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Abstract— This work proposes an approach to compute
domain of attraction of switched systems under arbitrary
switching and in the presence of saturation nonlinearity. It is
also shown that any estimation of domain of attraction using
linear difference inclusion approaches is a subset of our result
and hence our method is less conservative than the others.

I. INTRODUCTION

This work considers the computation of the domain of

attraction of discrete-time switched linear systems with sat-

uration nonlinearity under static state feedback control:

{

x+ = Aix+Bisat(u) , i ∈ N := {1, 2, ..., N}
u = Kix

(1)

where, x ∈ R
n is the state, x+ is the successor state and

u ∈ R
m is the control input. Symbol sat(·) is the standard

saturation function: when v is a scalar, sat(v) = v if |v| ≤ 1,

1 if v > 1 and −1 if v < −1 and sat(u) is the vector of

sat(uj) for each element j of u. The index “i” refers to

the current mode of the system with i taking one of the

possible indices in N . The switching among the various

modes is assumed to be arbitrary. Hence, i is not known

a priori, but its instantaneous value is available at each

sampling period. It is assumed hereafter that the problem

data, satisfy the following assumptions: (A1) (Ai, Bi) is

stabilizable for all i ∈ N , (A2) (Ai+BiKi,Ki) is observable

for all i ∈ N , (A3) (Ai + BiKi) is discrete-time Hurwitz

for all i ∈ N , and (A4) the non-saturated switched system

x+ = (Ai+BiKi), i ∈ N is asymptotically stable. Of these

assumptions, (A3) is not really restrictive since Ki can be

designed to stabilize Ai + BiKi for each i ∈ N . However,

stability of individual subsystems is only a sufficient condi-

tion for asymptotic stability of arbitrary switching systems

[1]. Hence, for checking (A4), one can use one of the several

techniques proposed in the literature, such as existence of a

common Lyapunov function [1], pairwise switched Lyapunov

functions [2], multiple Lyapunov functions [3], composite

quadratic functions [4], [5] or polyhedral Lyapunov functions

[6], [7].

While the literature on switched systems is rapidly grow-

ing, relatively few works are on saturated switched linear

systems and their domain of attraction. We begin with a brief
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review on the domain of attraction of single saturated linear

systems and extend it to the case where switching is present.

A non-switching saturated system can be described by

x+ = Ax+Bsat(Kx) (2)

where the subscripts to A, B and K are dropped. Given a

non-empty set Ω ⊂ R
n, the well-known [8], [9] one-step set

to Ω is the set of all states that can be driven to Ω in one

step, or

Q(Ω) = {x : Ax+ Bsat(Kx) ∈ Ω} (3)

In general, Q(Ω) is not necessarily convex for a convex

Ω. This non-convex nature of Q(Ω) makes its use for

computations of domain of attraction of saturated systems

undesirable. While several approaches have been proposed

to circumvent this problem, two of them appear promising.

For their discussion, the following notations are used. Let

M = {1, ...,m} be the set of integers and S ⊆ M be a

subset of M, VM = {S : S ⊆ M} is the set of all subsets

of M with cardinality 2m and Sc = {i ∈ M : i /∈ S} is

the complement of S in M. Also, let Im be the m × m
identity matrix. Given x ∈ R

n and K ∈ R
m×n, xj is the

j-th element of x; Ki. ∈ R
n, K .j ∈ R

m are the i-th row

and the j-th column of matrix K , respectively.

A. LDI approach

The first approach [10], [11] uses a linear difference

inclusion (LDI) representation of the saturation function. It

uses an auxiliary feedback term and exploit their convex

hull to represent the saturation function. Their work can be

summarized by the following lemma:

Lemma 1: Suppose sets M and S ∈ VM are given. Let

DS be the m ×m diagonal matrix with diagonal elements

DS(j, j), whose value is 1 if j ∈ S and 0 otherwise, and let

DSc = Im − DS . Then, for all u ∈ R
m and v ∈ R

m such

that |vj | ≤ 1 for all j ∈ M:

sat(u) ∈ co {DScu+DS v : S ∈ VM}
This lemma shows that sat(u) can be expressed as a

convex hull of vectors formed by choosing some rows (those

belonging to S) from v and the rest (those belonging to Sc)

from u.

Using this and assuming that some matrix, H ∈ R
m×n,

is given, then

sat(Kx) ∈ co {DScKx+DSHx : S ∈ VM}

for all x ∈ LH := {x : ||Hx||∞ ≤ 1}. Let

GH(x, S) :=
(

A+
∑

j∈Sc

B.jKj. +
∑

j∈S

B.jHj.
)

x (4)
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be the successor state from x when some of the inputs are

from the H matrix and the rest from K . Using this and

lemma 1, it can be shown from (2) that for all x ∈ LH :

Ax+Bsat(Kx) ∈ co{GH(x, S) : for all S ∈ VM} (5)

To compute the domain of attraction of (2) using such a

representation, the H and P matrices must be chosen such

that a common Lyapunov function, V (x) = xTPx, exists for

all linear systems of the form (4), obtained from all S ∈ VM

for the choice of H . The largest E(P ) := {x : xTPx ≤ 1}
that is contained in LH is then an estimate of domain

of attraction of (2). The numerical determination of this

maximal value of P and H can be computed using a Linear

Matrix Inequality.

The LDI approach has been also extended to saturated

switched systems [12], [13], [14], [15], [16]. The basic idea

is to obtain auxiliary matrices (Hi) for the LDI representation

of saturation function for each i ∈ N and the existence of

the associated multiple Lyapunov functions that guarantee

asymptotic stability of the resulting switched system. Again,

the domain of attraction can be found by solving the follow-

ing optimization problem with Pi, Hi, i ∈ N as variables:






















maxPi,Hi
det

(

P−1
i

)

s.t.

(Ac(i, S))
T
Pj (Ac(i, S))− Pi < 0

∀(i, j) ∈ (N ×N ), ∀S ∈ VM

E(Pi) ∈ LHi
∀i ∈ N

(6)

where Ac(i, S) = (Ai +Bi(DScKi +DSHi)). The esti-

mate of domain of attraction of switched system is then given

by
⋂

i∈N E(Pi). In the above, the choice of i in the objective

function that will result in the largest domain of attraction

remains an open question.

B. SNS approach

The second approach to the estimation of domain of

attraction of (2) is based on the concept of saturated and

non-saturated (SNS)-invariance introduced in [17]. Given an

index set M and a set S ∈ VM, the response of system (2)

can be written as

F(x, S) := Ax+
∑

j∈Sc

B.jKj.x+
∑

j∈S

B.jsat(Kj.x)

where F(x, S) is the successor state of x with inputs from

S ∈ VM subjected to saturation nonlinearity but not the rest.

Two associated definitions are now stated.

Definition 1: A set Ω ⊂ R
n is said to be SNS-invariant

w.r.t. (2), if x ∈ Ω implies that F(x, S) ∈ Ω for all S ∈ VM.

Definition 2: Given a set Ω, the SNS-one-step set is

defined by

QSNS(Ω) = {x : F(x, S) ∈ Ω, for allS ∈ VM} (7)

Definition 1 shows that SNS-invariance is a stronger require-

ment than invariance. This follows since M ∈ VM, hence

Ω is invariant w.r.t. (2) if it is SNS-invariant. Definition 2

shows an approach to compute the SNS-one-step set. Given

Ω, the set of x such that F(x, S) ∈ Ω can be computed for

every S ∈ VM. The intersection of these sets is QSNS(Ω).
More exactly, if Ω is a convex polyhedron given by Ω =
{x : Rx ≤ 1},

QSNS(Ω) :=

⋂

S∈VM







x : R(A+
∑

j∈Sc

B.jKj.)x ≤ 1+
∑

j∈S

∣

∣RB.j
∣

∣







(8)

where | · | refers to the absolute operator applied element-

wise. Using this operator, one can start from an initial

domain of attraction, Ω0, and enlarge it by computing

Ωk = QSNS(Ωk−1), at each step. The set sequence

{Ω0,Ω1,Ω2, ...} enlarges to an estimate of domain of at-

traction of (2), which is also SNS-invariant [17].

Subsequent content of the paper is arranged as follows.

Section II extends the concept of SNS-invariance and SNS-

one-step set for switched systems that preserve convexity.

Then, a simple algorithm is proposed to enlarge domain of

attraction of saturated switched systems. Section III presents

a method for the computation of invariant sets of constrained

switched systems in their linear region of operation. Section

IV shows an important result - that the domain of attraction

computed from our method, contains any domain of attrac-

tion obtained from the LDI approaches. Sections V and VI

contain, respectively, examples and conclusions.

II. THE PROPOSED APPROACH

This section shows an extension of SNS-invariance to

switched saturated systems and estimation of their domain of

attraction. Note that subscript s added to a variable/operator

refers to that of the switched systems. An obvious extension

of (3) to a switch system is the one-step set Qs(Ω) given by

Qs(Ω) := {x : Aix+Bisat(Kix) ∈ Ω, ∀i ∈ N}

=
⋂

i∈N

Qi(Ω)

where Qi(Ω) = {x : Aix + Bisat(Kix) ∈ Ω}. Like

the single system case, Qi(Ω) and hence Qs(Ω) is not

necessarily convex when Ω is. An example of this can be

seen in A1 =
[

1 1

0 1

]

, B1 = [10, 5]T , K1 = −0.1029∗[1, 1],

A2 =
[

0 −1

0.0001 1

]

, B2 = [0.5, −2]T and K2 = 0.0938 ∗
[2, 3]. Figure 1 shows Q1(Ω) (dotted lines), Q2(Ω) (solid

lines) and Qs(Ω) (in shade). The use of SNS-one-step set

is useful for preserving convexity. For this purpose, several

related definitions are given.

Definition 3: (Switched-SNS-invariance:) Let

Fi(x, S) := Aix+
∑

j∈Sc B
.j
i K

j.
i x+

∑

j∈S B.j
i sat(K

j.
i x).

Then, a set Ω ⊂ R
n is said to be switched-SNS-invariant

w.r.t. (1), if x ∈ Ω implies that Fi(x, S) ∈ Ω for all S ∈ VM

and for all i ∈ N .

Definition 4: (Switched-SNS-one-step set:) Given a set

Ω, the switched-SNS-one-step set w.r.t. (1) is defined by

QSNS
s (Ω) = {x : Fi(x, S) ∈ Ω, ∀S ∈ VM and ∀i ∈ N}

1995
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Fig. 1. Illustration of non-convex one-step sets

Suppose that Ω is a convex polytope given by Ω = {x :
Rx ≤ 1}, it follows from the previous discussion that

QSNS
s (Ω) =

⋂

i∈N

QSNS
i (Ω) (9)

Hence, the computation of QSNS
s (Ω) follows directly from

(8) by interseting over every S ∈ VM and then over

all i ∈ N . Figure 2 shows the convex set QSNS
s (Ω)

(dashed line) and compares it with Qs(Ω) (in shade) for

the same example considered earlier. Note that QSNS
s (Ω)

is a convex set contained in Qs(Ω) and it is invariant w.r.t.

(A1 +B1K1)x, (A2 + B2K2)x, (A1x+B1sat(K1x)) and

(A2x+B2sat(K2x)).
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Fig. 2. Illustration of switched-SNS-one-step set, Ω ⊆ QSNS
s (Ω) ⊆

Qs(Ω)

Definition 5: (SNS-domain of attraction:) An initial

condition x0 belongs to the SNS-domain of attraction of (1),

if the sequence {xk : k ∈ Z
+} obtained from recursion

xk+1 = Fi(xk, S),

converges to the origin for every S ∈ VM and for every

i ∈ N as k → ∞.

Remark 1: Like the single system situation, the SNS-

domain of attraction requires the satisfaction of all S ∈ VM

and is, hence, a subset of true domain of attraction of (1).

The following theorem extends the domain of attraction

of saturated switched systems beyond its region of linear

behavior.

Theorem 1: Suppose that Φ ⊆ R
n is a convex polyhedral

domain of attraction of non-saturated system x+ = (Ai +
BiKi)x, i ∈ N and it contains the origin in its interior. Let

Ω0 := Φ and consider the following recursion:

Ωk+1 := QSNS
s (Ωk) (10)

Then, (i) Each Ωk is a convex polyhedron. (ii) Each Ωk is

a switched-SNS-invariant set w.r.t. (1). (iii) The condition

Ωk ⊆ Ωk+1 holds for all k ≥ 0. (iv) Each Ωk is a SNS-

domain of attraction of switched saturated system (1). (v) A

point x ∈ Ωk is steered into Ω0 in at most k steps. (vi) The

set sequence {Ω0,Ω1,Ω2, ...} converges to Ω∗, which is the

maximal SNS-domain of attraction of (1).

Proof: See Appendix.

The recursion presented in Theorem 1 generates a se-

quence of domains of attraction of (1) and requires an

initial set Ω0 to start. The procedure to compute such a

Ω0 ⊆ LK := {x : ||Kix||∞ ≤ 1, for all i ∈ N} is described

in the next section.

III. COMPUTATION OF DOMAIN OF ATTRACTION OF

CONSTRAINED SWITCHED SYSTEMS

For the sake of simplicity, let Ãi := Ai + BiKi and

consider the constrained switched system with arbitrary

switching of the form
{

x+ = Ãix , i ∈ N
x ∈ X

(11)

where X ⊂ R
n is a polytope with the origin in its interior.

Suppose that the constraint set has a characterization of

X = {x : F 0x ≤ 1}. The procedure to compute the maximal

invariant set w.r.t. (11), which is also a domain of attraction,

uses the following iterative recursion starting with X .

Algorithm 1 Computation of domain of attraction of Con-

strained Switched Systems

Input: Ãi and X (Constraint set).

Output: Φ (Polyhedral domain of attraction).

1) Set k = 0 and let

φ0 := X = {x : F 0x ≤ 1}

2) For each i ∈ N , compute:

X k
i =

{

x : F kÃi x ≤ 1

}

3) Compute the polyhedron

φk+1 = φk
⋂

{i=1,...,N}

X k
i

and let it be represented by φk+1 =
{

x : F k+1x ≤ 1
}

for some appropriate F k+1.

4) If φk+1 ≡ φk set Φ = φk+1 and stop, else set k = k+1
and go to step (2).
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Properties of the φk set are summarized in the following

theorem.

Theorem 2: Suppose system (11) satisfies assumptions

(A2)-(A4) and φk is generated based on Algorithm 1. Then,

the following results are known: (i) φk ⊆ X and φk ⊆ φk−1

for all k. (ii) φ∞ := limk→∞ φk exists and contains the

origin in its interior (iii) φ∞ is finitely determined, or equiv-

alently, there exist a k∗ ∈ Z
+ such that φk∗+1 = φk∗

and

φk̄ = φk∗

for all k̄ > k∗. (iv) φ∞ is the largest invariant set

w.r.t. (11) and is the largest constrained-admissible domain

of attraction of (1) contained in X .

Proof: Part (i) of the theorem follows immediately from

the definition of the set φk in step (3) of algorithm. The

proofs of other results are non-trivial and are omitted due to

space limitations.

IV. COMPARISON OF SNS-DOMAIN OF ATTRACTION

WITH LDI APPROACHES

In this section, first the definition of H-contractive sets

obtained from the LDI representation of saturation function

is presented. Then, it is proved that any H-contractive set

obtained from LDI approach is included in SNS-domain of

attraction obtained from Theorem 1 and hence our result is

less conservative.

As described in Section I, the domain of attraction of

saturated switched systems can be estimated by means of

LDI representation of saturation function; Taking this LDI

representation into account, it is clear that a given set Ψ ⊆
R

n is invariant w.r.t. (1) if it is invariant w.r.t. all linear

systems of the form GHi
(x, S) obtained from all S ∈ VM an

all i ∈ N . The notion of H-contractive set is now introduced:

Definition 6: Given Hi matrices, a set Ψ ⊆ LH := {x :
||Hix||∞ ≤ 1, ∀i ∈ N} is an H-contractive set if it is a

convex set containing the origin and there is a λ ∈ [0, 1) such

that x ∈ Ψ implies that GHi
(x, S) ∈ λΨ, for all S ∈ VM

and for all i ∈ N .

H-contractive sets can be obtained by methods described

in Section I and it is clear that any H-contractive set

constitutes an estimation of the domain of attraction of (1).

The following theorem states that any H-contractive set is

included in the SNS-domain of attraction of (1). That is, the

estimation of the domain of attraction given by Theorem 1

is less conservative than the one obtained by means of H-

contractive sets.

Theorem 3: Let us suppose that Ψ ⊆ LH is an H-

contractive set for given matrices Hi, i ∈ N . Then Ψ is

a switched-SNS-invariant set and there exist a k̂ ∈ Z
+ such

that Ψ ⊆ Ωk̂ ⊂ Ω∗.

Proof: See Appendix.

V. NUMERICAL EXAMPLE

A. Computation of SNS-domain of attraction

In order to illustrate our results, consider a single input

saturated switching discrete-time system taken from [13],

with two subsystems:

A1 =

[

1 1
0 1

]

, B1 = [10, 5]T , K1 = −0.1029 ∗ [1, 1],

A2 =

[

0 −1
0.0001 1

]

, B2 = [0.5, −2]T ,

K2 = 0.0938 ∗ [2, 3]
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Fig. 3. Illustration of sequence of Ωk in every 5 steps leading to SNS-
domain of attraction

First an initial domain of attraction based on Algorithm I

is computed. The algorithm starts from the initial polyhedron

LK and converges in 4 iterations to Ω0, which is shown with

the shaded region in Figure 3. Using this set as the initial

polyhedron in recursion (10), the sequence of Ωk has been

determined from Theorem 1. Given Ωk = {x : Rx ≤ 1},

Ωk+1 is computed from:

Ωk+1 = QSNS
s (Ωk) = QSNS

1 (Ωk) ∩ QSNS
2 (Ωk)

where,

QSNS
1 (Ωk) =

{x : R(A1 +B1K1)x � 1} ∩ {x : R(A1)x � 1+ |RB1|}

QSNS
2 (Ωk) =

{x : R(A2 +B2K2)x � 1} ∩ {x : R(A2)x � 1+ |RB2|}

Figure 3 depicts the sequence of Ωk sets at every five steps

(note that, as it is claimed in Theorem 1, Ωk ⊆ Ωk+1, ∀k ≥
0). The sequence converges to the maximal SNS-domain of

attraction, Ω∗, at 81 steps. This set, which is characterized

by 16 inequalities is also shown in Figure 3.

In the proposed recursion of Theorem 1, each Ωk is

obtained by computing the intersection of N × 2m sets

obtained from Ωk−1. Most of the computational complexity

is due to the solution of the linear programming problems

required to eliminate the redundant linear constraints of

the obtained sets. As claimed in part (iv) of Theorem 1,

each one of the polyhedrons Ωk is an estimation of the

domain of attraction of the saturated switched system. This

means that if a limited computational time is available,

the recursion could be stopped at any desired step before

converging to the maximal domain of attraction. In this

1997



paper, all the algorithms are implemented in Matlab 7 using

multi-parametric programming toolbox solvers [18] and the

computations are performed on a dual-core CPU with 3.2

GHz processor. The total computational time of SNS-domain

of attraction is 0.978 seconds.

B. Comparison with H-contractive sets

Estimation of domain of attraction with an H-contractive

is obtained from optimization problem (6), which results in:

P1 =

[

0.001 0.0003
0.0003 0.002

]

, P2 =

[

0.0004 0
0 0.0020

]

,

H1 = [−0.0174,−0.0421], H2 = [0, 0.0449].
The resulting H-contractive set, Ψ = E(P1) ∩ E(P2) is

compared with SNS-domain of attraction in Figure 4. As

claimed by Theorem 3, it is observed that Ψ ⊆ Ω32 ⊂ Ω∗.

The relative sizes of Ω∗ and Ψ = ∩E(Pi) is compared by

the ratio
Area(Ω∗)
Area(Ψ) ≃ 3.21.

It is clear from Figure 4 that the SNS-domain of attraction

has been significantly enlarged beyond the linear region of

controllers and it contains any H-contractive set.
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Fig. 4. Comparison of SNS-domain of attraction, Ω∗, with H-contractive
set Ψ

VI. CONCLUSIONS

In this paper, a new method for computation of domain of

attraction of saturated switched system was proposed based

on the notion of switched-SNS-invariance. The proposed

approach, starts from an initial domain of attraction inside the

region of linear behavior of switched system and converges

to the maximal SNS-domain of attraction. It was also shown

that any estimate of domain of attraction using LDI approach

is a subset of our result and hence our result is less conser-

vative. Simulation results demonstrates the effectiveness of

the proposed approach.

APPENDIX

PROOF OF THEOREM 1:

(i) Ω0 = Φ is a convex domain of attraction of (1) in the

region of linear behavior. QSNS
i (Ω0) is the intersection of

2m polyhedrons, for each i ∈ N , hence is a polyhedron.

In each step, Ωk+1 is obtained by intersecting of N convex

sets QSNS
i (Ωk) for i = {1, ..., N}, which is also convex.

This proves that recursion (10) always yields a convex

polyhedron.

(ii) Since Ω0 belongs to LK, it follows that for any x ∈ Ω0,

Fi(x, S) = (Ai+BiKi)x for all S ∈ VM and for all i ∈ N .

From this and the fact that Ω0 is a domain of attraction,

it is concluded that if x ∈ Ω0, then Fi(x, S) ∈ Ω0 for

all S ∈ VM and for all i ∈ N . This means that Ω0 is a

switched-SNS-invariant set. Now suppose Ωk is switched-

SNS-invariant, then Ωk ⊆ QSNS
i (Ωk), ∀i ∈ N , hence Ωk ⊆

⋂

i∈N QSNS
i (Ωk) = Ωk+1. Therefore, for any x ∈ Ωk+1,

we have Fi(x, S) ∈ Ωk ⊆ Ωk+1, ∀S ∈ VM, ∀i ∈ N , which

means Ωk+1 is also switched-SNS-invariant.

(iii) From the definition of the set operation (8) and the

property of SNS-invariant sets, it is immediate that for each

i ∈ N , Ωk ⊆ QSNS
i (Ωk). Therefore, Ωk ⊆ Ωk+1 =

⋂

i∈N QSNS
i (Ωk).

(iv) First of all, Ω0 = Φ ⊆ LK is a domain of attraction in

the region of linear behavior of switched system and hence it

belongs to SNS-domain of attraction of (1). If Ωk belongs to

SNS-domain of attraction, then Ωk+1 =
⋂

i∈N QSNS
i (Ωk)

also belongs to SNS-domain of attraction due to the fact

that if x ∈ Ωk+1, Fi(x, S) ∈ Ωk for all S ∈ VM and for

all i ∈ N . Therefore, recursion (10) starting with Ω0 = Φ
results in a sequence of SNS-invariant sets that each one

belongs to SNS-domain of attraction of (1).

(v) Switched-SNS-invariance property of the sets result-

ing from recursion (10) inferred that if x ∈ Ωk+1, then

Fi(x, S) ∈ Ωk for all i ∈ N and for all S ∈ VM including

S = M, hence, x+ = Fi(x,M) ∈ Ωk for all i ∈ N . In

other words, if x ∈ Ωk+1, then x+ ∈ Ωk. This means that

any x ∈ Ωk+1 is brought into Ωk in one step. Consequently,

Ωk is the set of points that can be brought into Ω0 at most

in k steps.

(vi) The proof is by contradiction. Suppose x belongs to

the SNS-domain of attraction of (1), but x /∈ Ω∗. Consider

the recursion xk+1 = Fi(xk, S) with x0 = x. Since x
belongs to the SNS-domain of attraction, limk→∞ xk = 0.

As Ω0 is a domain of attraction with nonzero volume, it

means that there exist a q ∈ Z
+ such that xq ∈ Ω0. This

is equivalent to say that x is included in Ωq , which is a

contradiction.

PROOF OF THEOREM 3:

First, we will show that Ψ is a switched-SNS-invariant set.

For this purpose, we show that if x ∈ Ψ, then Fi(x, T ) ∈ λΨ
for all T ∈ VM and for all i ∈ N . Since Ψ is H-contractive,

from its definition it is inferred that

GHi
(x, S) ∈ λΨ, ∀S ∈ VM, ∀i ∈ N (12)

According to lemma 2 of [17], for given Hi ∈ R
m×n

matrices and any T ∈ VM, if x ∈ LH then there exist an

S ∈ VM such that

Fi(x, T ) ∈ co{GHi
(x, S) : S ∈ VM}, ∀T ∈ VM
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From (12), it is concluded that any convex combination

of GHi
(x, S) is also inside λΨ, i.e.

Fi(x, T ) ∈ co{GHi
(x, S) : S ∈ VM} ∈ λΨ, ∀T ∈ VM

This proves that Ψ is a switched-SNS-invariant set. To show

that Ψ belongs to SNS-domain of attraction, consider the

following recursion:

xk+1 = Fi(xk, S) , ∀S ∈ VM, ∀i ∈ N (13)

where x0 ∈ Ψ. Due to the λ-contractivity of Ψ, it is clear

that xk ∈ λkΨ, for every S ∈ VM and for every i ∈ N .

Therefore, limk→∞ xk → 0. This and the fact that Ω0 is

a domain of attraction with nonzero volume, in turn, means

that for any x0 ∈ Ψ, there exist a k̄ ∈ Z
+ such that xk̄ ∈ Ω0.

Now, let k̂ := max k̄ over all x0 ∈ Ψ. Then, for any x0 ∈ Ψ,

x
k̂

from recursion (13) is contained in Ω0. This means that

Ψ ⊆ Ωk̂ ⊂ Ω∗, which proves the claim.
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