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Abstract— This paper addresses about designing of input
sequence for identification of hybrid systems as PWARX model.
Identification of PWARX model requires estimation of parame-
ter vectors and estimation of discriminant surfaces of submodels
in regressor space. Since we especially focus on accuracy of
discriminant surface, we propose a method to determine input
which generates regressor vector data nearby the discriminant
surfaces by optimizing a cost function. Since the cost function
requires information about discriminant surfaces, we propose
a sequential identification algorithm, which updates the model
and the cost function alternatively. By this method, we can
obtain a high accurate model with short input sequence. Validity
of the proposed method is illustrated in numerical examples.

I. INTRODUCTION

Hybrid system is a system whose behavior is defined by

both continuous and discrete dynamics, which is drawing

attention from various disciplines. For example, they are

systems with continuous dynamics and logic operations, bi-

ological systems and approximations of nonlinear dynamics.

Analysis, control approaches and other researches for hybrid

systems have done in the last decades. And also methods of

hybrid system identification to obtain the models are actively

studied recently.

Piece-Wise Affine (PWA) system, a standard model of

hybrid system, is considered in researches of hybrid system

identification. Especially, Piece-Wise affine Auto Regressive

eXogenous (PWARX) model, a class of PWA system, is

most popular and some approaches have been proposed [1].

Those researches are discussed on that we have already

obtained rich input and output (IO) data. But method for

designing identification experiments, as far as we know, have

not been proposed a lot, although the importance of it has

been mentioned.

So in this paper, we address about a method of designing

input for hybrid system identification to obtain IO data. Since

we especially focus on estimation of discrete dynamics, we

consider efficient and high accurate region estimation prob-

lem for PWARX model. Since the accuracy of the submodel

regions is closely related with the dynamic characteristics of

PWARX model such that observability [2], it is important

to focus on accuracy of the region estimation. To estimate

regions with high accuracy, we have to locate the regressor

vector data nearby the discriminant surfaces. So we propose

a cost function which has minimal value on the discriminant

surfaces, and design input by optimizing the cost function.
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We also propose a sequential identification algorithm to use

the cost function effectively.

In the following, fist we explain about PWARX model in

section II, next we address about conventional method of

hybrid system identification in section III, then we propose

the method of input design and sequential identification

in section IV and V. We apply the proposed method to

numerical simulation in section VI.Finally some concluding

remarks are given in section VII.

II. PWARX MODEL

In this research, we use one of the popular class of hybrid

systems, discrete PWARX model. Assume uk ∈ R, yk ∈ R

and ηk ∈ R are input, output and noise at a time instance k.

Then we define single input single output PWARX model as






yk := P⊤
i

[

xk

1

]

+ ηk if xk ∈ Ii, i = 1, ..., s

xk:=
[

yk−1, ..., yk−ny
, uk−1, ..., uk−nu

]⊤
(1)

where, Ii is a region of ith submodel. We also define rk :=
[x⊤

k , 1]
⊤ and rewrite (1) as yk = P⊤

i rk + ηk if xk ∈
Ii, i = 1, ..., s .

In this paper Ii is defined by using a discriminating

function f(x) and decision function gi(x), i = 1, ..., s as

Ii := {x : f(x) = i} (2)

f(x) := argmax
i

gi(x), i ∈ {1, ..., s}. (3)

From (2) and (3), the discriminant surface of regions, Ii and

Ij , is a set of x such that gi(x) = gj(x) .

A. Decision Function

If the regions of submodels are linearly separable [5], the

decision function can be written as linear functions. Assume

gi(x) := w
⊤
i x+ bi, (4)

then the discriminant surface of Ii and Ij is a hyperplane as

Hij : w
⊤
ijx+ bij = 0, (5)

wij := wi −wj , bij := bi − bj.

We will treat nonlinear decision functions in section III-B.

III. HYBRID SYSTEM IDENTIFICATION

In this section, we briefly explain about methods of hybrid

system identification,when we assume that IO data are given.

Generally, identification of PWARX model requires 3

STEPS : 1. data clustering, 2. estimation of the parameter

vector and 3. esitimation of the discriminant surface. In this
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paper, we use Sparsification Procedure [3] for STEP 1 &

2, and Multiclass Support Vector Machine [5] for STEP 3.

A. Sparsification Procedure

Sparsification procedure can cluster the data and estimate

parameter vectors at the same time with a performance

criteria: 1. estimation error is lower than ǫ and 2. estimated

number of submodels is minimum.

Assume P(k) is a parameter vector at time k for data

(yk, rk). Then we consider the following sparsification op-

timizing problem.

minP(k),P̃
‖{P(k) − P̃}‖0

s.t.
∣

∣

∣yk − P⊤
(k)rk

∣

∣

∣ ≤ ǫ, ∀k
(6)

where ‖{a}‖0 denotes l0 quasi norm of vector sequence

which is defined as the number of nonzero vector in vector

sequence {a} = {a1,a2, ...}. Therefore, the optimization

problem (6) becomes the problem finding a parameter vector

P̃ which meets the condition |y − P̃⊤
rk| ≤ ǫ for as many

k as possible. Although (6) is a NP-hard problem, we can

calculate the solution approximately by reductioning it to a

linear programming problem (see Lemma 1. of [3]). When

optimization is done, we obtain P̃ as a parameter vector

and cluster, and remove all data which meet the condition
∣

∣

∣yk − P̃⊤
rk

∣

∣

∣ ≤ ǫ. By repeating the procedure until all data

are clustered, we cluster the data and estimate the parameter

vectors. We can also estimate the number of submodels as

the number of parameter vectors.

B. Multiclass Support Vector Machine

After clustering the data is completed, we estimate the

discriminant surfaces of submodel regions in the regressor

space.

Support Vector Machine (SVM)[4] is a powerful method

for binary classification problem proposed by Vapnik. In

this paper, we use Multiclass SVM (MSVM) extended from

SVM.

Assume the regions are linearly separable for a moment

and there are decision functions like (4). We define a margin

MHpq
as the distance between hyperplane Hpq and the data

nearest from Hpq . We can solve the problem to maximize

the margins as a convex quadratic programing problem. By

solving the problem, we can obtain data which have mini-

mum margins. We call them support vectors. The decision

functions are represented with support vectors as

gp(x) =
∑

q ∈ S,

q 6= p





∑

i∈SVp

αpqix
⊤
pqix−

∑

i∈SVq

αpqix
⊤
qpix



+ bp

= w
⊤
p x+ bp (7)

where, S = {1, .., s}, SVp is a set of class p support vectors,

xpqi is corresponding support vector and αpqi is a weight

coefficient.

(M)SVM can be used for classifying nonlinear discrimi-

nant surfaces, by replacing inner products to kernel functions

as

gp(x) =
∑

q∈S,q 6=p





∑

i∈SVp

αpqiK(x,xpqi)

−
∑

i∈SVq

αpqiK(x,xqpi)



+ bp, (8)

K(xi,xj) := exp

(

−
‖xi − xj‖

2

2σ2
g

)

. (9)

In this research, we use gaussian kernel (9) which is a

popular kernel function and the method is called kernel trick.

IV. METHOD OF INPUT DESIGN

Our purpose is estimating the discriminant surfaces of sub-

model regions as well as system parameters with less input

sequence in order to shorten the time for identification exper-

iment. For this purpose, we will design inputs that intensively

locate the regressor vectors nearby the discriminant surfaces.

To be more precise, first we design a cost function that has

the minimal value at the x data on the discriminant surfaces.

Then, we design the inputs by minimize the cost function.

Please note that though regressor vectors are accumulated

near the discriminant surfaces, SVM method will maximize

the margines and give some robustness for disturbances.

A. Designing A Cost Function

In this section, we design a cost function of regressor

vector x that has the minimal value at the x data on the

discriminant surfaces.
1) Designing Function by Parameter Vector: We define

Ii and Pi as the region and the parameter vector of the ith

submodel. We also define Pi∗ as

Pi∗ := Pi +∆Pi. (10)

Assume that Pi∗ and ∆Pi keep the following constraint:

P⊤
i∗

[

xc,i

1

]

= P⊤
i

[

xc,i

1

]

(11)

⇐⇒ ∆P⊤
i

[

xc,i

1

]

= 0 (12)

where, xc,i is a reference point of Ii. Hereafter, we consider

xc,i as the center point of Ii.

Now, consider a hyperplane y = P⊤
i r. Then y = P⊤

i∗r

represents a hyperplane which is tilted by ∆Pi with a

constraint of the center point in region Ii.

If we define

∆Pi :=

[

w∆Pi

b∆Pi

]

, w∆Pi
∈ R

n, b∆Pi
∈ R, (13)

w∆Pi
represents the tilt direction of the hyperplane.

It should be noted that the farther form xc,i in the

direction of ±w∆Pi
x locates, the larger the

∣

∣∆P⊤
i r

∣

∣ =
∣

∣P⊤
i∗r − P⊤

i r
∣

∣ become.

Therefore, if we choose ∆Pi as a vector that directs to

the discriminant surface, we can say that x which increases
∣

∣∆P⊤
i r

∣

∣ is near the discriminant surface.
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2) Parameter Design for Tilt in the Direction to the

Discriminant Surfaces: Assume that discriminant surfaces

are linear. From (5), hyperplane Hij discriminating ith and

jth regions is written as an equation w
⊤
ijx+ bij = 0. Now

we design a vector ∆Pij which tilts P⊤
i r in the direction to

Hij . Let dij be a unit direction vector to the discriminant

surface as

dij :=
wij

‖wij‖
. (14)

Since there is a constraint (12), we define

∆Pij := λij

[

dij

−d
⊤
ijxc,i

]

(15)

where λij is a scalar coefficient. For convenience, we set λij

that ∆P⊤
ij r = −aij when x is on the hyperplane (5), and

we have

λij = aij
‖wij‖

∣

∣w⊤
ijxc,i + bij

∣

∣

. (16)

Now by using the parameter vector (15), we get a function

∆P⊤
ij [x

⊤, 1]⊤ whose value decreases as x approaches to the

discriminant surface.

3) Design the Cost Function: By using ∆Pij , we define

a piecewise linear cost function Jℓ(x) as

Jℓ(x) := ∆P⊤
i (x)

[

x

1

]

if x ∈ Ii, i = 1, ..., s (17)

where

∆Pi(x) := arg min
∆Pij

(

∆P⊤
ij

[

x

1

])

, j ∈ Ci (18)

∆Pij := λij

[

dij

−d
⊤
ijxc,i

]

(19)

dij =
wij

‖wij‖
, λij = aij

‖wij‖
∣

∣w⊤
ijxc,i + bij

∣

∣

aij = aji, j ∈ Ci

Ci : index set of the regions neighboring Ii.

Ci is an index set of the regions neighboring Ii. For example,

if Ii neighbors I2 and I3, C1 = {2, 3}. By switching the

parameter ∆Pij according to (17) and (18), Jℓ(x) has −aij
as a minimal value when x is on the discriminant surface

Hij .

4) Extension to Nonlinear Surface Estimation: Next we

extend the function developed in section IV-A.3 for estima-

tion of nonlinear discriminant surfaces. Referring (7) and

(8), by replacing inner product to the kernel function of

∆P⊤
ij [x

⊤, 1]⊤ and with simple calculation, we can get a

nonlinear function pij(x) as

pij(x) = aij

(

gi(x)− gj(x)

gi(xc,i)− gj(xc,i)
− 1

)

. (20)

Following is a new cost function J(x) which is derived

from (17) for nonlinear surface estimation.

J(x) := pi(x) if x ∈ Ii, i = 1, ..., s (21)

pi(x) := min
j

(pij(x)) , j ∈ Ci (22)

pij(x) := aij

(

gi(x)− gj(x)

gi(xc,i)− gj(xc,i)
− 1

)

(23)

aij = aji > 0, j ∈ Ci

Ci : index set of the regions neighboring Ii.

J(x) has also minimal value when x is on the discriminant

surface. Since J(x) can represent the cost function for linear

surfaces by expressing gi(x) as (4), it can be said as a general

form.

When we estimate nonlinear discriminant surfaces by

MSVM, the support vectors must spread well for good esti-

mation. So we consider the following cost function Jvar(x).

Jvar(x) := c
∑

j∈Ci

∑

p∈SVij

exp

(

−
‖x− xjp‖

2

2σ2

)

if x ∈ Ii (24)

where, SVij is a set of support vectors of class j and p, xjp

is a support vector. c and σ are constant values. By choosing

x to minimize Jvar(x), we can expect that support vector

data will spred well.

With (21) and (24), the cost function for nonlinear dis-

criminant surface estimation is defined as

Jn(x) := J(x) + Jvar(x). (25)

B. Designing Input

We determine a input value uk by solving the following

optimization problem:

min Jℓ(xk+1)
s.t. umin ≤ uk ≤ umax

(26)

where, umax and umin are upper bound and lower bound.

By using uk which optimize (26), we will obtain the data

xk+1 nearby the discriminant surface.

V. SEQUENTIAL IDENTIFICATION

As in section IV, the cost function needs information of

discriminant surfaces of the PWARX model. To use the cost

function effectively, we propose a sequential identification

method which improve the model and cost function alterna-

tively. In the identification process, we focus on the margin

values as an index of accuracy of estimation though the other

parameters are determined simultaneously.

A. Margin of SVM estimation

In (M)SVM estimation, a discriminant surface of region i

and j mast be between class i data and class j data. So, if

the margin value is large, the reliability of estimation is low.

If the margin value is small, we can expect the reliability of

estimation is high contrary.
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B. Algorithm of Sequential Identification

First let us assume that submodel regions are linearly

separable. In the following algorithm, the model is improved

almost evely input step to the system. The algorithm ends

when all margin of the discriminant surfaces is lower than

threshold and we obtain the parameter vectors P̂i, i = 1, ..., s
and discriminant surface parameter (ŵi, b̂i), i = 1, ..., s.

Also in the following, subscripts i and j represent the all

i = 1, ..., s and j ∈ Ci.

0) Initial parameter identification

a) Do hybrid system identification with

short random input sequence and obtain
(

P
(0)
i , (w

(0)
i , b

(0)
i ), (w

(0)
ij , b

(0)
ij )

)

.

b) Define the set of class i support vectors as SV
(0)
i .

Define the set of class i (y,x) data as D
(0)
i .

c) Estimate xc,i.

d) Set k = 0.

1) Checking margin values

a) Calculate the maximum of the margin values M
(k)
max

M
(k)
max = max

(

M
H

(k)
ij

)

(M
H

(k)
ij

: value of the

margin of the discriminant surface H
(k)
ij ).

b) If M
(k)
max ≤ M̄ , then

(

P̂i, (ŵi, b̂i)
)

=
(

P
(k)
i , (w

(k)
i , b

(k)
i )

)

, kf = k and quit the

algorithm.

2) Constructing cost function

a) Calculate a
(k)
ij a

(k)
ij = a0M

(k)
Hij

.

b) Construct the cost function J
(k)
ℓ (x) according to (17)

with
(

(w
(k)
i , b

(k)
i ), (w

(k)
ij , b

(k)
ij ), a

(k)
ij

)

.

3) Obtaining data

Set up input uk by optimizing J
(k)
ℓ (x) according to

(26). Then obtain (yk+1,xk+1).
4) Data clustering and updating the parameter vectors

a) Obtain
(

P
(k+1)
i , D

(k+1)
i

)

by using the data

(yk+1,xk+1) and D
(k)
i .

b) If number of submodels is changed, then re-estimate

xc,i.

5) Updating the discriminant surfaces

Estimate the discriminant surfaces
(

(w
(k+1)
i , b

(k+1)
i ), (w

(k+1)
ij , b

(k+1)
ij )

)

, by using

∀x ∈ SV
(k)
i and xk+1.

6) Updating SV
(k)
i

SV
(k+1)
i = SV

(k)
i .

If xk+1 is selected as Support Vector at STEP 5) ,then

store xk+1 into SV
(k+1)
i .

7) k = k + 1 and return to STEP 1).

When we treat nonlinear discriminant surfaces, just replace

J
(k)
ℓ (x) to J

(k)
n (x).

C. Convergence of Algorithm

J
(k)
ℓ (x) has a minimal value on the discriminant surface

estimated at kth step. Therefore, if we can solve the opti-

mization problem (26), margin value should decrease. But

depending of the characteristic of the systems, sometimes

input sequence can be constant value. To avoid this situation,

we should use random input instead of optimizing input at

a rate of 10 % in the algorithm in practice.

D. Estimation of Region Center Point xc,i

xc,i is a reference point which make the cost function

value 0. So xc,i need not to be an accurate center of the

region Ii. It only need to be a point which stay well off

the discriminant surfaces. Therefore, if the nonlinearity of

the discriminant surface is weak, 1. define xc,i as arithmetic

average of the data, or 2. if kernel function is gaussian kernel,

define as the solution of the following optimization problem

maxx gi(x)−maxj∈Ci
gj(x)

s.t. x ∈ Ii
. (27)

In the section VI, we apply former method to Example

1. and latter method to Example 2. If the nonlinearity of

the discriminant surface is strong, it can be applied EM

Algorithm [6] to define xc,i from the data distribution.

E. Weight Coefficient a
(k)
ij

The weight coefficient a
(k)
ij of the cost function J (k)(x)

is linear to the margin values M
H

(k)
ij

of each discriminant

surface H
(k)
ij . Therefore, it takes heavier weight to the

dicriminant surface which margin value is larger.

a0 is a positive constant value. It should be 100 to 10000
times of M̄ according to our simulations.

VI. NUMERICAL SIMULATION

Now we apply the proposed method to the numerical

examples to verify the effectiveness. We use MATLAB for

simulation.

A. Example 1. (Linear Discriminant Surface)

We apply a PWARX model whose parameters are ny =
nu = 1,x = [yk−1, uk−1]

⊤ ∈ R
2, s = 3.



















P1 =
[

0.7, 1.0, −0.5
]⊤

P2 =
[

0.2, −0.5, 2.0
]⊤

P3 =
[

0.5, −0.1, 0
]⊤

(28)

We define a PWARX model sys1 as the parameter vectors

are (28) and the discriminant surfaces are shown as linear

broken lines in Fig.1. Noise is set as ηk = 0 and upper and

lower bound of input are umax = 2, umin = −2.

For initial parameter identification, with 15 steps IO data,

setting ǫ = 0.02 of Sparsification Procedure, then we

obtained estimated discriminant surfaces shown as solid lines

in Fig.1. Fig.1 also shows support vectors as ’©’ and xc,i

as ’+’.

Using this model as initial parameters, we apply sequential

identification algorithm with M̄ = 0.05 and a0 = 100.

Average of the number of input steps to stop the algorithm

is shown in upper row of TABLE I. (Values in the TABLE I
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−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

y
k−1

u
k
−

1

dis.surface
class1
class2
class3
xci
S.V.

Fig. 1. Discriminant Surface Estimated by initial parameter identification
(for sys1)

are average and sample variance of 200 times simulations.)

In the case that we use random inputs instead of optimized

input in STEP 3) in the sequential identification algorithm,

the average of number of input steps to stop the algorithm

is shown in lower row of TABLE I. The result shows that

the optimized input decreased the margins effectively.

TABLE I

LENGTH OF INPUT SEQUENCE (FOR sys1)

Input Design ave. var.

Optimizing Jℓ(x) 34.1 220.1

Random 315.7 9611.3

Example of the initial cost function value J
(0)
ℓ (x) and final

cost function value J
(kf )
ℓ (x) are shown in Fig.2 and Fig.3.

According to the contour plot in the figures, ti can be seen

that finally the cost function become a function which has

minimal values on the true discriminant surfaces.

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

y
k−1

u
k
−

1

true dis.surf.
est.dis.surf.
J(x)

Fig. 2. Initial Cost Function J
(0)
ℓ

(x) (for sys1)

The final estimated disiciminant surfaces and support

vectors are plotted in Fig.4. It shows that we obtain a high

accurate model by the proposed method.

To evaluate the identified models, we calculate RMSE of

the estimated output values for 50-step test input sequence.

We test (a) the model of initial parameter identification, (b)

the final models of sequential identification, (c) the models

identified by conventional identification method with IO data

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

y
k−1

u
k
−

1

true dis.surf.
est.dis.surf.
J(x)

Fig. 3. Final Cost Function J
(kf )

ℓ
(x)(for sys1)

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

y
k−1

u
k
−

1

dis.surface
class1
class2
class3
xci
S.V.

Fig. 4. Discriminant Surface Estimated by sequential Identification (for
sys1)

of 50 random inputs. Results are shown in TABLE II. (Values

in the TABLE I are average and sample variance of 200 times

simulations.)

TABLE II

RMSE (FOR sys1)

Model ave. var.

(a) Initial model of proposed method 0.98

(b) Final model of proposed method 0.12 0.0072

(c) Model of conventional method (50 data) 0.29 0.057

Number of input steps in the initial parameter identifi-

cation is 15, and the average number of input steps in the

sequential identification is 34.1. So the average number of

input steps that the proposed method requires is 49.1.By

comparing to the results by the conventional method using

50-step input, it can be seen that accuracy of the models

of proposed method are higher than that of the models

of conventional identification method. It shows that the

proposed method can identify high accurate model with short

input sequence.

B. Example 2. (Nonlinear Discriminant Surface)

We define a PWARX model sys2 as the parameter vectors

are (28), the discriminant surface are shown as curved broken

lines in Fig.5 and other parameters are the same as sys1.

The parameter of Jn(x) are set as c = min{a
(k)
ij },
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i = 1, ..., s, j ∈ Ci, σ = 0.2. The other condition are

set as in Example 1. Then, the simulation result are shown

in Fig.5-8 and TableIII-IV. Result shows that the proposed

method work effectively to the PWARX models which has

nonlinear discriminant surfaces as well.

−2 −1 0 1 2
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0
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y
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u
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1

dis.surface
class1
class2
class3
xci
S.V.

Fig. 5. Discriminant Surface Estimated by initial parameter identification
(for sys2)

TABLE III

LENGTH OF INPUT SEQUENCE (FOR sys2)

Input Design ave. var.

Optimizing Jn(x) 130.9 5430.9

Random 386.2 9320.5

TABLE IV

RMSE (FOR sys2)

Model ave. var.

(a) Initial model of proposed method 0.49

(b) Final model of proposed method 0.11 0.014

(c) Model of conventional method (150 data) 0.29 0.048

−2 −1 0 1 2
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−1.5
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y
k−1
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dis.surface
class1
class2
class3
xci
S.V.

Fig. 6. Discriminant Surface Estimated by sequential Identification (for
sys2)

VII. CONCLUSION

In this paper, we discussed about input design for hybrid

system identification as PWARX model by focusing on ac-

curacy of estimation of submodel regions. We have to locate

the regressor vector data nearby the discriminant surfaces

for high-accuracy estimation of the surface in the regressor
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space. So we proposed a cost function which has minimal

values on the discriminant surfaces, and designed input by

minimizing the cost function. Since the cost function needs

information about the discriminant surface, we proposed

a sequential identification algorithm to use the function

effectively. In the algorithm, parameter of the model and

cost function are improved almost every step of input. We

applied the proposed method to 1 degree PWARX models

with linear and nonlinear discriminant surfaces, and it was

shown that our method worked effectively.

As future study, we are considering to apply the method

to high dgree PWARX models and models as approximation

of nonlinear dynamics.
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