
Collision Avoidance System Optimization
with Probabilistic Pilot Response Models

James P. Chryssanthacopoulos and Mykel J. Kochenderfer

Abstract— All large transport aircraft are required to be
equipped with a collision avoidance system that instructs
pilots how to maneuver to avoid collision with other aircraft.
Uncertainty in the compliance of pilots to advisories makes
designing collision avoidance logic challenging. Prior work has
investigated formulating the problem as a Markov decision
process and solving for the optimal collision avoidance strategy
using dynamic programming. The logic was optimized to a pilot
response model in which the pilot responds deterministically
to all alerts. Deviation from this model during flight can
degrade safety. This paper extends the methodology to include
probabilistic pilot response models that capture the variability
in pilot behavior in order to enhance robustness.

I. INTRODUCTION

The Traffic Alert and Collision Avoidance System
(TCAS), carried by all large transport aircraft, has been
shown to significantly improve safety in the event of failure
in the air traffic control system. TCAS does not control the
aircraft directly; it can only issue advisories to pilots on how
to maneuver vertically to prevent collision. As recorded radar
data have shown, there is significant variability in the delay
and strength of the response of pilots to these advisories [1].
In order to ensure safety, the design of the collision avoidance
logic should accommodate the variability in response.

The current TCAS logic does not explicitly model variabil-
ity in pilot response. Instead, it uses a deterministic model
to predict the future paths of the aircraft and applies a
complex set of heuristics in an attempt to provide robustness
to unexpected behavior. This paper pursues a more principled
approach that uses a probabilistic model to account for pilot
response variability. The approach builds upon prior work
on framing the collision avoidance problem as a Markov
decision process (MDP) and solving for the optimal collision
avoidance strategy using dynamic programming (DP) [2]–
[5]. This paper shows that systems that incorporate proba-
bilistic response models are significantly more robust than
prior systems that assumed a deterministic response.

The next section provides a brief overview of MDPs.
Section III describes the approximation method used in this
work. Section IV formulates the collision avoidance problem
as an MDP. Section V demonstrates the usage of the logic.
Section VI presents simulation results. Section VII concludes
and outlines further work.
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II. MARKOV DECISION PROCESSES

This section reviews finite-horizon Markov decision pro-
cesses (MDPs) [6]. MDPs model sequential decision-making
problems where cost is to be minimized. An MDP is defined
by the tuple (S ,A ,C,T ). The sets S and A are a finite
set of states and a finite set of actions, respectively. The
cost function C(s,a) is the immediate cost when taking
action a in state s, and C(s) is the cost when terminating
in state s. Both C(s,a) and C(s) are assumed deterministic.
The state-transition function T (s,a,s′) is the probability of
transitioning from state s to state s′ when taking action a.

A deterministic policy πk(s) indicates what action should
be taken for each of the states s in S when there are k
steps remaining until termination. An optimal policy π∗k is
typically found by first computing the optimal state-action
cost-to-go function J∗k and then extracting the greedy policy.
The optimal state-action cost-to-go function J∗k (s,a) is the
expected cost incurred when starting in state s, k steps
from termination, taking action a for one time step, and
then continuing with the actions prescribed by π∗ for the
remainder of time. It obeys the following recursion:

J∗k (s,a) =C(s,a)+ ∑
s′∈S

T (s,a,s′)min
a′

J∗k−1(s
′,a′). (1)

An optimal policy with respect to J∗k satisfies

π
∗
k (s) = argminaJ∗k (s,a). (2)

Several different dynamic programming algorithms exist
for iteratively arriving at the optimal cost-to-go function. An
algorithm known as value iteration, for example, generates
a sequence of state-action cost-to-go functions J∗0 ,J

∗
1 , . . . ,J

∗
K

by successively applying Equation 1 with J∗0 (s,a) =C(s) for
all state-action pairs.

III. APPROXIMATION METHOD

Because the collision avoidance domain contains variables
that are naturally continuous, such as altitudes and vertical
rates, it is necessary to discretize the state space. Discretizing
the state space and directly solving for the optimal policy
using value iteration can be infeasible for problems with
many state variables. A new approximation method was
introduced in [4] to solve a certain class of MDPs where only
a subset of the state variables is controllable. It is applicable
to TCAS-like systems that only affect the vertical motion of
the aircraft.

The approach involves decomposing the full problem into
two subproblems, one involving the controlled state space
Sc and the other involving the uncontrolled state space Su.
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Dynamic programming is used to estimate the time τ until
the uncontrolled state su enters a certain subspace, denoted
G, of the uncontrolled state space. The entry time τ is
represented as a discrete random variable; the probability
that su enters G in k steps is denoted Dk(su). The probability
distribution for τ is computed up to a certain horizon K and
the remaining probability mass, denoted DK̄(su), represents
the probability of the event {τ > K}. The entry distributions
are computed offline for every uncontrolled state and saved
as tables D0,D1, . . . ,DK in memory.

The controlled subproblem is treated as a finite-horizon
MDP where τ indicates the number of steps until termination.
The solution of the controlled subproblem is a sequence of
cost-to-go functions for the controlled state space for every
possible value of τ up to the horizon K. The cost-to-go
J∗k (sc,a) represents the lowest expected cost incurred starting
from controlled state sc and taking action a for one time
step assuming su enters G in exactly k steps. It is computed
recursively using value iteration. The cost-to-go for {τ >K},
J∗K̄(sc,a), is computed by initializing J∗0 (sc,a) = 0 for all
state-action pairs and iterating Equation 1 until horizon K.

Let π∗k (sc) represent the optimal action to take from sc
given τ = k:

π
∗
k (sc) = argminaJ∗k (sc,a). (3)

This policy will be examined further in Section IV. The
tables J∗0 ,J

∗
1 , . . . ,J

∗
K ,J
∗
K̄ are computed offline for every con-

trolled state and stored in memory.
The solutions to the subproblems are combined to form

an approximation to the joint (controlled and uncontrolled)
optimal state-action cost-to-go function:

J∗(s,a) = DK̄(su)J∗K̄(sc,a)+
K

∑
k=0

Dk(su)J∗k (sc,a). (4)

Similar to Equation 3, the joint optimal policy is given by

π
∗(s) = argminaJ∗(s,a). (5)

Further details regarding the algorithm, including the as-
sumptions under which it is applicable, can be found in [4].

IV. COLLISION AVOIDANCE MODELING

This section formulates the collision avoidance problem
as an MDP. In the collision avoidance problem, one air-
craft equipped with a collision avoidance system, called the
own aircraft, encounters an unequipped aircraft, called the
intruder aircraft. The system on the own aircraft can issue
resolution advisories to the pilots advising them to adjust
their vertical rate to avoid conflict with the intruder aircraft.
Conflict in this paper occurs when the intruder comes within
500ft horizontally and 100ft vertically. This has been called
a near mid-air collision (NMAC) in prior TCAS studies [7].

The approximation method of Section III can be applied
by observing that the horizontal and vertical motions can be
decoupled. The set of all states describing vertical motion is
the controlled state space, and the set of all states describ-
ing horizontal motion is the uncontrolled state space. The
subspace G is the set of all states in which the aircraft are

in conflict horizontally. The entry time τ becomes the time
until horizontal conflict. The cost function is designed so
that a high penalty is incurred when both τ = 0 (horizontal
conflict) and vertical separation is less than 100ft (vertical
conflict).

A. Resolution Advisories

The system on the own aircraft can issue one of two differ-
ent initial advisories: climb at least 1500ft/min or descend
at least 1500ft/min. The pilot response is modeled as a 1/4g
acceleration to meet the target rate, if necessary. Following
the initial advisory, the system can either terminate, reverse,
or strengthen the advisory. The pilot responds to a reversal by
applying a 1/3g acceleration to reach a 1500ft/min vertical
rate in the direction opposite the original advisory. The pilot
response to a strengthening, similarly, consists of a 1/3 g
maneuver to achieve a vertical rate of 2500ft/min in the
direction of the previous advisory. After an advisory has
been strengthened, it can be weakened to reduce the required
vertical rate to 1500ft/min. It is responded to with 1/3g
acceleration. The various advisories, as well as the decision
to not alert, define the action set A .

B. Aircraft Dynamic Model

The aircraft trajectories are perturbed by zero-mean Gaus-
sian accelerations horizontally and vertically. The dynamic
state of the aircraft is captured using seven variables:
• h: altitude of the intruder aircraft relative to own,
• ḣ0: vertical rate of the own aircraft,
• ḣ1: vertical rate of the intruder aircraft,
• sRA: state of the resolution advisory,
• r: horizontal range to the intruder,
• rv: relative horizontal speed, and
• θv: difference in the direction of the relative horizontal

velocity and the bearing of the intruder.
The intruder aircraft experiences random vertical accelera-
tions drawn from a zero-mean Gaussian with 3ft/s2 standard
deviation. The own aircraft, moreover, undergoes the same
process except when a resolution advisory is actively fol-
lowed, in which case the own aircraft accelerates according
to the model of Section IV-A. In the horizontal plane, both
aircraft move independently in response to random accel-
erations selected from a zero-mean Gaussian with 30ft/s2

standard deviation.
The variable sRA is a discrete random variable that is used

to model the pilot response. The dynamics of sRA are given
by a controlled Markov chain, which is discussed further in
Section IV-C.

The continuous state variables are discretized according
to a standard grid-based scheme that uses cut points along
each of the dimensions of the state space. The controlled
state space Sc is comprised of all discrete states of the
form (h, ḣ0, ḣ1,sRA). The discrete transition probabilities of
the Markov chain over the controlled state space are esti-
mated using the continuous vertical motion model and the
Markov chain pilot response model in combination with
sigma-point sampling and multilinear interpolation [3]. There
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are approximately 472,000 discrete controlled states for
the linear pilot response model, approximately 1.75 million
for the quadratic model. The uncontrolled state space Su
contains all states of the form (r,rv,θv). The uncontrolled
Markov chain model was constructed using the continu-
ous horizontal motion model, sigma-point sampling, and
multilinear interpolation. There are approximately 730,000
discrete uncontrolled states.

C. Pilot Response Models

Two models were constructed to capture the dynamics
of the sRA variable that encodes pilot response states. Each
state in the Markov chain indicates the active advisory and
the current response. The state “climb/none,” for example,
signifies that a climb advisory is currently on display but
that the pilot is unresponsive. In the first model, the number
of states scales linearly with the number of advisories (13
states in total). The second model scales quadratically with
the number of advisories (49 states in total). Figure 1, while
not explicitly enumerating all state-action pairs, illustrates
some features of the models.

Before an advisory is issued, the Markov chain is in the
“none/none” state. Upon the issuance of a climb advisory,
for example, the pilot responds immediately with probability
1/6, transitioning to “climb/climb,” and remains unrespon-
sive otherwise, transitioning to “climb/none.” Should the
climb advisory remain in effect at the next time step, the
pilot responds with probability 1/6 if he has not responded
already. For a given advisory, therefore, the response delay
follows a geometric distribution; a success probability of 1/6
was chosen so that, on average, the pilot responds in five
seconds.

According to the linear model, if a descend advisory is
subsequently issued, the pilot responds with probability 1/4
and neglects all advisories otherwise, regardless of whether
he was responding to the climb advisory. The quadratic
model differs in that, if the pilot is responding to the climb
advisory, he will continue to respond to the advisory with
probability 3/4. With success probability 1/4, the pilot will
respond to the new advisory (three seconds on average).

If the advisory is discontinued, the Markov chain tran-
sitions to “none/none” with probability one in the linear
model. However, in the quadratic model, the pilot retains
some memory of the advisory he was previously executing
and continues executing it with probability 3/4 even after
the advisory is terminated.

D. Cost Function

Unit cost is accrued when the aircraft come into conflict,
i.e., when |h|< 100ft and τ = 0 (su enters G). Additionally, to
reduce false alerts and course deviation, a small cost of 0.01
is incurred when an alert is initially issued. A cost of 0.009
and of 0.01 are accumulated when the system strengthens and
reverses, respectively. A small negative cost of −1×10−6 is
awarded at every time step in which the system is not alerting
to provide some incentive to discontinue alerting after the
encounter has been resolved.
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(b) Quadratic model.

Fig. 1. Probabilistic pilot response models. The pilot response is in
bold, and the active advisory is in regular text. Transition probabilities are
indicated along the directed arcs. Self-transitions are omitted. Notice that for
several states, transitions out of the state when executing different actions
are shown; hence, the transition probabilities need not sum to one.

E. Entry Distribution

The entry distribution for all states in the uncontrolled
state space was computed using dynamic programming. The
subspace G was chosen to be the set of all states for which
the horizontal range is less than 1000ft, twice the size of
the horizontal conflict zone that defines an NMAC. Offline
computation of the entry time tables for a horizon of K =
39 steps required 100s on a single 3 GHz Intel Xeon core.
Storing the tables in memory using a 64-bit floating point
representation requires 228 MB.

F. Optimal Policy

The cost-to-go tables J∗0 ,J
∗
1 , . . . ,J

∗
K ,J
∗
K̄ were computed of-

fline in 2.5min for the linear pilot response model, requiring
151 MB of storage to save only the valid state-action pairs.
The quadratic pilot response model required 11.5min of
computation and 560 MB of storage.

While the tables themselves are not immediately informa-
tive, it is insightful to inspect the policy π∗τ (sc) of Equation 3
for various controlled states and values of τ . Figure 2 depicts
the optimal policy as a function of the relative altitude h and
entry time τ when both aircraft are flying level, a descend
advisory is active, and the pilot is responding to it.
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(b) Quadratic pilot response model.

Fig. 2. Optimal policy slices for ḣ0 = 0ft/min, ḣ1 = 0ft/min, and sRA =
“descend/descend.”

Figure 2(a) shows the optimal policy computed using the
linear pilot response model. The blue region indicates the
best action is to continue issuing the descend advisory. The
descend advisory is typically maintained when the intruder
is above the own aircraft (the top half of the plot). However,
for large values of τ , the descend advisory is continued even
when the own aircraft is above because there is ample time
to pass below the intruder. In the teal region, the optimal
policy is to reverse the descend to a climb when the intruder
is below. This region widens and narrows as τ changes. In
certain regions of the state space, depicted in white, the best
action is to discontinue the advisory.

Figure 2(b) is the optimal policy computed using the
quadratic pilot response model. The policy is similar to that
of the first plot. Because in the quadratic model the pilot
continues to follow the descend advisory with probability
3/4 even after it is switched to a climb, the reversal region
has expanded to allow additional time for the pilot to reverse
and prevent conflict. The reversal region is smaller for the
linear model because the pilot will become unresponsive

to all advisories with probability 3/4 when the reversal is
issued, which is much safer than continuing the descent.

The purple region in Figure 2(b) marks the places in
the state space where the optimal action is to strengthen
the descent. This region is absent in the first plot because
the response of the pilot to strengthenings, together with
the strengthening cost, makes continuing the advisory more
advantageous than strengthening. Namely, because the pilot
ignores all advisories with probability 3/4 and responds only
with probability 1/4 after the strengthening is issued, it is un-
likely that strengthening can improve safety, especially when
conflict is imminent. The probability of responding to the
strengthening is also 1/4 in the quadratic model. However,
because the pilot continues his descent with probability 3/4,
the probability of strengthening, though the same, causes
strengthening to have a lower expected cost than continuing
the descend advisory.

V. REAL-TIME LOGIC USAGE

Once the entry time and cost-to-go tables have been com-
puted offline, they are combined online to choose actions.
The optimal action to take from state s in the discrete state
space is, as mentioned previously, argminaJ∗(s,a). If the
current state x does not correspond exactly to one of the
discrete states, an approximation method such as multilinear
interpolation can be used to approximate the state-action
cost-to-go function at x. Figure 3 shows an example en-
counter comparing the behavior of the logic optimized using
dynamic programming (DP) with that of the current version
of the TCAS logic, Version 7.1. The logic was optimized
using the quadratic pilot response model.

The encounter was randomly generated using an encounter
model developed using nine months of recorded radar data
[8]. This model represents the variables governing the initial-
ization of an encounter as a Bayesian network. The dynamics
of the aircraft are represented by a dynamic Bayesian net-
work, which captures the changes in turn rate, vertical rate,
and airspeed over time. In this example encounter, although
the logic is optimized using a probabilistic pilot response
model, the pilot responds to all initial advisories in exactly
five seconds and to all subsequent advisories in exactly three
seconds.

Determination of the alert to issue at each time step
requires knowledge of the state of the resolution advisory,
sRA. Because there is uncertainty as to whether the pilot is
responding to an advisory, sRA is not completely observable.
Instead, a probability distribution over possible values of
sRA, called a belief state, must be maintained to summarize
the belief regarding the response of the pilot to advisories.
As new observations of the aircraft state are made each
time step, the belief state b(sRA) is recursively updated
using Bayes’ rule. The belief state is initialized at t = 0 to
b0(none/none) = 1. For all subsequent time steps t > 0, the
belief state is updated as follows:

bt(s′RA) ∝ p(ḣ′0 | ḣ0,s′RA)∑
sRA

T (sRA,a,s′RA)bt−1(sRA), (6)

2768



D
es

ce
nd

St
re

ng
th

en

C
le

ar
of

co
nfl

ic
t

D
es

ce
nd

St
re

ng
th

en

C
le

ar
of

co
nfl

ic
t

−40 −20 0 20 40

500

1000

1500

2000

2500

3000

Time (s)

A
lti

tu
de

(f
t)

DP Logic
TCAS Logic
No Logic
Intruder

Fig. 3. Example encounter comparing the performance of the DP logic
optimized using the quadratic pilot response model with that of TCAS.

where p(· | ḣ0,s′RA) represents the probability density of
the own aircraft vertical rate at time t conditioned on the
previously-observed vertical rate, ḣ0, and the response state
at time t, s′RA. This density is evaluated at the observed
vertical rate at the current time, ḣ′0. After each belief update,
the action to take accounts for the likelihood of different
responses using the following approximation [9]:

π
∗(b) = argmina ∑

s
b(s)J∗(s,a). (7)

Belief updating using a Bayesian framework is one way
of monitoring the progression of the encounter. TCAS,
similarly, makes accommodations to handle situations when
the own aircraft is moving counter to the current advisory. In
such a situation, if certain requirements are met, the advisory
will be reversed to prevent potentially dangerous vertical
chases. One strength of the current approach, however, is
that the introduction of specialized heuristics is unnecessary.

Figure 4 shows the sRA belief state throughout the course
of the example encounter. Figure 5 shows the evolution of
the entry distribution τ .

Nineteen seconds into the encounter, the DP logic issues
a descend to pass below the intruder. The expected cost-to-
go for issuing a descend advisory is approximately 0.044,
lower than the expected cost-to-go for issuing a climb
advisory (0.055) or for not issuing an advisory (0.046).
After the descend advisory is issued, as Figure 4 illustrates,
the probability distribution over sRA indicates that the own
aircraft is not responding to the descend advisory with nearly
probability one. With probability on the order of 1×10−8,
not shown, the own aircraft is responding to the descend.

Two seconds after the descend advisory is issued, the
system strengthens the advisory. At the following time
step, the probability distribution over sRA reveals that the
own aircraft is, with nearly probability one, not following
the strengthened descend advisory. Very small probabilities
(on the order of 1×10−15 and 1×10−13, respectively) are
assigned to the own aircraft following the initial descend
advisory and the strengthened descend advisory. As the
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Fig. 4. Advisory response belief state over time for the example encounter.
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Fig. 5. Entry distribution over time for the example encounter.

own aircraft begins to respond to the strengthening three
seconds after its issuance, the distribution is updated to
reflect this change in pilot behavior. Ten seconds after the
pilot begins responding, it is believed that the own aircraft is
responding to the strengthening with probability 0.95. The
entry distribution falls off quickly as the aircraft come within
close proximity laterally.

The DP logic discontinues the advisory at t = 34s, and the
belief state over sRA quickly changes in response to the own
aircraft leveling off. The aircraft are vertically separated by
441ft at the point of minimal horizontal separation (368ft),
and an NMAC does not occur.

TCAS also initially issues a descend advisory, six seconds
after the DP logic, and then strengthens four seconds later.
The alerts come too late, and an NMAC results at t = 39s.

VI. RESULTS

Table I summarizes the results of evaluating the DP logic
and TCAS logic on half a million encounters generated
by the encounter model. The performance of the DP logic
optimized using three different pilot response models—
linear, quadratic, and deterministic—was assessed. These
three systems, together with TCAS, were tested in three
operating environments: one with a deterministic pilot re-
sponse, one with a linear probabilistic pilot response, and
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one with a quadratic probabilistic pilot response. Each cell
in the table indicates the performance of the systems in a
particular operating environment and for a particular metric.
The systems appear in the following order within each cell:
linear DP, quadratic DP, deterministic DP, and TCAS. The
table reveals the following:

1) The DP systems resolve more conflicts than TCAS
across all environments while alerting less often. Al-
though the DP logic strengthens more frequently, the
rate can be reduced by adjusting costs.

2) The logic computed using the deterministic model
has a greater NMAC rate when operating in an en-
vironment different from the one for which it was
optimized. The logic computed using probabilistic pilot
response appears less sensitive to unmodeled behavior.
For example, the probability of NMAC is 142% greater
when the deterministic logic is used in the linear
environment than when it is used in the deterministic
environment. The probability of NMAC increases by
61% in the quadratic environment. On the other hand,
the probability of NMAC is decreased by 18% and
10% when the linear logic is used in the deterministic
and quadratic settings, respectively.

3) The linear and quadratic DP systems perform compa-
rably in almost every category despite the structural
differences in the pilot response models used to com-
pute them. Quadratic DP strengthens more often, as
might be expected based on Figure 2.

The standard error associated with the estimates of Table I
was also calculated and was found to be small in relation
to the actual estimates. The standard error, on average, was
10.08% the size of the estimate.

VII. CONCLUSIONS AND FURTHER WORK

This paper has presented a method for creating airborne
collision avoidance logic that is robust to variability in
pilot behavior. The approach involves explicitly designing
probabilistic pilot response models and optimizing the logic
offline using dynamic programming. The logic is used online

TABLE I
METRICS FOR DIFFERENT PILOT RESPONSE MODELS

P(NMAC) P(alert) P(strengthening) P(reversal)

Lin.

7.19 ·10−5

7.86 ·10−5

1.40 ·10−4

2.69 ·10−4

1.29 ·10−1

1.30 ·10−1

1.15 ·10−1

4.75 ·10−1

4.32 ·10−2

3.79 ·10−2

4.76 ·10−2

1.37 ·10−2

7.23 ·10−4

1.24 ·10−3

2.35 ·10−4

2.01 ·10−3

Quad.

6.45 ·10−5

6.73 ·10−5

9.31 ·10−5

2.06 ·10−4

1.29 ·10−1

1.30 ·10−1

1.15 ·10−1

4.75 ·10−1

4.30 ·10−2

3.76 ·10−2

4.75 ·10−2

1.35 ·10−2

6.87 ·10−4

8.13 ·10−4

1.82 ·10−4

1.77 ·10−3

Det.

5.86 ·10−5

7.28 ·10−5

5.78 ·10−5

1.13 ·10−4

1.29 ·10−1

1.30 ·10−1

1.15 ·10−1

4.75 ·10−1

6.01 ·10−2

5.61 ·10−2

5.37 ·10−2

1.24 ·10−2

6.02 ·10−4

1.15 ·10−3

2.81 ·10−4

2.75 ·10−3

Note: The systems appear in the following order within each cell: linear
DP, quadratic DP, deterministic DP, and TCAS.

as a decision support tool that human operators can choose
to follow or ignore. Estimation of the adherence of the pilot
to the system is continuously performed online and fed back
into the system so that the best alert is issued.

This paper has shown, using realistic encounter simu-
lations, that the logic optimized using probabilistic pilot
response models operates effectively across different pilot re-
sponses, achieving a greater safety margin than TCAS while
alerting less. Unlike TCAS, it does not rely on specialized
heuristics to handle atypical, low-probability events.

Extensions to the current work include the incorporation of
realistic sensor noise. The introduction of sensor noise turns
the problem into a partially-observable MDP, or POMDP,
which is typically difficult to solve without approximation
[10]. A natural extension to the current work would be to
apply Equation 7 [11]. The belief space would be extended
to include all variables with any uncertainty, not just the
advisory state.
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