1 and

kc =







2 sin(π
n
) sin(ϑ − π

n
) − 0.03, logarithmic,

2 sin(π
n
) sin(ϑ − π

n
), circle,

2 sin(π
n
) sin(ϑ − π

n
) + 0.08, point.

(32)

5) Target parameters:

[vx, vy]⊤ = [0.5, 0.5]⊤, xt(0) = [−6, 2]⊤, Lt = 2.

6) IBO parameters: Am = −I2, P = I2/2, G = 10.

7) Fast estimator:Am = −I2, P = I2/2,Γc = 106, c = 2.

Simulation is first performed using the control laws de-

scribed in Sec. III-B. Figure 2 shows convergence from

random initial positions to the target trajectory via an evenly-

spaced circular formation, an evenly-spaced logarithmic spi-

ral, and rendezvous to a point, using the formation control

parameters in (32). In each scenario, trajectories of the 6

agents are plotted together with the trajectory of the target

and the center trajectory of all agents.

Since the circular formation is more appropriate for co-

operative target tracking, attention is given to this type of

formation hereafter. Fig. 3(a) shows the average formation

radius of case (a) in Fig. 2, where the radius converges to

a constant. In Fig.3(b), the relative angle between agent i
and agent i + 1 for i = 1, 2, . . . , n are plotted in degree.

Since all these angles converge to 60◦ which equals 360/n,

the six agents span evenly on a circle. In summary, Fig. 3

shows successful achievement of the circular formation while

tracking the moving target. Later simulations are focused on

the circular formation as well.

Figure 4 shows the simulation results of cooperative target

tracking when the target’s motion information are estimated

using the method in Sec. IV-A. The trajectories of all agents

in Fig.4(a) shows that the team tracks the target while

maintaining a circular motion around the target. It is also

shown in Fig. 4(b) and (c) that the estimated target velocity

components converge to their true values for all the 6 agents.

Figure 5 shows the cooperative target tracking using the

stereo-vision type estimation method described in Sec. IV-B,

where agent i + 1 sends its visual measurements to agent i.
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Fig. 3. Average formation radius and relative angles between agents for
the circular formation using known target motion information.

It can be seen from Fig. 5(a) that the circular formation and

target tracking are also achieved. However, simulation results

shown in (b) and (c) show that the estimation seems to be

more sensitive to noise. Notice that the estimation method

in Sec. IV-B is able to estimate time-varying target velocity,

though the simulation results shown in Fig. 5 assume that

the target moves with constant velocity, that is, ẍt(t) = 0.

VI. CONCLUSION

This paper considers cooperative target tracking that is

inspired by the idea of cyclic pursuit. Cooperative target

tracking control laws are presented for both single-integrator

and double-integrator robot models when the target’s motion

information are known. If the target’s motion information

are unknown, vision-based estimation schemes are applied,

assuming that each robot has monocular vision. The ef-

fectiveness of the proposed vision-based control laws to

achieve the desired formations is demonstrated by numerical

simulation examples using a nonholonomic robot model

described in the literature.

This work leaves several questions for future investi-

gations. First, the formation control laws and estimation

schemes can be extended to 3D case. Second, it looks to us

that the stereo-type estimation scheme that uses computed

target positions seems to be sensitive to measurement noise.

We think that formulation of the estimation task in terms of

the original visual measurements can help to resolve this

issue. Third, the proposed formation control laws cannot

specify the radius of formation. Being able to specify the

formation radius would be a desirable feature in the context

of target tracking. Finally, the collision avoidance capability

needs to be added to the team robots for real applications.
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