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Abstract— This work deals with the fault diagnosis prob-
lem, some new properties are found using the left invertibility
condition through the concept of differential output rank. Two
schemes of nonlinear observers are used to estimate the fault
signals for comparison purposes, one of these is a reduced
order observer and the other is a sliding mode observer. The
methodology is tested in a real time implementation of a three-
tank system.

I. INTRODUCTION
A fault can be considered as a process degradation or

degradation of the equipment performance caused by the
change in the physical characteristic of the process, the input
process or the external conditions.

The fault detection and isolation problem has been studied
for more than three decades, many papers dealing with this
problem can be found, see for instance the surveys [1]-[4]
and the books [5]-[7]. For the case of nonlinear systems a
variety of approaches have been proposed [1]. Some model-
based approaches can be found, such as those based upon
differential geometric methods [8], [9]. On the other hand, for
the fault diagnosis problem, alternative approaches have been
proposed based on an algebraic and differential framework
[10]-[19]. These approaches consist in the estimation of the
fault variables, which are defined as uncertain inputs [10].

Currently, the diagnosis problem is playing an important
role in modern industrial processes. This has led control
theory into a wide variety of model–based approaches which
rely on descriptions via differential and/or difference equa-
tions, contrary to other standpoints developed mainly among
computer scientist (see [16],[17] and references therein). The
primary objectives of fault diagnosis are fault detectability
and isolability, i.e., the possible location and determination
of the faults present in a system and the time of their
occurrences. The tasks of fault detection and isolation are to
be accomplished by measuring only the input and the output
variables.

This paper focuses on diagnosis of nonlinear systems and
the goal is to determine malfunctions in the dynamics. In
this communication, the outputs are mainly signals obtained
from the sensors. Their number is important to know whether
a system is diagnosable or not.

In this article, the diagnosis problem is tackled as a left
invertibility problem throughout the concept of differential
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output rank ρ. Two schemes of observers are proposed
in order to estimate the fault signals, one of them is a
reduced-order observer based on a free-model approach and
another is a sliding-mode observer based on a Generalized
Observability Canonical Form (GOCF) [16]. Both schemes
are proved to possess asymptotic convergence properties.

The type of faults considered in this work are additive and
bounded, however, the algebraic approach can also be used
to deal with multiplicative faults (see [11]).

This paper is organized as follows. In section II, some
definitions of differential algebra are given. In section III, we
discuss the left invertibility condition. In sections IV and V
we give a description of the proposed observers. In section VI
the three-tank system is analyzed. Finally, in section VII we
illustrate this methodology with some experimental results
to the three-tank system Amira DTS200 three-tank system
[20],[21].

II. SOME DEFINITIONS

Some basic definitions are introduced. Further details can
be found in [10]-[13], [22] and references therein.

Definition 1: Let L and K be differential fields. A differ-
ential field extension L/K is given by K and L such that:
1) K is a subfield of L and; 2) the derivation of K is the
restriction to K of the derivation of L.

Definition 2: Let ξ = (ξ1, ξ2, . . . , ξn) be a set of ele-
ments of L. If it satisfies an algebraic differential equation
P

(
ξ, ξ̇, ξ̈ . . .

)
= 0 with coefficients in K it is called dif-

ferentially K-algebraically dependent, otherwise, ξ is called
differentially K-algebraically independent.

Definition 3: Any set of elements of L which is differen-
tially K-algebraically independent and maximal with respect
to inclusion forms is a differential transcendence basis of
L/K. Two such basis have the same cardinality. This is called
the differential transcendence degree of L/K and denoted by
diff tr d◦ L/K.

Definition 4: Let G, K 〈u〉 be differential fields. A nom-
inal dynamic consists in a finitely generated differential al-
gebraic extension G/K 〈u〉, (G = K 〈u, ξ〉 , ξ ∈ G) .
Any element of G satisfies an algebraic differential equation
with coefficients over K in the components of u and their
time derivatives.

Definition 5: Any unknown variable x in a dynamic is
said to be algebraically observable with respect to K〈u, y〉 if
x satisfies a differential algebraic equation with coefficients
over K in the components of u, y and a finite number of
their derivatives. Any dynamic with output y is said to be
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algebraically observable if, and only if any state variable has
this property.

Definition 6: Let G, K 〈u〉 be differential fields. A fault
dynamics consists in a finitely generated differential alge-
braic extension G/K 〈u, f〉, G = K 〈u, f, ξ〉 , ξ ∈ G. Any
element of G satisfies an algebraic differential equation with
coefficients over K in the components of u, f and their time
derivatives.

Definition 7: A fault f ∈ G is said to be diagnosable if it
is algebraically observable over R〈u, y〉, i.e. if it is possible
to estimate the fault from the available measurements of the
system.

Let us consider the class of nonlinear systems with faults
described by the following equation{

ẋ(t) = A(x, ū)
y(t) = h(x, ū) . (1)

Where x = (x1, . . . , xn)T ∈ Rn is a state vector,
u = (u1, . . . , um) ∈ Rm is a known input vector, f =
(f1, . . . , fµ) ∈ Rµ is an unknown input vector, ū = (u, f) ∈
Rm+µ, y(t) ∈ Rp is the output vector. A and h are assumed
to be analytical vector functions.

Example 1: Let us consider the nonlinear system with one
fault (f1) on the actuator and one fault (f2) on the sensor
of output y1. 

ẋ1 = x1x2 + f1 + u
ẋ2 = x1

y1 = x1 + f2
y2 = x2

. (2)

Since f1, f2 satisfy the differential algebraic equations

f1 − ÿ2 + y2ẏ2 + u = 0 (3)
f2 − y1 + ẏ2 = 0

the system (2) is diagnosable and the faults can be re-
constructed from the knowledge of u, y and their time
derivatives.

Remark 1: The diagnosability condition is independent of
the observability of a system.

III. ON THE LEFT INVERTIBILITY CONDITION

We have some definitions concerning on the differential
output rank of a system.

Definition 8: The differential output rank ρ of a system
is equal to the differential transcendence degree of the
differential extension K〈y〉 over the differential field K, i.e.,

ρ = diff tr doK〈y〉/K.
Property 1 [23]: Let K, L, M, be differential fields such

that K ⊂ L ⊂M. Then

diff tr do(M/K) = diff tr do(M/L)
+diff tr do(L/K) (4)

�
Property 2: The differential output rank ρ of a sys-

tem is smaller or equal to min(m, p), i.e., ρ =
diff tr doK〈y〉/K ≤ min(m, p), where m and p are the
total number of inputs and outputs, respectively. �

The differential output rank ρ is also the maximum number
of outputs that are related by a differential polynomial
equation with coefficients over K (independent of x and u).

A practical way to determinate the differential output rank
is by taking into account all possible differential polynomials
of the form

hr(y1, . . . , yp) = 0 (5)

and if is possible to find r independent relations of the form
(5), then the differential output rank is given by ρ = p− r,
that is to say, there exists only p− r independent outputs.

Proposition 1 [24]: Let consider a class of systems given
by (1). A system is said to be left invertible if and only if

ρ = diff tr doK〈y〉/K = diff tr doK〈u, f〉/K. �

Property 1 is the main tool used to prove the following
theorem that looks quite natural. The theorem shows the rela-
tionship between the diagnosability and the left invertibility
condition.

Theorem 1: If system (1) is left invertible, then the fault
vector f can be obtained by means of the output vector.

Proof: let us consider the following field towers:

K ⊂ K〈u〉 ⊂ K〈u, f〉 ⊂ K〈u, y, f〉, (6)

K ⊂ K〈y〉 ⊂ K〈u, y〉 ⊂ K〈u, y, f〉, (7)

From (6) and property 1, we have:

diff tr doK〈u, y, f〉/K = diff tr doK〈u, y, f〉/K〈u, f〉
+diff tr doK〈u, f〉/K〈u〉
+diff tr doK〈u〉/K

= 0 +m+ µ (8)

From proposition 1, diff tr doK〈y〉/K = m + µ. From
(7) we obtain

diff tr doK〈u, y, f〉/K〈u, y〉 = −diff tr doK〈u, y〉/K〈y〉
(9)

Since the transcendence degree is always positive, we have
the following:

diff tr doK〈u, y, f〉/K〈u, y〉 = 0 (10)

This means that f is differentially algebraic over K〈u, y〉.
Thus, the diagnosability condition is satisfied and the theo-
rem is proven. �

IV. REDUCED-ORDER OBSERVER

Let consider system (1). The fault vector f is unknown
and it can be assimilated as a state with uncertain dynamics.
Then, in order to estimate it, the state vector is extended
to deal with the unknown fault vector. The new extended
system is given by

ẋ(t) = A(x, ū)
ḟ = Ω(x, ū)
y(t) = h(x, u)

(11)

where Ω (x, ū) = [Ω1 (x, ū) , ...,Ωµ (x, ū)]T : Rn+m+µ →
Rµ is an uncertain function. Note that a classic Luenberger
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observer can not be constructed because the term Ω (x, ū)
is unknown. This problem is overcome by using a reduced
order uncertainty observer in order to estimate the failure
variable f . Next Lemma describes the construction of a
proportional reduced order observer for (11).

Lemma 1 [22]: If the following hypotheses are satisfied:
H1: Ω (x, ū) is bounded, i.e., |Ωi (x, ū)| ≤ N ∈ R+ ∀

1 ≤ i ≤ µ.

H2: f(t) is algebraically observable over R 〈u, y〉 .
Then the system

.

f̂i = ki

(
fi − f̂i

)
, 1 ≤ i ≤ µ (12)

is a reduced order observer for system (11), where f̂i denotes
the estimate of fault fi and ki ∈ R+ ∀i = 1, .., µ are positive
real coefficients that determine the desired convergence rate
of the observer. �

Lemma 2: If a fault signal fi, i ∈ {1, ..., µ} of system (1) is
algebraically observable and can be written in the following
form

fi = aiẏ + bi(u, y) (13)

where ai = [ai1, ..., aim] ∈ Rm is a constant vector and
bi(u, y) is a bounded function, then there exists a function
γi ∈ C1, such that the reduced order observer (12) can be
written as the following asymptotically stable system

γ̇i = −kiγi + kibi(u, y)− k2
i aiy

f̂i = γi + kiaiy,
(14)

with γi(0) = γi0 ∈ R �

V. SLIDING-MODE OBSERVER

Consider the nonlinear system with faults given by (1),
assuming that the fault vector f is algebraically observable
over R〈u, y〉 and therefore it satisfies a differential algebraic
polynomial

ψ̄(f, y,
·
y,

··
y, ...,

(r)
y , u, u̇, ...) = 0 (15)

Where r is the maximum order of the output time derivatives.
Introducing the following change of coordinates

η1 = y, η2 =
·
y, ..., ηr =

(r−1)
y (16)

we obtain the following representation of (15) which is the
so-called Generalized Observability Canonical Form [16].

·
η1 = η2
·
η2 = η3
...

·
ηr = Φ(f, η1, η2, ...ηr, u,

·
u, ..

(r−1)
u )

y = η1

. (17)

Where Φ(·) is considered as an unmodeled dynamics.

The observer structure. The following system is a sliding-
mode observer for the system (17).

·
η̂1 = η̂2 +m1sign(y − ŷ)

...
·
η̂r−1 = η̂r +mr−1sign(y − ŷ)

·
η̂r = mrsign(y − ŷ)

with ŷ = η̂1

(18)

where mj > 0, ∀ 1 ≤ j ≤ r, and

sign(y − ŷ) =

 1 if (y − ŷ) > 0
−1 if (y − ŷ) < 0

undefined if (y − ŷ) = 0
.

Then returning to the original coordinates and taking into
account (15), the fault can be estimated from the following
relationship

ψ̄(f̂ , η̂,
·
η̂,

··
η̂, ...,

(r)

η̂ , u, u̇, ...) = 0 (19)

Observer Convergence Analysis.
We will analyze the convergence properties of the pro-

posed observer considering the presence of a noise signal δ
contaminating the output measurements, such that

y = η1 + δ. (20)

Let us define the state estimation errors as

e1 = η1 − η̂1, ei = (ηi − η̂i) /m, i = 2, ..., r , (21)

where m > 0, it follows that the estimation error vector
e =

[
e1 ... er

]T
verifies the relationship

·
e = Aµ̄e−Ksign(Ce+ δ) + ∆s (22)

where µ̄ > 0 is a regularizing parameter, Aµ̄ =
−µ̄ m 0 ... 0
0 −µ̄ m 0

0 0 −µ̄
...

. . . m
0 0 0 ... −µ̄

 , K =


m1

m2

...
mr

 , C =

[
1 0 ... 0

]
and ∆s =


µ̄e1
...

µ̄er−1

Φ + µ̄er

 is an uncertainty

term.
Assumption A1. There exist nonnegative constants L0s,

L1s, such that the following generalized quasi-Lipschitz
condition holds

‖∆s‖ ≤ L0s + (L1s + ‖Aµ̄‖) ‖e‖ . (23)

Assumption A2. The additive output noise δ, is bounded,
namely

|δ| ≤ δ+ <∞, (24)

Assumption A3. There exists a positive definite matrix Q0 =
QT

0 > 0, such that the following matrix Riccati equation

PAµ̄ +AT
µ̄P + PRP +Q = 0 (25)
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with R := Λ−1
s + 2 ‖Λs‖L1sI, Λs = ΛT

s > 0,

Q = Q0 + 2(L1s + ‖Aµ̄‖2)I

has a positive definite solution P = PT > 0.
Theorem 2: If assumptions from A1 to A3 are satisfied,

then [V − V ∗]+ → 0 (26)

where V = V (e) = ‖e‖2P := eTPe,

V ∗ :=
2 ‖Λs‖L2

0s + 4kδ+

λmı́n(P−1/2QTQP−1/2)
,

and the function [·]+ is defined as follows

[x]+ =
{
x if x ≥ 0
0 if x < 0 . (27)

�
Remark 2: Theorem 2 states that the weighted estimation

error norm V (e) asymptotically converges to the zone bound-
ed by V ∗. In other words, it is ultimately bounded.

VI. APPLICATION TO THE THREE-TANK SYSTEM

VI-A. Description of the three-tank system

The Amira DTS200 is described in figure 1. The cor-
responding model with faults is given by the following
equations [21]

ẋ1 =
1
A

(u1 − q13 + f1)

ẋ2 =
1
A

(u2 + q32 − q20 + f2)

ẋ3 =
1
A

(q13 − q32)

(28)

where u1 = q1 and u2 = q2 are the manipulable input flows,
xi = hi = level in the tank i. A is the transversal constant
section of any of the identical tanks, and qij represents
the water flow from tank i to tank j, (1 ≤ i, j ≤ 3)
which according to the generalized Torricelli’s rule, valid
for laminar flow

qij = aiS sign(hi − hj)
√

2g |hi − hj | (29)

with q20 = a2S
√

2gh2. Where S is the transversal area
of the pipe that interconnects the tanks (see figure 1) and
ai are the output flow coefficients, which are not exactly
known, so they are considered as uncertain parameters. We
assume the existence of actuator faults denoted by f1 and f2
(µ = 2), each one of these faults represents a variation in
the respective pump driver gain, which can be originated by
an electronic component malfunction, or even by a leakage
or an obstruction in the pump pipes.

The system (28) has four state regions in which the
corresponding model is differentiable [15], any of these
regions can be chosen to do the analysis, just avoiding loss
of differentiability by crossing from one to another. In this
work x1 > x3 > x2 > 0 is the only considered region of
operation, which experimentally is easy to operate.

T1 T3 T2

h1

h3

h2

q1 q2

a1 a2 a3

A

S S S

q13 q32 q20

d

Fig. 1. Schematic diagram of the three-tank system.

VI-B. Diagnosability analysis

According to theorem 1 we need two or more measured
outputs, this can only happen in the following cases:

Case 0. p = 3 (h1, h2, and h3 measurable)
Case 1. p = 2 (h1 not measurable, h2, and h3

measurable)
Case 2. p = 2 (h2 not measurable, h1, and h3

measurable)
Case 3. p = 2 (h3 not measurable, h1, and h2

measurable)
VI-B.1. Case 0: The simplest case (and the only one

reported in previous works [15], with numerical results) takes
place when we can measure the full state vector, that is to
say, we have three outputs: y1 = x1, y2 = x2, y3 = x3; in
this case, from (28) we have

f1 = Aẏ1 + a1S
√

2g (y1 − y3)− u1 (30)

f2 = A ẏ2 − a3S
√

2g (y3 − y2) + a2S
√

2gy2 − u2 (31)

System (28) is left invertible because the differential
output rank is equal to 2. This means that faults f1 and f2
are diagnosable.

VI-B.2. Case 1: We consider only the outputs: y2 = x2

and y3 = x3. By taking into account (28) we have

Aẏ3 = a1S
√

2g (x1 − y3)− a3S
√

2g (y3 − y2), (32)

we get

x1 = y3 +
1

2ga2
1S

2

(
Aẏ3 + a3S

√
2g (y3 − y2)

)2

(33)

Then, by replacing x1 in (30) we obtain a set of two
differential equations with coefficients in R 〈u, y〉 with two
unknowns f1 and f2, this means system (28) is left invertible
(i.e., faults f1 and f2 are diagnosable) with the two consid-
ered outputs.

VI-B.3. Case 2: We consider only the outputs: y1 = x1

and y3 = x3. By taking into account (32) we obtain

x2 = y3 −
1

2ga2
3S

2

(
−A ẏ3 + a1S

√
2g (y1 − y3)

)2

. (34)
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From (31) in a similar way we can obtain system (28) is left
invertible (i.e., faults f1 and f2 are diagnosable) with the two
considered outputs.

VI-B.4. Case 3: We consider only the outputs: y1 = x1

and y2 = x2. By taking into account (30) we get

x3 = y1 −
1

2ga2
1S

2
(−A ẏ1 + f1 + u1)

2
. (35)

From (31) we only can obtain one differential equation
involving the two faults, therefore, system (28) is not left
invertible, i.e., faults f1 and f2 are not diagnosable with the
two considered outputs.

VII. EXPERIMENTAL RESULTS

We verified the real time performance of the proposed
estimators in a laboratory setting of the Amira DTS200
system. The known parameter values for the utilized system
are: A = 0. 0149 m2, S = 5 × 10−5 m2 and the unknown
parameters: a1, a2, and a3. The sample time in all the
experiments was 0. 001 s, this was chosen so small in order
to get the best performance from the sliding-mode observer.
The experimental results are described as follows

VII-A. Identification results

With no presence of faults, the unknown parameters a1,
a2, and a3 were estimated meanwhile the values for the input
flows were: q1 = 0. 000025 m3/s and q2 = 0. 000020m3/s,
along 1000 s in these conditions the evolution of the esti-
mated values for the unknown coefficients is shown in figure
2a.

At the end of the identification process the estimated
values for the flow parameters were obtained:

a1 = 0. 418, a2 = 0. 789, a3 = 0. 435. (36)

In figure 2b the simulated and the measured actual levels
are shown in order to give a visual comparison between the
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Fig. 2. a) Parameter identification. b) Validation of the estimated model.

actual and the estimated model, the actual level measure-
ments are drawn in a gray color, while the levels obtained
by simulating the model using the estimated values given by
(36) for the flow coefficients are shown in black color.

VII-B. Fault estimation results

In all the experiments described in this subsection the
input flows were maintained constant as q1 = 0. 00002
m3/s and q2 = 0. 000015 m3/s, also two faults were
artificially generated through the following expressions: f1 =
0. 00005

[
1 + sin

(
0. 2te−0.01t

)]
U(t − 220), f2 = 0. 00005[

1 + sin
(
0. 05te−0.001t

)]
U(t−300), where U(t) is the unit

step function.
As we do not know the dynamics Φ, we can take as a

reference the Lipschitz constants of the fault signals, which
are 10. 6 × 10−7 and 11. 25 × 10−7 respectively, then we
choose L1s bigger enough, for example L1s = 0. 001, in a
similar way, we choose m = 0. 1, µ̄ = 1, Λs = 20, Q0 = I ,
then R = 0. 09I, Q = 3. 2122I , with these parameters we
obtain

P =
[

20. 4009 −1. 2107
−1. 2107 20. 5446

]
> 0

The two proposed schemes for fault estimation were evalu-
ated in case 1 (x1 not measurable), the results are described
as follows.

Only the two outputs y2 = x2 and y3 = x3 were
taken into account, an estimation for the unknown state
x1 was necessary to be obtained. In figure 3 we show
the resulting estimations achieved with the reduced-order
observer. A low-pass filter was necessary in order to reduce
the effect of the measurement noise, we chose a second-
order Butterwort filter whose transfer function is given by
Gf (s) = 1/

(
32s2 + 8s+ 1

)
. The gain values chosen for

both fault observers were k = 2, and for the state observer
x1, kx1 = 0. 3. As we can observe the estimation results
with this scheme are good (figure 3).
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Fig. 3. Fault diagnosis for unknown h1 using the reduced order observer.
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A sliding-mode observer was also tested in this case. In
figure 4 the corresponding results achieved with the sliding-
mode observer are shown. It is worth to mention that with
this observer it was not necessary to include the reducing
noise filter providing the inherent robustness of this observer.
The gain values chosen for the fault and state observers were
m1 = 0. 1, m2 = 0. 01. As we can observe from figure 4,
this scheme also provides good estimation results.

VIII. CONCLUDING REMARKS

We have tackled the fault diagnosis problem in nonlinear
systems using the condition of left invertibility through
the concept of differential output rank. The usefulness of
theorem 1, theorem 2, and lemma 2 was shown, this al-
lowed the estimation of two simultaneous faults with less
measurements. The theoretical and simulation results were
tested in a real-time implementation (three-tank system). The
experimental results for the two observers showed similar
performance, however the proposed sliding-mode observer is
more robust against measurement noise, as it was expected.

REFERENCES

[1] Alcorta Garcı́a E. and Frank P, “Deterministic nonlinear observer-
based approaches to fault diagnosis: a survey,” Control Eng. Pract.
no. 5, pp 663-670, 1997.

[2] Frank P. and Ding X. “Survey of robust residual generation and
evaluation methods in observer-based fault detection systems,” Journal
of Process Control, no. 7, pp 403-424. 1977.

[3] Willsky A., “A survey of design methods in observer-based fault
detection systems,” Automatica, no. 1(2), pp 601-611, 1976.

[4] Massoumnia, Verghese G. and Willsky A., “Failure detection and
identification,” IEEE Transactions on Automatic Control, vol. 34, pp
316-321, 1989.

[5] Chen J. and Patton R., Robust model-based fault diagnosis for dynamic
systems, Kluwer Academic Publishers, 1999.

[6] Blanke M., Kinnaert M., Lunze J. and Staroswiecki M., Diagnosis and
fault-tolerant control, Springer, Berlin, 2003.

[7] Noura H., Theilliol D., Ponsart J.C., and Chamseddine A., Fault-
tolerant control systems: design and practical applications, Springer,
London, 2009.

[8] De Persis C. and Isidori, “A geometric approach to nonlinear fault
detection and isolation,” IEEE Transactions on Automatic Control,
vol. 46, no. 6, pp 853-865, 2001.

[9] Join C., Ponsart J.-C., Sauter D. and Theilliol D., “Nonlinear filter
design for fault diagnosis: application to the three-tank system,” IEE
Proc. Control Theory Appl., vol. 152, No. 1, pp 55-64, 2005.

[10] Martı́nez-Guerra R. and Diop S., “Diagnosis of nonlinear systems
using an unknown-input observer: an algebraic and differential ap-
proach,” IEE Proc. Control Theory Appl., vol 151, no. 1, pp 130-135,
February 2004.

[11] Diop S. and Martı́nez-Guerra R., “An algebraic and data derivative
information approach to nonlinear system diagnosis,” in Proceedings
of the European Control Conference (ECC), Porto, Portugal, pp. 2334-
2339, 2001.
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