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Abstract— This paper deals with overshoot reduction in fixed-
order controller design for linear systems subject to polytopic
uncertainty. The basis of the developed synthesis method is
a recent convex parameterization for fixed-order stabilizing
controllers based on the polynomial approach. Two convex
constraints are developed in order to decrease the overshoot
of the closed-loop step response. First, based on the existing
convex parameterization and peak-to-peak gain performance a
criterion is developed to minimize the peak value of the step
response. In the second method, Markov parameters of the
system are used to achieve a step response with less overshoot.
Simulation results illustrate the effectiveness of the developed
methods.

I. INTRODUCTION

The computational complexity of modern controller design
methods such as H∞ and LQG reveals a watershed between
full-order and reduced-order controllers. A full-order con-
troller has the same order as the generalized plant (i.e. the
plant plus frequency weights) and its design translates into
a convex optimization problem, for which very efficient and
reliable solvers exist [1], [2]. The reduced-order controller
design, on the other hand, has not yet been reformulated as
a convex optimization problem and consequently, it is much
harder to solve. However, industry is often in preference of
low-order controllers because of their simplicity, low cost,
high reliability and low maintenance ([3], chap. 7).

The nonconvexity of the reduced-order controller design
is inherited from the nonconvexity of the set of coefficients
that yield a stable polynomial of degree larger than two.
However, if the order of the controller is allowed to be
higher than or equal to the generalized plant order, the
problem can be reformulated as a convex problem by a
change of variables. To overcome the nonconvexity of the
reduced-order control problem, researcher resorted to convex
but conservative stability conditions, yielding convex inner
approximations of the set of stable polynomial coefficients.
In [4] such a convex inner approximation is derived by
transforming stability into strict positive realness (SPRness)
with the help of the so-called central polynomial. SPRness
of a transfer function invokes a convex constraint on the
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polynomial coefficients, and [4] transforms this constraint
into a linear matrix inequality (LMI) based on polynomial
positivity. With the help of the obtained inner approximation
of the stability domain, [4] tackled the robust stabilization of
linear systems subject to polytopic uncertainty by reduced-
order controllers. In [5] a similar approach is taken, but
the KYP lemma [6] is applied to transform the SPRness
constraint into an LMI. In addition, the effect of the chosen
central polynomial on the closed-loop poles is studied. In [7],
the results of [4] are extended to the design of reduced-order
controllers that optimize the worst-case H∞ performance for
polytopic systems. A convex parametrization of all stabiliz-
ing controllers is also given in [8], which can be readily used
in the fixed-order controller design strategy of [5].

Concerning the control system’s performance, many engi-
neering applications demand a good step response, quantified
in terms of overschoot, settling time, etc. Although these
specifications can be addressed indirectly in an H2 or
H∞ design by choosing appropriate frequency weights, the
selection of these weights is generally tedious and time-
consuming. Few control design approaches address time-
domain specifications directly.

In [9], [10] Youla-Kuc̆era controller parameterization and
the polynomial approach are used to design a controller sub-
ject to time-domain constraints such as overshoot and input
constraints. [11] also focuses on overshoot minimization in
discrete-time systems and uses it for low-order controller
design. Moreover, improving transient response is studied
in [12] by a method called Characteristic Ratio Assignment
(CRA). However none of these methods allows accounting
both uncertainty and a fixed-order controller considering
time-domain specifications, which is the subject of our paper.

This paper addresses the design of fixed-order robust
controller subject to time-domain specifications. Hereto two
additions to the fixed-order robust controller design pro-
cedure of [5] are proposed. The first approach is based
on the peak-to-peak gain performance formulation provided
in [13] and [14] for continuous- and discrete-time systems
respectively. The second method shows that using system’s
Markov parameters can be employed to enhance the transient
response of the system.

This paper considers polytopic uncertainty, which is one of
the most general ways of representing structured uncertain-
ties. It covers both the well-known interval and multi-model
uncertainty.
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The remainder of this paper is organized as follows; Sec-
tion II provides the preliminary background and the problem
statement. In section III, the two methods for improving the
time-domain response are developed and section IV presents
numerical validation of the approaches. Finally, in section V
the concluding remarks are given.

II. PROBLEM FORMULATION AND PRELIMINARIES

In this section a brief outline of the design problem and
mathematical preliminaries are provided.

A. Problem Formulation

Consider a SISO continuous-time or discrete-time system
subject to parametric uncertainties residing in a polytope.
That is, the set of potential plant models is given by

Gδ (λ ) =
bδ (λ )

aδ (λ )
=

∑
q
i=1 δi bi(λ )

∑
q
i=1 δi ai(λ )

(1)

where λ denotes the Laplace variable s or z-transform
operator z and the vector δ ∈ Rq comprises the uncertain
parameters. It may vary in the following polytope δδδ :

δδδ = {δ ∈ Rq |δi ≥ 0,
q

∑
i=1

δi = 1} , (2)

while the q-“vertex” polynomials ai(λ ) and bi(λ ) are given
by

ai(λ ) = λ
n +a1,iλ

n−1 + . . .+an,i , (3a)

bi(λ ) = b0,iλ
n +b1,iλ

n−1 + . . .+bn,i . (3b)

Also consider a proper dynamic output feedback controller

K(λ ) =
y(λ )
x(λ )

=
y0λ m + y1λ m−1 + ...+ ym

λ m + x1λ m−1 + ...+ xm
(4)

in the standard negative feedback configuration shown in Fig.
1. This yields the following closed-loop system Hδ (λ ) from
r(t) to z(t):

Hδ (λ ) =
bδ (λ )y(λ )

aδ (λ )x(λ )+bδ (λ )y(λ )
=

bδ (λ )y(λ )
cδ (λ )

, (5)

where the denominator is the so-called characteristic poly-
nomial of the closed-loop system and is indicated here by
cδ (λ ):

cδ (λ ) =
q

∑
i=1

δi ci(λ ) =
q

∑
i=1

δi (ai(λ )x(λ )+bi(λ )y(λ )) . (6)

The aim of this paper is to derive a convex design proce-
dure for reduced-order controllers K(δ ) that (i) stabilizes the
closed-loop system; (ii) yields asymptotic tracking of a step
input and (iii) minimizes the step response overshoot; hereby
explicitly accounting for the polytopic model uncertainty.

K(λ ) = y(λ )
x(λ ) Gδ (λ ) =

bδ (λ )
aδ (λ )

u(t)r(t) + e(t) z(t)

−

Fig. 1. Standard negative feedback configuration.

Robust closed-loop stability requires all the roots of cδ (λ )
to reside in the open left-half plane (continuous-time) or the
unitary disc (discrete-time), for all δ ∈ δδδ .

In addition, overshoot formulation invokes a nonconvex
constraint on the controller parameters and in this paper it is
translated to a convex one (Interested readers may want to
see [9],[12],[15]).

B. Convex Parameterization of fixed-order robust stabilizing
controllers

To overcome the nonconvexity of the fixed-order controller
design problem, this paper adopts the approach of [5]. That
is, the nonconvex coefficient set of stable polynomials is
replaced by a convex inner approximation with the help of
SPRness (KYP lemma) and a given stable polynomial, called
the central polynomial.

The following lemma states the result of [5] for discrete-
time systems. It is straightforward to write the LMIs for
continuous-time systems.

Lemma 1 ([5]): Consider the polytopic system Gδ (z) (1),
the controller K(z) (4) and a stable central polynomial
d(z) = zn+m+d1zn+m−1+ ...+dn+m. The closed-loop system
is stable for all δ ∈ δδδ if the q transfer functions Ti(z) =

ci(z)
d(z)

for i = 1, . . . ,q are SPR. The polynomial ci(z) corresponds
to the characteristic polynomial on the i-th vertex, as is
indicated in (6).

Let the coefficients of K(z) be grouped in the vector χ:

χ =
[
x1 · · · xm y0 · · · ym

]T
, (7)

and let (A,B,Ci(χ),Di(χ)) correspond to the controllable
canonical state-space form of Ti(z), then K(z) robustly sta-
bilizes the closed-loop system if there exists Pi = PT

i > 0 for
i = 1, . . . ,q that satisfy:[

AT PiA−Pi AT PiB−Ci(χ)
T

BT PiA−Ci(χ) BT PiB−Di(χ)−Di(χ)
T

]
< 0, (8)

Since the functions Ci(χ) and Di(χ) are affine in χ ,
considering χ as an additional optimization variable, does
not compromise the linearity of the matrix inequalities (8).

This Lemma can be used to satisfy some performance
measures as in [8] and is extended in [16] to satisfy H∞ per-
formance with less conservatism than [8]. As stated above,
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one of the controller design specifications is to shape the
closed-loop sensitivity function S(λ ) in frequency-domain,
which invokes a constraint of the form ||W1S||∞ < ε . In [16] it
is shown that by using the relation between the bounded real
lemma and the positive real lemma, the set of controllers that
result in a closed-loop system with ||W1(λ )Sδ (λ )||∞ < ε can
be represented via LMIs as the Common Lyapunov Strictly
Positive Realness (CL-SPRness) of the following transfer
functions:

ci(λ )+ε−1ai(λ )x(λ )W1(λ )

d(λ )
,

ci(λ )−ε−1ai(λ )x(λ )W1(λ )

d(λ )
,

(9)

and this for all i = 1, . . . ,q. Two equal-order SPR transfer
functions are called CL-SPR if they satisfy the LMIs result-
ing from the KYP lemma with the same Lyapunov matrix
P. The LMI representation of this theorem is straightforward
due to the stated Lemma 1.

III. TIME-DOMAIN RESPONSE IMPROVEMENT

This section presents two new methods for adding convex
time-domain constraints to the optimization problem of the
controller design. The first method is based on the peak-to-
peak gain performance formulation and is applicable to both
discrete-time and continuous-time systems. The second one
which is based on the definition of the time-domain signal, is
simpler and yield better performance. The second approach
uses the Markov parameters of the closed-loop system to
convexify the objective function of the optimization problem.

A. Minimizing the Peak-to-Peak Gain

In order to reduce the peak amplitude of the output, the
LMI constraints on the peak-to-peak gain for continuous-
time and discrete-time systems are imposed. Unfortunately,
these conditions are nonconvex when used for controller
synthesis, similar to the matrix conditions for the H2 and
H∞ norm. In this part the peak-to-peak gain conditions are
convexified to derive a controller resulting in less overshoot.
The following lemma states the nonconvex LMI conditions
for continuous-time and discrete-time systems ([13] and
[14]).

Lemma 2: Suppose that (A,B,C,D) is a state-space real-
ization of the system G(λ ) with input signal r(t) and output
signal z(t). Also assume that there exist µ,ν ∈R and matrix
P = PT > 0 such that for continuous-time systems:

µ,ν > 0, (10a)[
AT P+PA+µP PB

BT P −νI

]
< 0, (10b) µP 0 CT

0 (γ−ν)I DT

C D γI

> 0 (10c)

and for discrete-time systems:

0 < µ < 1,ν > 0, (11a)[
AT PA−µP AT PB

BT PA −νI +BT PB

]
< 0, (11b) (1−µ)P 0 CT

0 (γ2−ν)I DT

C D I

> 0, (11c)

then ‖G(λ )‖peak < γ , which implies that ‖z(t)‖∞ < γ for
any signal r(t) with ‖r(t)‖∞ < 1. 1 Moreover, all eigenvalues
of A are in the stability region (left-half plane or unit circle)
or equivalently, G(λ ) is stable.

The matrix inequalities of Lemma (2) are linear only
in case of a fixed µ . Hence, the best value of µ and
consequently, the best bound of the provided formulation,
is found by performing a line search over µ .

It is also evident that the constraints of (10b) and (11b) are
non-convex conditions for the controller synthesis because
the controller parameters appear in the closed-loop state-
space matrices. In [13] it is shown that for controllers of
order at least equal to the plant order, these conditions
can be convexified by a nonlinear change of controller
variables. However, it remains nonconvex for the reduced-
order controller design. Therefore we rely on the following
theorem presents a sufficient condition to find a stabilizing
fixed-order controller that satisfies the peak induced norm
condition. This condition is convex such that the fixed-order
design problem is again convex.

Theorem 1: Consider the closed-loop characteristic poly-
nomial in (6), a stable central polynomial d(λ ) = λ n+m +
d1λ n+m−1 + ... + dn+m and the vector χ defined in
(7). In addition, let (A,B,Ci(χ),Di(χ)) denote the con-
trol canonical state-space form of Ti(λ ) = ci(λ )

d(λ ) , while
(Ai(χ),Bi(χ),Ci(χ),Di(χ)) indicates the control canonical
state-space form of Hi(λ ) =

bi(λ )y(λ )
ci(λ )

. Then, the closed-loop
system is robustly stabilized and satisfies

‖Hδ (λ )‖peak < γ , ∀δ ∈ δδδ , (12)

if there exists µi,νi ∈ R and Pi = PT
i > 0, for ∀i = 1, . . . ,q,

such that
1Considering xs as the state variable of G, ‖G(λ )‖peak =

sup{‖z(T )‖ : xs(0) = 0,T ≥ 0,‖r(t)‖ ≤ 1 f or t ≥ 0}
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• for continuous-time systems:

0 < µi , 0 < νi , (13a)[
AT Pi +PiA+µiPi PiB−Ci(χ)

T PiB
BT Pi−Ci(χ) −Di(χ)−Di(χ)

T 0
BT Pi 0 −νiI

]
< 0 , (13b) µiPi 0 Ci(χ)

T

0 (γ−νi)I Di(χ)
T

Ci(χ) Di(χ) γI

> 0 , (13c)

• for discrete-time systems:

0 < µi < 1 , 0 < νi , (14a)[
AT PiA−µiPi AT PiB−Ci(χ)

T AT PiB
BT PiA−Ci(χ) −Di(χ)−Di(χ)

T +BT PiB 0
BT PiA 0 −νiI +BT PiB

]
< 0

(14b) (1−µi)Pi 0 Ci(χ)
T

0 (γ2−νi)I Di(χ)
T

Ci(χ) Di(χ) I

> 0 . (14c)

Proof: The proof is given here for a continuous-time
system, while the proof of the discrete-time result proceeds
similarly. To prove our statement, it suffices to prove that AT P+PA+µP PB−CT PB

BT P−C −D−DT 0
BT P 0 −νI

 < 0 ⇒

[
A T P+PA +µP PB

BT P −νI

]
< 0,

(15)

where (A,B,C,D) denotes the controllable canonical state-
space form of T (s) = c(s)

d(s) , while (A ,B,C ,D) equals the

controllable canonical state-space form of H(s) = b(s)y(s)
c(s) .

Applying the Schur complement to the left-hand side of (15)
yields:[

AT P+PA+µP+ν−1PBBT P PB−CT

BT P−C −D−DT

]
< 0. (16)

Similar to the proof of CL-SPRness of the transfer functions
T (s) and T−1(s), see e.g. [16], it can be shown that the
inequality (16) holds for (A,B,C,D) a state-space model
for T (s), if and only if it holds for a state-space model
(Ã, B̃,C̃, D̃) of T−1(s) with the same Lyapunov matrix P.
Since T−1(s) = d(s)

c(s) has the same denominator as H(s), the
matrices Ã and B̃ may be chosen equal to A and B, respec-
tively. This way, the (1,1) sub-block of the corresponding
matrix inequality (16) yields:

A T P+PA +µP+ν
−1PBBT P < 0 ⇔

[
A T P+PA +µP PB

BT P −νI

]
< 0 ,

(17)

which completes the proof.

B. Direct minimization of the output response using Markov
parameters

In this part, the tracking error of the discrete-time closed-
loop system is minimized through the use of Markov pa-
rameters. The time response of the i-th vertex of the poly-
topic closed-loop discrete-time system Hδ (λ ) =

bδ (λ )y(λ )
cδ (λ )

,
see Eq. (5), is obtained by convolution as:

z[k] =
k

∑
l=0

gi[k− l]r[l] =
k

∑
l=0

gi[l]r[k− l], (18)

where gi[k] is the system’s impulse response from the
reference input r[k] to the output z[k]. By evaluating the
state space equations at different time instances, and then
repeatedly inserting the obtained expressions into each other
to calculate z[k] for all k, the system Markov parameters are
characterized by:

gi[k] =

{
Di k = 0
CiA

k−1
i Bi k ≥ 1,

(19)

where (Ai(χ),Bi(χ),Ci(χ),Di(χ)) is the state space real-
ization of the closed-loop transfer function.

At time-instance k, the difference between the closed-loop
step response of the polytopic closed-loop system and the
steady state value is bounded by γ if and only if

Dδ (χ)+Cδ (χ)

(
N−1

∑
k=0

Aδ (χ)
k

)
Bδ (χ)−1 < γ ,

∀N = 1,2, . . . , ∀δ ∈ δδδ .

(20)

This constraint is hard to impose due to the nonlinear depen-
dency on δ and the nonlinear dependency on χ (nonconvex
constraints), and hence it should be changed to a convex
constraint for the optimization problem.

In [8] it is stated that the closed-loop poles can be assigned
in a desired region by minimzing the norm

‖cδ (λ )

d(λ )
−1‖< η ,

where ‖.‖ can be any transfer funtion norm. It is also evident
that in polytopic case, exact pole placement is not possible.
However, the poles are assigned nearly around the desired
ones if this norm is small enough and hence Hδ (λ ) can be
replaced with Tδ (λ ) =

bδ (λ )y(λ )
d(λ ) .

In order to convexify (20) using the mentioned replace-
ment, two steps are needed. First, using the canonical state-
space form of Tδ (λ ) instead of Hδ (λ ) makes (20) affine in
δ and χ . Second, since the new equation is affine in δ , it
is sufficient to be satisfied at the vertices of the polytope.
Therefore, the constraints required to bound the overshoot
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by γ are approximated by:

Di(χ)+Ci(χ)

(
N−1

∑
k=0

Ak

)
B−1 < γ ,

∀N = 1,2, . . . , ∀i = 1, . . . ,q ,

(21)

where (A,B,Cδ (χ),Dδ (χ)) denote the controllable canonical
state-space form of Tδ (λ ).

It is worth mentioning that since the constraint is linear in
δ and χ , it can be verified for the entire polytope by applying
the constraint to each vertex. Summing up the constraint (21)
at each time-instance gives γ +wη η (wη is the weight or
scaling over η) as the cost function to minimize and improve
the time-domain response.

Remark 1: Constraint (21) still suffers from semi-
infiniteness because of N which is the length of the sequences
considered in the constraint. It is evident that minimizing
more sequences before the step response settles, leads to
further improvement of the time response at the expense of
computational complexity. Therefore, one has to determine a
number N based on the behavior of the closed-loop system.

IV. SIMULATION RESULTS

This section presents the numerical validation of the devel-
oped methods for robust fixed-order controller design. The
following simulation results are obtained using MATLAB in
combination with the SeDuMi solver [1], and the YALMIP
interface [17].

First, consider the robust controller design problem taken
from [8] which involves the following discrete-time system
sampled at 1 second :

G(z) =
z+a

z3 +bz2 + cz+d
, (22)

where a = 0.2, b = −1, c = 0.5, d = −0.1 and all the
parameters vary up to ±7% from their nominal values.
This uncertain system can be described by a polytope with
24 = 16 vertices. Fig. 2 shows the bode plot of the systems
at the vertices indicating that the uncertainty is large at low
frequencies, which challenges robust control design.

To shape the sensitivity function the same weighting
function as in [8] is used:

W (z) =
0.4902(z2−1.0431z+0.3263)

z2−1.282z+0.282
,

which contains a pole at z = 1, to enforce an integrator
in the controller to achieve perfect reference step tracking in
steady state. The inverse of W (z) crosses the -3dB line from
below at 2 rad/sec.

The central polynomial d(z) = (z2−1.0432z+0.3263)(z−
0.1)5, which has the desired closed-loop poles is also chosen
the same as in [8] for a fourth order controller. The two
desired closed-loop poles are related to the poles of a second-
order continuous-time system with a natural frequency of 0.7

10−1 100
−10

−5

0

5

10

15

20
Magnitude Bode Diagram

Freq. (rad/sec)

M
ag

.(
dB

)

Fig. 2. Magnitude Bode diagrams of all vertices of the polytopic system.

rad/s and a damping factor of 0.8. The five auxiliary poles
are selected much faster than the dominant poles and hence
they are arbitrarily selected to be at z = 0.1.

Three controllers of order four are compared. The first
controller is designed using sensitivity shaping through equa-
tion (9) with ε = 0.7 which corresponds to the design method
of [16]. The second and the third controllers are designed
by in addition minimizing the peak-to-peak gain (method
of section III-A) and the output sequence using Markov
Parameters (method of section III-B), respectively. Fig. 3
shows the closed-loop step response of the vertex system that
yields the largest overshoot. Table (I) also summarizes the
results of a fourth-order controllers for the polytopic system.

The results show that the second and the third controllers
yield a significant reduction of the overshoot and their
performance with respect to overshoot is comparable. The
rise-time obtained with the third controller (1.46 sec) is
noticeably smaller than the rise time of the first controller
(2.75 sec) while the second method gives the rise-time of
17 sec. This can be explained by the conservativeness of the
peak-to-peak gain method and also directly minimizing the
error signal at all time instances for the Markov parameters
method.

It is worth mentioning that the result in [8] is comparable
to the shaping method of [16] shown in Fig. 3, because it
only considers shaping the output sensitivity function and
does not aim at improving the time-domain response.

V. CONCLUSION

In this paper convex constraints to enhance the time-
domain response of polytopic systems in the robust fixed-
order controller design problem are given. The peak-to-peak
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TABLE I
MAXIMUM STEP RESPONSE OVERSHOOT AND RISE-TIME OF THE

CLOSED-LOOP POLYTOPIC SYSTEM OBTAINED BY THE PRESENTED

METHODS.

Optimization constraints Worst-case
overshoot

Worst-case
rise-time (s)

Sensitivity shaping 39% 2.75

Sensitivity shaping and peak-to-
peak gain minimization

21% 17

Sensitivity shaping and Markov pa-
rameters method

19% 1.66

0 5 10 15 20
0

0.5

1

1.5
Step response of closed-loop function

Time(Sec)

O
ut

pu
t

Fig. 3. Closed-loop step response of the worst vertex without time-domain
constraints (solid), with peak-to-peak gain constraint (dotted), with Markov
parameters method (dash).

gain performance condition is convexified and used in fixed-
order design procedure to minimize the overshoot of the step
response. Based on the definition of Markov parameters a
constraint is introduced to minimize the overshoot of the
closed-loop step response in fixed-order controller design
for discrete-time systems. The effectiveness of the proposed
methods is illustrated through numerical examples.
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[17] J. Löfberg, “Yalmip : A toolbox for modeling and optimization
in MATLAB,” in Proceedings of the CACSD Conference, Taipei,
Taiwan, 2004. [Online]. Available: http://users.isy.liu.se/johanl/yalmip

3703


