
  

  

Abstract—This paper deals with the problem of the state 
estimation for a certain class of nonlinear differential games, 
where the mathematical model of this class is completely 
unknown. Being thus, a Luenberger-like differential neural 
network observer is applied and a new learning law for its 
synaptic weights is suggested. Furthermore, by means of a 
Lyapunov stability analysis, the stability conditions for the 
state estimation error are established and the upper bound of 
this error is obtained. Finally, a numerical example illustrates 
the applicability of this approach. 
 

 Index Terms—Differential games, dynamic neural networks, 
state observers. 

I. INTRODUCTION 
OWADAYS, an investigation field that has been 
developed widely is the design of controllers for certain 

systems that own conflicting interaction to each other, which 
can be modeled by means of the game theory (see [1]). 

Nevertheless, the most of recent publications about the 
games and, particularly about the differential games, are 
based on the complete knowledge of the mathematical 
model that describes its dynamics (see [3] and [9]), which it 
is not always the case. 

On the other hand, when the exact and complete 
knowledge on current states of a dynamic plant is impossible 
by different reasons, the use of a state estimator (observer) is 
compulsory to achieve a successful closed-loop control [7]. 

Being thus, the so-called differential neural networks (or 
continuous-time dynamic neural networks) have proved to 
be an excellent tool on the identification, state estimation 
and control of several systems (see [2], [6] and [8]) and, 
specifically, on a certain type of differential games (see [4] 
and [5]). 

Therefore, the idea of designing a differential neural 
network that models a certain class of nonlinear differential 
games and estimates its state variables is a new approach 
that, as far as authors know, has not been treated. 

So, the main goal of this paper is to show the modeling 
and the state observation of a class of nonlinear differential 
games through the designing of a differential neural network 
observer. 
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More specifically, this differential neural network 
observer has a Luenberger-like structure and, by means of 
the Lyapunov’s Second Method of Stability, a new learning 
law for its synaptic weights is obtained and a bounded stable 
state estimation error is inferred. 

II. CLASS OF NONLINEAR DIFFERENTIAL GAMES 

A. Definition 
Consider a class of nonlinear differential games given by 

the following equations: 
 

 
 

 
(1) 

 
where  denotes the number of players,  
is the game state,  is the control action for the  
player,  and  
are unknown functions,  is the game output and 

 is a known constant matrix characterizing the 
state-output mapping. 

B. Assumptions 
In addition to the above, it is assumed that: 

Assumption 1 The control actions  are bounded and 
measurable for all time , that is: 
 

 (2) 
 
where  is a known constant. 
Assumption 2 The functions  and  satisfy the 
Lipschitz condition, that is, there are constants  
such that the equations: 
 

 
 

(3) 

 
are fulfilled for all  and all . 
Assumption 3 The class of nonlinear differential games 
given by (1) is stable in the sense of Lyapunov, that is, there 
exists a nonnegative function  with 
continuous partial derivatives such that . 
Assumption 4 The class of nonlinear differential games 
given by (1) is locally observable at a point , that is, the 
equation: 
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(4a) 

 
where  is the dimension of ,  and 
 

 

 
 

 

(4b) 

 
is satisfied. 

III. DIFFERENTIAL NEURAL NETWORK OBSERVER 

A. Definition 
Consider a Luenberger-like differential neural network 

observer given by the following equations: 
 

 
 

 
 

(5) 

 
where  is the observer state; , 

,  and  are synaptic 
weights;  and  are activation 
functions;  is the observer gain matrix; and 

 is the observer output. 

B. Design Conditions 
The design conditions of the Luenberger-like differential 

neural network observer given by (5) are shown below: 
Definition 1 The modeling error is defined as: 
 

 
 

(6) 

 
where , ,  and  are the initial synaptic 
weights, that is to say, when . 
Assumption 5 The modeling error given by (6) is bounded 
and satisfies the following condition: 
 

 (7) 
 
where  are positive constants. 
Assumption 6 There are values of , , , , , , 

, , , , , , , ,  and , such that they 

provide a  solution to the following algebraic 
Riccati equation: 
 

 (8) 
 
where 
 

 
 

(9) 

 

 
 

(10) 

 
 

(11) 

 
the positive definite symmetric matrices , , , , , 

, , , , ,  and  are known constants of 
adequate dimensions, the scalars ,  and  are known 
positive constants, and  is a constant matrix such that 

 is Hurtwitz. 
Assumption 7 The activation functions  and  are 
sigmoid functions, that is, they are bounded and satisfy the 
following conditions: 
 

 
 

 

(12) 

 
 

 
 

(13) 

 

 

 

(14) 

 
where the positive definite symmetric matrices  and  
are known constants of adequate dimensions, and: 
 

 
 

(15) 

 

 
 

(16) 

 

 

 

(17) 
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(18) 

IV. MAIN RESULT ON STATE ESTIMATION FOR THE CLASS 
OF NONLINEAR DIFFERENTIAL GAMES 

The main result on the state estimation for the class of 
nonlinear differential games (1), deals with both the 
development of an adaptive learning law for the synaptic 
weights of the differential neural network observer (5) and 
the inference of a maximum value of state estimation error, 
that is to say, an error between the real states and the 
estimated ones. 

More formally, the main obtained result is described in 
the next theorem: 
Theorem 1 Let the differential neural network observer 
described at (5) be the one that makes the modeling and the 
state estimation of the class of nonlinear differential games 
given by (1). If the Assumptions 1-7 are fulfilled and the 
synaptic weights of the observer are adjusted with the 
following learning law: 
 

 

 
(19) 

 

 

 

(20) 

 

 

 
 

(21) 

 

 

 

(22) 

 
where 
 

 
 

(23) 

 
 is the identity matrix and , ,  and  are known 

positive constants, then, it is possible to obtain the next 
maximum value of state estimation error “in average 
sense”: 
 

 
(24) 

 
where 

 (25) 
 
Proof: By representing the nonlinear differential game 

given by (1) in terms of a differential neural network, the 
following is obtained: 
 

 (26) 
 

Now, by substituting (5) and (26) in the derivative of  
with respect to , the following is obtained: 
 

 
 

 
(27) 

 
Then, by proposing the following Lyapunov candidate 

function: 
 

 

 

 

 

(28) 

 
and by calculating its derivative with respect to , the 
following is obtained: 
 

 

 

 

 

(29) 

 
By substituting (27) in (29) and by adding and subtracting 

, the following is obtained: 
 

 

 

 

(30) 
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Now, by analyzing the first eight terms of (30) with the 

following inequality: 
 

 (31) 
 
which is valid for any pair of matrices  and for 
any symmetric matrix  (  and  are positive 
integers), the following is obtained: 
 

 
 

 

(32) 

 
where 
 

 

 
(33) 

 

 

 
 

(34) 

 

 

 

 
 

(35) 

 

 

 

(36) 

 
By equating (33)-(36) to zero, that is: 

 

 (37) 
 
and by respectively solving for , ,  and , the 
learning law described at (19)-(22) is obtained. 

Thus, by solving the algebraic Riccati equation (8) in the 
first term of (32), the following is obtained: 
 

 (38) 
 

By integrating both sides of (38) on the time interval 
, the following is obtained: 

 

 
 

(39a) 

 
Finally, by dividing (39) by , that is: 

 

 
(39b) 

 
and by calculating the upper limit as , the maximum 
value of state estimation error “in average sense” is the one 
described at (24). 

Hence, the state estimation error is bounded between zero 
and this maximum value and, therefore, it is stable in the 
sense of Lyapunov. The theorem is proved. 
■ 

V. NUMERICAL EXAMPLE AND SIMULATION 
Consider a 2-player nonlinear differential game given by 

the following equations: 
 

 
 

 
(40) 

 
where 
 

 

 

 

(41) 

 
and the control actions are: 
 

 (42) 
 

Once verified that the Assumptions 1-4 hold, it is possible 
to model the nonlinear differential game (40) and to estimate 
its state variable . 

Being thus, consider now a Luenberger-like differential 
neural network observer given by the following equations: 
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(43) 

 
where 
 

 

 

 

 

(44) 

 
and the activation functions ,  
and  are: 
 

 

 

 

(45) 

 
By proposing the values described at the Assumption 6 as: 

 
 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 
 

(48) 

 
the solution of the algebraic Riccati equation (8) results in: 
 

 
(46) 

Finally, by applying the learning law (19)-(22) described 
at the Theorem 1, the value of the state estimation error “in 
average sense” on a time period of 25 seconds is: 
 

 
(47) 

 
The simulation of this example was made using the 

MATLAB-SIMULINK platform and its results are shown in 
the following figures. 
 

 
 

Fig. 1.  Comparison between  and . 

 

 
 

Fig. 2.  Comparison between  and . 

 

 
 

Fig. 3.  Dynamics of the state estimation error . 

 
As is seen in the Figs. 1 and 2, the differential neural 

network observer (43) can perform both the modeling of the 
nonlinear differential game (40) and the observation of its 
state variable . 

It is important to mention that the performance of (43) 
depends on the number of neurons used and on the 
proposition of all the constant values described at the 
Assumption 6. 

In this particular case, the design of the differential neural 
network observer (43) was made using only eight neurons: 
four for the output layer and two for the hidden layer of each 
player. 
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VI. CONCLUSIONS 
According to the results of this paper, the differential 

neural network observer (5) solves the problem of the state 
estimation for the class of nonlinear differential games (1). 

Being thus, the proposed learning law (19)-(22) obtains 
the maximum value of state estimation error (24) depending 
on the performance of the differential neural network 
observer (5), that is to say, depending on the number of 
neurons used and on the design conditions applied. 

Finally, according to the simulation result of the 
numerical example, the effectiveness of differential neural 
network observer (5) is shown and the applicability of the 
Theorem 1 is verified. 
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