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Abstract— The problem of determining invariance kernels
for planar single-input nonlinear systems is considered. If K

is a closed set, its invariance kernel is the largest subset of K

with the property of being positively invariant for arbitrary
measurable input signals. It is shown that the boundary of the
invariance kernel is a concatenation of solutions of two so-called
extremal vector fields. Moreover, only the solutions through
a finite number of special points are of interest. This result
makes it possible to devise an algorithm which determines the
invariance kernel of a simply connected set in a finite number
of steps.

I. INTRODUCTION

In this paper we consider the planar system

Σ : ẋ = λ(t)f1(x) + [1− λ(t)]f2(x), (1)

where f1, f2 : R
2 → R

2 are two C1 planar vector fields

and λ(t) is a signal in the class U of measurable functions

R→ [0, 1]. We make a number of generic assumptions which

are listed in Section III. Viewing λ(t) as a control signal, Σ is

a control-affine system. Vice versa, any control-affine system

ẋ = f(x) + g(x)u with scalar compact-valued controls u ∈
[umin, umax] ⊂ R can be expressed in the form (1) by letting

f1(x) = f(x) + g(x)umin, f2(x) = f(x) + g(x)umax, and

expressing u(t) = λ(t)umin + (1− λ(t))umax.

The objective of this paper is the characterization of the

invariance kernel of a closed set K, defined next.

Definition 1.1: Let K ⊂ R
2 be a closed set. K is

positively invariant (or strongly invariant) for Σ if for all

λ(t) ∈ U and all x0 ∈ K, the solution of Σ with initial

condition x(0) = x0 remains in K for all t ≥ 0. The

invariance kernel K⋆ of K for system Σ is the maximal

positively invariant subset of K.

The invariance kernel of a closed set is closed, for if a

set is positively invariant its closure is positively invariant as

well. The notion of positive invariance (or strong invariance)

of K defined above requires all solutions of Σ originating in

K to remain in K for all positive time. In contrast, K is said

to be weakly invariant, or viable, for Σ if for all x0 ∈ K,
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at least one solution of Σ through x0 remains in K for all

t ≥ 0. Accordingly, the viability kernel of K for system Σ is

the maximal subset of K with the property of being viable

for Σ.

The theory of viability and invariance kernels was devel-

oped by J.P. Aubin and co-workers in the general setting

of differential inclusions. The reader is referred to Aubin’s

book [1] for an overview of the subject, and to the work

of Frankowska and Quincampoix [2] and Saint-Pierre [3]

for an algorithm to compute viability kernels. Rieger [4]

gave convergence estimates for this algorithm. To relate our

problem statement to Aubin’s general theory, we remark that

to system (1) one can associate the differential inclusion

ΣI : ẋ ∈ F (x) := co{f1(x), f2(x)} a.e. (2)

where co{f1(x), f2(x)} denotes the convex hull of f1(x)
and f2(x). By Filippov’s Selection Lemma (see [5]), trajecto-

ries of ΣI in (2) are solutions of Σ corresponding to suitable

selections λ(t) ∈ U . Vice versa, it is obvious that solutions

of Σ with λ(t) ∈ U are trajectories of ΣI . Therefore, there

is a one-to-one correspondence between solutions of Σ and

those of ΣI . Owing to this correspondence, determining

the invariance kernel of K for Σ or for ΣI is the same,

and all results concerning invariance kernels of differential

inclusions apply directly to Σ in (1).

Recently, invariance kernels were used in [6] to define and

quantify a notion of stability margin for wind turbines. In

control theory, viability kernels often appear in the form of

maximal controlled invariant sets, while invariance kernels

are associated with notions of robustness. Recently, Broucke

and Turriff [7] gave an explicit characterization of the

viability kernel for a class of control affine systems when K

is the sublevel set of a smooth function. They showed that

under certain conditions the viability kernel is a sublevel set

of a hitting time function.

Letting U± ⊂ U be the class of measurable functions

R → {0, 1} and taking λ(t) ∈ U±, Σ becomes a switched

system. In this context, the invariance kernel K⋆ of K is

the maximal subset of K with the property that for any

switching signal λ(t) ∈ U±, solutions of Σ originating in

K⋆ remain in K⋆ in positive time. It turns out that the

invariance kernels one obtains by letting either λ(t) ∈ U
or λ(t) ∈ U± in Definition 1.1 coincide. The results in

this paper are therefore relevant to the literature on switched

systems. See, for instance, the work in [8], [9], [10].

This paper makes two main contributions. The first one,

in Theorem 7.1, is a characterization of the boundary of the

invariance kernel for the planar system Σ in terms of integral

curves of extremal vector fields through a finite number of
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special points. The concatenation of such integral curves

must obey precise rules in order to form a feasible boundary

of K⋆. The second main contribution of this paper is an

algorithm which exploits the finiteness of special points and

the concatenation rules to determine the invariance kernel in

a finite number of steps. In this paper we assume, among

other things, that K is a simply connected set, but our

algorithm can be adapted to the situation when K is not

simply connected. Due to space limitationa, a number of

proofs have been omitted in this paper.

Throughout this paper we use the following notation. If

S ⊂ R
2, Sc denotes the complement of S, Sc = R

2\S. The

notation 〈·, ·〉 is used to denote the Euclidean inner product.

Finally, intS denotes the interior of the set S.

II. PRELIMINARY DEFINITIONS

We now present the basic notions used in the charac-

terization of invariance kernels. Let R+ = {x ∈ R
2 :

det[f1(x) f2(x)] > 0},R− = {x ∈ R
2 : det[f1(x) f2(x)] <

0}. R+ and R− are open sets. In R+, f2 points to the left-

hand side of f1, while in R− f2 points to the right-hand side

of f1.

Definition 2.1: The extremal vector fields fR(x) and

fL(x) are defined as

fL(x) =

{

f1(x) x ∈ R+

f2(x) x ∈ R−
, fR(x) =

{

f2(x) x ∈ R+

f1(x) x ∈ R−.

The solutions1 at time t of the extremal vector fields fL
and fR are called extremal solutions and are denoted

by φL(t, x0) and φR(t, x0), respectively. The images of

extremal solutions on the plane are called extremal arcs.

In particular, the L-arc (resp. R-arc) through x0 is the

image of the map t 7→ φL(t, x0) (resp., t 7→ φR(t, x0)) for

t ranging over some interval over which the map is defined.

Extremal fields have been independently studied in relation

to attainable sets by Baitman [11], Butenina [12], and

Davydov [13].

Definition 2.2: A connected subset of ∂K along which

both f1 and f2 point inside of K or are tangent to ∂K is

said to be an invariant arc of ∂K. Each endpoint of an

invariant arc of ∂K is called a t∂ point.

We give an orientation to extremal arcs and invariant arcs

of ∂K as follows. We give ∂K a positive orientation so

that a point moving along ∂K finds the interior of K to its

left-hand side. The orientation of extremal arcs is induced

by the time parametrization of the corresponding extremal

solutions, so that the orientation indicates the direction of

increasing time. The notion of orientation of arcs allows us

to say, for instance, that arc A crosses arc B leftward.

Definition 2.3: Suppose that x̄ is an equilibrium of f1
(resp., f2). An extremal arc through x̄ is said to be an

equilibrium extremal arc through x̄ if on a neighborhood

of x̄ it coincides with an f1 arc (resp., f2 arc). If, instead,

1By a solution of an extremal vector field we mean an absolutely
continuous function x(t) : (a, b) → R

2 which satisfies the differential
equation associated to the extremal vector field for almost all t ∈ (a, b).

the extremal arc coincides with an f2 arc (resp., f1 arc) in a

neighborhood of x̄, then it is said to be a non-equilibrium

extremal arc through x̄.

Definition 2.4: We define the collinearity set L as

L = {x ∈ R
2 : det[f1(x) f2(x)] = 0}.

and the sets L+ = {x ∈ L : 〈f1(x), f2(x)〉 > 0}, L− =
{x ∈ L : 〈f1(x), f2(x)〉 < 0}.

On L, f1 and f2 are collinear. On L−, f1 and f2 are

antiparallel. Points in L that are neither in L+ nor in L− are

equilibria of f1 or f2. The set L is closed and in this paper

we will assume (see Section III) that it is a one dimensional

embedded submanifold. The extremal vector fields fL, fR
are discontinuous on L. The existence and uniqueness of

extremal solutions is discussed in Section IV.

Definition 2.5: A point p in L− is called a t− point if

the trajectories of f1 and f2 through p remain on one side

of L− (i.e., 〈f1, f2〉 has constant sign along the trajectories)

for some interval of time containing t = 0.

If ∂K is differentiable in a neighborhood of a t∂ point,

then at least one of the vector fields f1, f2 must be tangent

to ∂K at the t∂ point.

Definition 2.6: The attainable set A(x0, t) of Σ from x0

at time t is A(x0, t) = {x(t) : x(·) is a solution of Σ with

x(0) = x0 for some λ(·) ∈ U}.
By Theorem 1 in Section 2.8 of [14], the set-valued map

(x0, t) 7→ A(x0, t) is upper semicontinuous. Moreover,

A(x0, t) is compact and non-empty [15].

Remark 2.7: By definition of fL and fR, for each x ∈
R

2\L and all λ ∈ (0, 1), the vector λf1(x) + (1 − λ)f2(x)
points to the left-hand side of fL(x) and to the right-hand

side of fR(x). Moreover, when λ is 0 or 1, the vector

λf1(x) + (1− λ)f2(x) is tangent to either fL(x) or fR(x).
Therefore, all solutions of Σ in R

2\L are either tangent to

or cross R-arcs rightward and L-arcs leftward. In particular,

R-arcs (resp., L-arcs) in R
2\L are either tangent to or cross

L-arcs (resp., R-arcs) leftward (resp., rightward). Actually, it

can be shown that the above statement is true not just for

arcs in R
2\L, but in the entire R

2 except at equilibria of f1
or f2. Extremal arcs cannot self-intersect at points other than

equilibria of f1 and f2.

III. STANDING ASSUMPTIONS

Throughout this paper we assume that K is simply con-

nected and its boundary is a C1 Jordan curve. Additionally,

we make these assumptions:

(i) The set L is a one dimensional embedded submanifold,

i.e., it is the union of a countable number of disjoint

regular curves.

(ii) There is a finite number of t− points in K, and there

is at most a finite number of points on ∂K at which

either f1 or f2 are tangent to ∂K.

(iii) The equilibria of f1 and f2 in K are hyperbolic (imply-

ing that all equilibria are isolated) and the linearization

at each equilibrium has distinct eigenvalues. Moreover,

none of the equilibria of f1 is an equilibrium of f2.

(iv) No equilibria of f1 and f2 lie on ∂K.
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(v) The slow manifolds of nodes (stable or unstable) of f1
and f2 are not tangent to L.

(vi) No t∂ points lie on L.

(vii) There is a finite number of points on L+ ∩ K where

f1 and f2 are tangent to L+.

(viii) There is at most a finite number of closed extremal arcs

in K.

Assumptions (i)-(vii) are C1-generic. Assumptions (iii)-(vii)

could be relaxed, but are made to avoid the need for special

cases and to simplify the presentation.

IV. PROPERTIES OF EXTREMAL SOLUTIONS

The extremal vector fields fL and fR are discontinuous

on L. Issues of existence and uniqueness of solutions of

vector fields of this kind have been extensively investigated

by Filippov [14]. Solutions of fL and fR exist everywhere

on the plane. The next two lemmas discuss issues of non-

uniqueness and continuity of the solution maps φL and φR.

Lemma 4.1: Extremal solutions of Σ exist through each

x0 ∈ R
2. Locally near each point x0 ∈ R

2, there is only

one L-arc and one R-arc through x0, except in the following

cases:

(i) If x0 ∈ L
− and x0 is not a t− point, then through x0

there are either two L-arcs which converge to and two

R-arcs which diverge from x0, or two L-arcs which

diverge from and two R-arcs that converge to x0. In

a neighborhood of x0, the two L-arcs (resp., R-arcs)

coincide with an arc of f1 in R+ (resp., in R−) and

and an arc of f2 in R− (resp., in R+).

(ii) If x0 is an equilibrium of f1 or f2 then there is one

non-equilibrium extremal arc through x0 and several,

possibly infinite, equilibrium extremal arcs through x0.

Lemma 4.2: Suppose that x0 6∈ L
− and x0 is not an

equilibrium of f1 or f2. Suppose that the unique solution

x(t) of fL (resp., fR) through x0 is defined on [0, T ] ⊂ R

and such that, for all t ∈ [0, T ], x(t) 6∈ L− and x(t) is not an

equilibrium of f1 or f2. Then, there exists a neighborhood

U of x0 such that the map φL(t, x0) (resp., φR(t, x0)) is

continuous on [0, T ]× U .

Finally, we characterize equilibrium extremal arcs in a

neighborhood of a node (stable or unstable). Before stating

the next result, we recall that if the linearization of a planar

vector field at a node has two distinct eigenvalues, then the

fast manifold of the node is the invariant manifold of the

vector field associated with the eigenvalue which has the

largest absolute value, while the slow manifold is associated

with the eigenvalue with smallest absolute value.

Lemma 4.3: Suppose that an L-arc (resp., R-arc) γ is an

equilibrium extremal arc through a node x̄, and that, in

a neighborhood of x̄, γ does not coincide with the fast

manifold of x̄. Then, there exists a ball B centred at x̄ and

a circle segment S ⊂ ∂B with a unique intersection point

p = S ∩ γ such that all L-arcs (resp., R-arcs) through S
remain in B in positive or negative time and are equilibrium

extremal arcs.

V. EXTREMAL ARCS AND BOUNDARY OF THE

INVARIANCE KERNEL

The significance of extremal arcs, as pertains to the

determination of invariance kernels, is that they form the

boundary of attainable sets of Σ, as shown in the next lemma.

Thus, extremal arcs delimit bundles of arcs of Σ through

points in R
2 resulting from arbitrary choices of λ(t) ∈ U .

This feature of extremal arcs, together with the so-called

barrier property presented in Proposition 5.2 below, will be

used in Proposition 5.3 to establish a relationship between

extremal arcs and boundaries of invariance kernels. Before

stating the lemma, we recall that Σ is said to be small-time

locally controllable (STLC) from x0 if, for all T > 0, x0

lies in the interior of A(x0, [0, T ]).
Lemma 5.1: Let x0 ∈ R

2 be such that Σ is not STLC

from x0. Suppose that, for some T > 0, a solution x(t)
of Σ with initial condition x0 has the property that x(t) ∈
∂A(x0, t) for all t ∈ [0, T ]. Then, x(t) is a concatenation of

extremal solutions.

The boundary of invariance kernels enjoys the so-called

barrier property.

Proposition 5.2 (Barrier property [16]): Let K⋆ be the

invariance kernel of K for (1), and assume it is not empty.

Then, for any x0 in ∂K⋆ there exists λ(t) ∈ U such that the

solution to (1) with initial condition x(0) = x0 remains in

∂K⋆ for all t ≥ 0, or until it reaches ∂K.

The proof is completely analogous to the proof of Theo-

rem 4.18 in [17], and is therefore omitted.

Lemma 5.1 and Proposition 5.2 yield the following.

Proposition 5.3: If K⋆ is non-empty, then each connected

component of ∂K⋆ is a concatenation including extremal

arcs and invariant arcs of ∂K.

We conclude this section with a result clarifying which

equilibria of f1 and f2 are feasible on ∂K⋆.

Lemma 5.4: The only equilibria of f1 and f2 that may

belong to ∂K⋆ are nodes (stable or unstable) and saddle

points, and the only points in ∂K⋆ ∩ L− are t− points.

VI. CONCATENATION OF EXTREMAL ARCS AND

INVARIANT ARCS OF ∂K

Proposition 5.3 indicates that the boundary of the invari-

ance kernel K⋆ is formed by concatenations of extremal arcs

and invariant segments of ∂K. The result below identifies all

feasible concatenations on ∂K⋆. Before stating the proposi-

tion, we introduce some notation. We will use the shorthands

HH, HT, TT to signify “head-to-head,” “head-to-tail,” and

“tail-to-tail,” respectively. The notation A
p
→←B will be used

to indicate an HH concatenation at point p between arcs A

and B, where the symbols A, B belong to the list { L, R, ∂K

} (∂K stands for invariant arc of ∂K). Similarly, A
p
→→B,

A
p
←→B will be used to indicate HT and TT concatenations,

respectively. To state that a concatenation occurs at a saddle

or node (stable or unstable) of f1 or f2 (recall that foci

are ruled out by Lemma 5.4) we will set p = ◦, while to

state that the concatenation occurs anywhere on a set S we

will set p = S. If p is omitted then the location of the
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concatenation is unspecified. To illustrate, L
t∂

→→∂K denotes

an HT concatenation of an L-arc with an invariant arc of ∂K

at a t∂ point, and ∂K
∂K
→→L denotes an HT concatenation

of an invariant arc of ∂K and an L-arc occurring anywhere

on ∂K.

Proposition 6.1: On ∂K⋆, the only feasible concatena-

tions involving extremal arcs and invariant arcs of ∂K are:

(HH) L
◦
→←R, L

t−

→←R, ∂K
t∂

→←R,

(HT) L
t∂

→→∂K, ∂K
∂K
→→L, L→→L, R→→R.

(TT) ∂K
∂K
←→R, L

x̄
←→R, where x̄ is either a t− point or

any point in (L−)c.

VII. MAIN RESULT

In this section we present the main theoretical result of this

paper characterizing the boundary of the invariance kernel.

This result relies on Proposition 6.1 and other properties

proved earlier.

Theorem 7.1: Each connected component of ∂K⋆ is ei-

ther a closed extremal arc, a closed invariant arc of ∂K, or

it is the concatenation of extremal arcs and invariant arcs

of ∂K⋆ according to the rules listed in Proposition 6.1.

An extremal arc which is not closed can only be part of

∂K⋆ if one of its endpoints is a t∂ point, a t− point, or an

equilibrium (saddle or node) of f1 or f2. γ is a permissible

equilibrium extremal arc through a node on ∂K⋆ only if at

least one of the following holds:

(i) γ coincides with the fast manifold of x̄ locally around

x̄.

(ii) γ is the non-equilibrium extremal arc of another equi-

librium (saddle or node of f1 or f2), or an extremal arc

through a t−, t∂ point.

(iii) γ is simultaneously an equilibrium extremal arc for x̄

and for another equilibrium ȳ 6= x̄. In this case, either

γ is of type (i), or locally around ȳ, γ coincides with

the stable/unstable manifold of ȳ, if ȳ is a saddle, or

the fast manifold of ȳ if ȳ is a node.

Proof: Suppose, by way of contradiction, that ∂K⋆

contains an extremal arc γ which is not closed and whose

endpoints violate the conditions of the theorem. In light of

this contradiction assumption and Proposition 6.1, the head

of γ must be a node x̄, and γ must be an equilibrium extremal

arc which does not belong to any of the types (i)-(iii) in the

theorem statement. Suppose, without loss of generality, that

γ is an L-arc. Since in any neighborhood of x̄ γ does not

coincide with the fast manifold of x̄, by Lemma 4.3 there

exists a ball B centred at x̄ and a circle segment S ⊂ ∂B
with a unique intersection point p = S ∩ γ such that all L-

arcs through points in S remain in B in positive time, and are

all equilibrium extremal arcs. Since x̄ ∈ ∂K⋆\∂K, the ball

B can be taken small enough that p ∈ ∂K⋆\∂K as well. Let

p̄ ∈ γ be a point in the interior of B and denote by q the tail

of γ. Then, there exist T2 > T1 > 0 such that φL(T1, q) = p

and φL(T2, q) = p̄. By the contradiction assumption, γ does

not contain t− points and so by Lemma 5.4 it follows that

γ ∩ L− = ∅. Consequently, by Lemma 4.2 there exists a

neighborhood U of q such that the map φL : [0, T2]× U →

R
2 is continuous. By continuity, there exists a neighborhood

V ⊂ U of q such that the following two properties hold:

(a) φL([0, T2], V ) ∩ ∂B ⊂ S ,

(b) φL(T2, V ) ⊂ B.

The two properties above imply that all L-arcs through points

in V intersect S and, by Lemma 4.3, they are equilibrium

extremal arcs, i.e., their head is at x̄. Next, we investigate the

available concatenations at the tail q of γ. There are three

cases.

Case 1: q ∈ (L−)c\∂K is not an equilibrium. Since, by

the contradiction assumption, γ does not contain t− and

t∂ points, we also have that γ ∈ (L−)c\∂K. Moreover,

we can assume that V is small enough that V ⊂ intK.

By Proposition 6.1, at q there must be a TT concatenation

between γ and an R-arc η. Extend η in negative time from

q, and denote by η′ the extended arc. If q 6∈ L+, then

f1(q) and f2(q) are linearly independent. Therefore, in a

neighborhood of q, without loss of generality V , the arc η′

is transversal to all L-arcs. If, on the other hand, q ∈ L+,

then by assumption (vii) in Section III, η′ is transversal to

L-arcs in a punctured neighborhood of q, without loss of

generality in V \{q}. In both cases, in any neighborhood of

q contained in V there exists q′ ∈ η′ ∩ V with the property

that q′ 6∈ K⋆, and therefore such that the L-arc γ′ through

q′ is not contained in K⋆. Since q′ ∈ V , γ′ has its head

at x̄. Since γ ⊂ (L−)c\∂K, an open set, q′ can be chosen

such that γ′ ⊂ (L−)c\∂K as well. The set obtained from

K⋆ by replacing the concatenation γ
q
←→η with γ′ q′

←→η′

is contained in K, is positively invariant, and contains K⋆,

contradicting the assumption that K⋆ is the invariance kernel

of K.

Case 2: q ∈ ∂K. Since, by the contradiction assumption,

q is not a t∂ point, it follows that q is not the endpoint of

an invariant arc of ∂K. If the vectors f1(q), f2(q) point to

the interior of K, then the invariant arc of ∂K containing

q is transversal to L-arcs in a neighborhood of q, without

loss of generality in V . If, on the other hand, f1(q) or f2(q)
are tangent to ∂K, then by assumption (ii) in Section III the

invariant arc of ∂K containing q is transversal to L-arcs in

a punctured neighborhood of q, without loss of generality in

V \{q}. In both cases, in any neighborhood of q contained

in V there exists q′ ∈ ∂K such that the L-arc γ′ through q′

is contained in K but is not contained in K⋆, and has head

at x̄. As before, replacing the concatenation γ
q
←→ η with

γ′ q′

←→∂K we obtain a positively invariant set contained in

K which is contains K⋆, a contradiction.

Case 3: q ∈ (L−)c∩∂K is a node and γ is an equilibrium

extremal arc through q which, near q, does not coincide with

the fast manifold of q. By Lemma 4.3, there exists a ball B′

centred at q and a circle segment S ′ ⊂ ∂B′ with a unique

intersection point p′ = S ′∩γ such that all L-arcs through S ′

remain in B′ in negative time and are equilibrium extremal

arcs through q. We can assume that S ′ ⊂ V (for, if that isn’t

the case, we can make B′ smaller). Thus, all L-arcs through

S′ have tail at q and head at x̄. In particular, one can choose

a point on S ′ outside of K⋆ through which there is an L-
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Initial extremal integration
condition arc direction

fL is L rev.

t∂ point, tangent R fwd.
tail of inv. arc fR is do nothing

tangent

fL is do nothing

t∂ point, tangent
head of inv. arc fR is L fwd.

tangent R rev.

L fwd.

t− point L rev.
R fwd.
R rev.

non-eq fwd.
node rev.

stable or (unstable) eq., fast rev. (fwd.)
manifold rev. (fwd.)

non-eq fwd.
rev.

saddle eq., stable rev.
manifold rev.

eq.,unstable fwd.
manifold fwd.

TABLE I

RULES OF INTEGRATION THROUGH SPECIAL POINTS.

arc γ′ with tail at q and head at x̄ such that γ′ 6⊂ K⋆ but

γ′ ⊂ K. By replacing γ with γ′ we enlarge K⋆ and get a

contradiction.

VIII. INVARIANCE KERNEL ALGORITHM

In the exposition of this algorithm, it is assumed that any

closed extremal arcs are known. Moreover, it is assumed

that K is not positively invariant, for in this case trivially

K⋆ = K. The following algorithm determines the invariance

kernel of a simply connected and compact set K in a finite

number of steps. The algorithm has a rigorous justification

based on Proposition 6.1 and Theorem 7.1. The justification

is omitted due to space limitations.

1. Initialization

Determine:

1.1. t∂ points in K,

1.2. t− points in K,

1.3. nodes and saddles of f1 or f2 in K,

1.4. closed extremal arcs in K.

2. Integration

Using the integration rules in Table I, generate extremal

arcs from all points computed in Part 1. The stopping

criteria for the integration are:

2.1. The solution hits L− at a point which is not a t−

point.

2.2. The solution hits ∂K at a point which does not lie

on an invariant arc of ∂K.

2.3. The solution hits an invariant arc of ∂K coming from

intK.

2.4. The solution is detected to reach (in finite or infinite

time) an equilibrium of f1 or f2 or to spiral (in

positive or negative time) around a limit set.

3. Pruning

Label all points identified in Part 1 (steps 1.1-1.4) as

special points. Label as significant all special points, all

the integration endpoints, and all points of intersection

between extremal arcs generated in Part 2 or between

extremal and invariant arcs of ∂K. Thus, special points

are significant, but not vice versa.

3.1. Partition each extremal arc resulting from an integra-

tion performed in Part 2 and invariant arcs of ∂K

into subarcs whose heads and tails are the significant

points. The subarcs inherit the orientation of the

parent arc. In the rest of the algorithm below, these

subarcs will be simply referred to as extremal arcs.

3.2. Prune one L-arc γ and one R-arc η if γ and η have

the same endpoints, and if neither endpoint is special.

3.3. Prune any L-arc (resp. R-arc) with head at a point p

which is not special if there is no L-arc (resp., R-arc)

with tail at p.

3.4. Prune any extremal arc whose head or tail is at a

point where no other arc is connected.

3.5. Repeat steps 3.3-3.4 until there is not more arc to

prune.

3.6. Prune extremal arcs that spiral around limit sets in

positive or negative time.

3.7. Eliminate from the list of significant points all points

with no arcs attached, and points connecting only two

arcs of the same type (L or R).

4. Graph construction

Construct a graph G = (V, E), with V the set of vertices

of G and E the set of edges of G as follows.

Vertices of G. Let P denote the set of significant points

in K that remain after the pruning in Part 3.

4.1. For every point p ∈ P which is special, create a

vertex vp.

4.2. For every p ∈ P which is not special, create two

vertices, denoted vLp and vRp .

Edges of G. Create directed edges between vertices

associated with extremal arcs and invariant arcs of ∂K

as follows:

4.3. If p is the tail of an L-arc or an invariant arc of ∂K

with head at q, create a directed edge from vp, or vLp ,

to vq, or vLq .

4.4. If p is the tail of an R-arc with head at q, create a

directed edge from vq, or vRq , to vp, or vRp .

4.5. For every (vLp , v
R
p ) pair, create a directed edge from

vRp to vLp .

5. Cycle Analysis

5.1. Find all simple cycles (i.e., closed paths that do not

visit any vertex more than once) in the graph G.

5.2. Discard any cycles containing two vertices vRp , vLp
that are not consecutive (when travelling in the di-

rection of the edges of the graph).

5.3. For each remaining cycle in G, check whether the

region in the plane delimited by the path associated

to the cycle is positively or negatively invariant. If it

is negatively invariant, discard the cycle.
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Fig. 1. Outcome of parts 2 (integration) and part 3 (pruning) of the
invariance kernel algorithm.

5.4. K⋆ is the union of all regions enclosed by closed

paths associated to graph cycles and by closed ex-

tremal trajectories in K.

Remark 8.1: The simple cycles of G can be efficiently

found using Tarjan’s algorithm in [18], which has polynomial

complexity O((V ·E)(C+1)), where V , E, C are the number

of vertices, edges, and simple cycles in G. The test in step

5.3 can be done simply by picking any non-special point p

in the closed path and discarding the cycle if f1(p) points

outside the region delimited by the path.

IX. EXAMPLE

Consider the planar system ẋ = λ(t)f1(x) + [1 −
λ(t)]f2(x), where

f1(x) =

[

x2

x2
1 + x1x2 − 1

]

, f2(x) =

[

− x1 + 2x2
1x2

− 3x2

]

.

Let K be the box {(x1, x2) : |x1| ≤ 2, |x2| ≤ 2} with

rounded corners displayed in Figure 1. The corners are

rounded to meet the standing assumptions in Section III,

but the invariance kernel algorithm can be applied with no

modification even when K has C0 boundary.

The vector field f1 has two equilibria, a stable focus

at (−1, 0) and a saddle at (1, 0), while f2 has only one

equilibrium at (0, 0), a stable node. The stable focus is not

considered to be a special point.

The outcome of the integration part of the algorithm is

displayed in Figure 1(a). Solid dots in the figure indicate all

significant points arising from endpoints of integration and

intersections of various arcs. The outcome of the pruning part

of the algorithm is displayed in Figure 1(b), where the arcs

γ1, . . . , γ19 have been pruned in five executions of steps 3.3,

3.4 of the algorithm. As a result of this pruning, in step 3.7 a

number of significant points with no arcs attached or points

connecting only two arcs of the same type are eliminated.

In part 4 of the algorithm we construct the invariance graph

G. It has 33 nodes and 49 edges. It is not displayed due to

space limitations. There is only one closed extremal arc in K,

namely the dashed curve containing point 11 in Figure 1(b).

The resulting invariance kernel K⋆ is the shaded area in

Figure 1(a).
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