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Abstract— This paper discusses the application and exper-
imental validation of time-optimal model predictive control
(TOMPC) on a flexible motion system, an overhead crane with
fixed cable length. TOMPC realizes minimal settling times for
point-to-point motions taking into account system constraints.
Results of several different point-to-point motion experiments
and of disturbance rejection experiments clearly demonstrate
this time optimal behavior. The extension of the TOMPC
algorithm to increase its feasibility range required for large
point-to-point motions is discussed and validated.

I. INTRODUCTION

In order to control the point-to-point motion of flexible
mechatronic systems, usually linear feedback control [1], [2]
is combined with reference trajectories. Feedback provides
the system input by comparing the output with the reference
trajectory and takes care of disturbances that occur during
motion and positioning. The reference trajectory is designed
such that the requested point-to-point motion is realized
according to specifications while respecting the actuator con-
straints. Different approaches for this reference generation
are possible. One approach computes the reference trajecto-
ries beforehand and thereby optimizes the performance (e.g.
time duration) for one specific point-to-point motion [3], [4],
taking into account the system constraints. Other approaches
like inputshaping [5]–[7] filter an applied reference step on-
line, thereby transforming this step into a more suitable
reference trajectory which satisfies all system constraints for
the largest possible reference step. The main drawback of
these approaches occur when many different steps over a
wide range are requested. These approaches require then
either a large number of precomputed trajectories or are too
conservative for all reference steps except the largest one.
For these applications, model predictive control (MPC) [8],
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[9] is a better alternative. This type of controllers computes
on-line during the motion the optimal input by solving an
optimization problem over a given prediction horizon, taking
the actuator constraints and the current state of the system ex-
plicitly into account, thereby allowing constraint satisfaction
for every possible point-to-point motion and incorporating
feedback. The first part of the optimized input is applied
to the system and then this procedure is repeated every
sampling time over a shifted horizon. The main drawback
of MPC is the high computational load that stems from the
optimization and which depends on the number of variables
and hence the length of the prediction horizon and the order
of the considered system.

MPC became very popular in the eighties [10], mostly for
process control applications which have less stringent real-
time requirements due to low sampling rates in the order of
seconds or minutes [11]. Since the end of the nineties, much
research has been dedicated towards the development of fast
solution methods for MPC (fast MPC in short) to extend
its application area to faster systems such as mechatronic
systems. One fast MPC approach, called explicit MPC [12],
[13], stores exact precomputed optimal control solutions,
depending on the current state. This approach is successfully
applied to numerous control problems, however the system
dimensions and prediction horizon are typically limited to 5
each, due to storage requirements and a too complex search
space. In order to avoid these limitations, other fast MPC
approaches use fast numerical solution methods as qpOASES
[14] to solve the optimal control problem in real-time. This
approach is applied to systems with up to 10-20 states and
prediction horizons of 10-12 time-steps at kHz sampling rates
[15], [16].

In order to control the transient behavior between two
setpoints, MPC typically optimizes a least squares objective
function weighting the input cost against the response speed.
However, for most mechatronic applications, the input cost
is negligible and time optimality is the main goal. Hence
the need for an MPC formulation that aims at time optimal
system control, i.e. achieving a minimal settling time while
respecting the system constraints. Although time optimality
is requested for completing a point-to-point motion, this dead
beat behavior is not desirable when the system reacts on
measurement noise. Therefore, the time optimal behavior has
to be combined with local quadratic cost function behavior,
typical for traditional MPC, in order to reduce the sensitivity
to measurement noise close to the setpoint. This paper
applies a scheme addressing both requirements, called Time
Optimal MPC (TOMPC) [17], [18]. This paper extends the
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basic TOMPC approach to allow for longer horizons and
hence larger reference steps and applies the controller to
an overhead crane with constant cable length. This system
is of higher order than the system considered in previous
applications of TOMPC [17], [18].

The paper is organized as follows. Section II presents the
idea of TOMPC, and shows how the problem can efficiently
be solved. Moreover, it is shown how the attainable range of
the controller is extended. Section III discusses and validates
the implementation of TOMPC on an overhead crane in
detail. Section IV concludes the paper.

II. TOMPC

This section describes the applied TOMPC technique.
First, the basic TOMPC optimization problem is introduced.
Second, it is shown how this optimization problem can
be solved efficiently. Finally, the extension to allow longer
horizons and hence larger reference steps is discussed.

A. Basic technique

This paragraph briefly discusses the basic idea of Time
Optimal MPC (TOMPC). A more comprehensive explanation
can be found in [17].

First, a traditional MPC problem (1) with horizon N is
defined as problem PA(x̄l ,N), thereby explicitly stressing the
problem’s dependence on the current state x̄l and the length
of the horizon N. PA(x̄l ,N):

V ?
A (x̄l ,N) = min

x0, . . . ,xN

u0, . . . ,uN−1

N−1

∑
k=0
‖uk−uref‖2

R +‖xk− xref‖2
Q,

(1a)
subject to the constraints:

x0 = x̄l , (1b)
xk+1 = Axk +Buk, (1c)

Hxk +Guk > e k ∈ [0,N−1], (1d)
xN = xref, (1e)

where goal function (1a) makes a trade-off between the input
cost and the output error, (1b) constrains the system state at
the beginning of the prediction horizon x0 to be equal to the
estimated current system state x̄l , constraint (1c) imposes the
system model, constraint (1d) imposes the system constraints
and constraint (1e) requires the system to be at rest at the
reference position at time N expressed by the reference
state xref. Function V ?

A is extended to V ?
A = ∞ if PA(x̄l ,N)

is infeasible, i.e. the system can not settle at xref at time N
while respecting all constraints (1d). This allows us to define
a feasible set of initial system states from which the reference
state xref can be reached within N time steps:

X(N) = {x̄l |V ?
A (x̄l ,N) is finite.} (2)

Second, a mixed integer optimization problem PB(x̄l) is
defined:

V ?
B (x̄l) = min

N∈N
N (3a)

subject to the constraints:

N ≥ Nmin, (3b)
N ≤ Nmax, (3c)
x̄l ∈ X(N), (3d)

where N is the settling time as defined above, Nmax is the
maximal optimization horizon and Nmin is a minimal bound
on N. The optimization problem hence consists of two parts.
First problem PB is optimized, minimizing the required time
N to settle. Traditional MPC problem PA is optimized, if
additional optimization freedom is left, i.e. if N = Nmin or
if multiple time optimal solutions exist. The choice of Nmin
allows us a trade-off between time-optimality and sensitivity
to measurement noise [18].

B. Efficient real-time solution

To solve mixed integer problem PB in real-time, it is
usefull to remark that this problem is quasi-convex, i.e. if the
problem is feasible for N =N1 it is also feasible for N =N2 >
N1. Therefore, problem PB is solved by a series of feasibility
problems PA, thereby increasing or decreasing the guess of
optimal N by one, assuming that a good initial guess is
available. To solve the total optimization problem PB in real-
time for a mechatronic system, i.e. within a sampling period
which is of the order of magnitude of milliseconds, problem
PA is first reformulated into a problem of constant size,
such that an efficient online active set approach [16] can be
applied. Therefore, the variables of problem PA are extended
to (x0, . . . ,xNmax) and (u0, . . . ,uNmax−1), irrespective of the
value N, and extra constraints are added to optimization
problem (1):

uk = uref for k = N, . . . ,Nmax−1. (4)

In order to further exploit the problem structure, the problem
is further extended with the variables (uNmax , . . . ,uNmax+n−2)
and (xNmax+1, . . . ,xNmax+n−1), and endpoint constraint (1e) is
replaced by:

yN+k = yref for k = 0, . . . ,n−1, (5)

where yk = Cxk + Duk is the system output at time k,
yref is the reference position and n the system order. This
reformulation can be shown to be equivalent to (1e) if the
observability matrix of the system is of full rank. This refor-
mulation allows for a more efficient shifting of the active set
constraints between subsequent feasibility problems. Remark
that this second extension again yields sets of optimization
variables of constant size such that the efficient active set
approach [16] can still be used. The combination of these
reformulations reduces the worst case computation time, i.e.
the highest required computation time typically necessary
when a new reference step is requested, with a factor of 7.5
as shown in [19].
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C. Extension for longer horizon

With the above described TOMPC algorithm, the largest
possible reference step depends on the value of Nmax because
end point constraints (1e) and (4) must be satisfied for N ≤
Nmax, that is, the system must be able to reach this largest
possible reference position in no more than Nmax time steps
without violating the system constraints (1d). Nmax itself
determines the size of the optimization problem and hence
the worst case computation time of the TOMPC solution
method which is limited by the sampling period. Hence,
the sampling period limits the largest possible reference
step, which can be small for systems that require high
sampling frequencies. In order to overcome this limitation,
non-equidistant time steps or time gridding is applied such
that larger horizons can be considered without increasing the
total number of discretization points Nmax and optimization
variables. In the first part of the horizon up to typically Nmin,
the time step corresponds to the sampling period. Thereafter,
the time steps are gradually increased up to 10 times the
sampling time in order to have a larger prediction horizon
and therefore a larger feasible set of reference steps. For the
overhead crane test setup of Section III this allows us to
increase the prediction horizon by a factor of 4, extending
the attainable range to its maximum of 70cm.

III. EXPERIMENTAL VALIDATION

This section discusses the implementation and experimen-
tal validation of TOMPC on an overheadcrane with fixed
cable length, a typical example of an linear time invariant
mechatronic system.

A. Test setup

The considered test setup is the overhead crane with fixed
cable length shown in Fig. 1. Fig. 2 shows a schematic
representation of this system. The actuator of the system is
a velocity controlled DC-motor that drives a trolley through
a rack and pinion. The position of the trolley x is measured
using an angular encoder mounted on the DC-motor axle,
yielding a position measurement resolution of 3µm. The
swing angle θ is measured using a rotative encoder mounted
on the axle to which the cable is attached, yielding an angular
resolution of 0.0009◦. The input to this system is a voltage
u, which is a reference applied to the 25Hz bandwidth
internal velocity loop. The input is limited to ±1V and
the input slew rate is limited to ±6V/s due to limitations
of the motor current amplifier. The maximal range of the
trolley is 70cm. The length of the cable is fixed to 450mm.
The system controllers are embedded on a dSPACE board
DS1103 and implemented through C++functions in the real-
time-target environment of Simulink. The system controllers
are applied at a sampling frequency of 60Hz.

The relation between the input u and the position of the
trolley x is modelled by a first order model for the internal
velocity loop in combination with an integrator relating
velocity to position:

X(s)
U(s)

=
K

s(s−a)
. (6)

Fig. 1. The overhead crane in the PMA-lab at K.U.Leuven.

The relation between the position of the trolley x and
swing angle θ can for small values of θ be modelled as
[20]:

θ(s)
X(s)

=
s2

Ls2 +g
, (7)

with L the length of the cable and g the gravitational accel-
eration. These models (6)–(7) are combined and discretized,
to yield following discrete time models:

X(z)
U(z)

=
b0z

(z−1)(z−a0)
, (8a)

θ(z)
U(z)

=
β0z(z−1)

(z2 +α1z+α2)(z−a0)
. (8b)

trolley
u

x

m

L
θ

Fig. 2. Schematic representation of the overhead crane

The parameters of models (8a)–(8b) are identified using
a nonlinear least square frequency domain identification
approach based on frequency response function (FRF) mea-
surements that are obtained from multisine excitations with
a frequency content between 0.05Hz and 5Hz [21]. Fig.
3 shows the results of this identification, that is, a good
fit between the measured FRF’s (black) and the FRF’s of
the two identified models (grey). The estimated resonance
frequency is 0.74Hz which corresponds to the theoretical
value 1

2π

√
g
L with L= 450mm. The damping of the estimated

resonance frequency is ζ = 0.00168 which is extremely low.
The two identified models are then combined into the
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Fig. 3. Measured FRF (black) and FRF of the identified models (grey).
The upper 2 plots show the bode plot from input u to position of the trolley
x and the lower 2 plots show the bode plot from u to swing angle θ .

following discrete time fourth order state space model:

A =


0.996 4.35E−3 0 0

1 0 0 0
0.0438 −0.0438 1.99 −0.9997

0 0 1 0

 ,D =

 0
0
0

 ,

B =


−826.1

0
35.99

0

 , C =

 −0.0122 0 0 0
0 0 0.036 0

−0.0122 0 0.2827 0

 .
(9)

The first output of the system is the position of the trolley
x and the second output is the swing angle θ . The third
output is the position of the load y = x+Lθ

π

180 in mm. This
expression is valid assuming small values of θ .

B. TOMPC controller

For this system, a TOMPC controller is developed taking
into account the abovementioned constraints on input and
input slew rate. As the states of model (9) are not directly
measurable, first a Luenberger observer [22] is designed. For
the estimation of the states, the measurements of both the
position of the trolley x and the swing angle θ are used.
The best results are obtained using a state observer with a
bandwidth of 0.95Hz. Higher observer bandwidths yield a
too nervous or even unstable behavior. As the solution of
optimization problem (3) requires a large computation time,
the control input is only available near the end of every
sample period, and this introduces an additional delay. To

account for this delay, the state space model is extended with
one delay state, resulting in the following new state space
matrices:

A′ =
[

A B
0 0

]
, B′ =

[
0
1

]
,

C′ =
[

C(3) D(3)
]
, D′ = 0

where C(3) and D(3) denote the third row of C and D
(9) respectively, since the output considered in end point
constraint (5) of the TOMPC implementation, is the position
of the lower mass. Based on this fifth order model, the
TOMPC is implemented. Fig. 4 and 5 show the response of
the system with TOMPC on a reference step of 10cm. Fig. 6
shows the corresponding input to the system. The constraints
on the input amplitude are not reached. The input slew rate
however, shown in Fig. 7, reaches the slew rate constraints
during almost the whole duration of the motion. This shows
that the system is working at its limits and hence that the
controller steers the system as fast as possible to the desired
endpoint.
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Fig. 4. Position of the trolley (black) controlled by a TOMPC controller
for a reference step of 10cm (grey).
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Fig. 5. Swing angle of the TOMPC controlled system for a reference step
of 10cm.

A similar time optimal behavior can also be attained using
an optimized reference trajectory (e.g. [3]) and a linear
controller. However with the linear controller approach,
time optimality can only be obtained if for each possible
reference step a new reference trajectory optimization is
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Fig. 6. Input applied to the overhead crane for a requested step of 10cm
controlled by a TOMPC controller.
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Fig. 7. Differential input applied to the overhead crane for a requested
step of 10cm controlled by a TOMPC controller.

performed, while the presented TOMPC obtains this behavior
for all possible references. This is illustrated in the following
figures. Figs. 8, 9 and 10 show respectively the position of
the trolley x, the swing angle θ and the input u for several
reference steps ranging from 20cm to 50cm. Fig. 10 and
more clearly Fig. 11 show that the controller is continuously
hitting the input constraints during the motion, showing its
time optimality for all reference steps.
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Fig. 8. Position of the trolley (black) controlled by a TOMPC controller
for a series of reference steps (grey).

A last set of experiments illustrates the TOMPC controller
disturbance rejection capabilities. Fig. 12 shows the position
of the trolley x and Fig. 13 the swing angle θ when an
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Fig. 9. Swing angle of the TOMPC controlled system for a series of
reference steps.
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Fig. 10. Input applied to the overhead crane controlled by a TOMPC
controller for a series of reference steps.

external disturbance is applied to the lower mass. From time
1.2s till 1.5s, as indicated by a grey zone in Fig. 13, the
lower mass is manually moved out of its equilibrium position
θ = 0 and is released at time 1.5s. The controller reacts
to this disturbance, and steers the system in minimal time
back to its desired zero position. Fig. 14 illustrates the time
optimality of the reaction to disturbances by showing the
input slew rate, which is again hitting continuously the slew
rate constraints.

IV. CONCLUSION

A time optimal MPC approach is successfully applied
to a flexible motion system. The basic time optimal MPC
approach is first adapted to extend the feasible range of
the controller without compromising on the corresponding
computational load and sampling time. This MPC controller
steers the system to the desired setpoint and regulates distur-
bances in a minimal time. This minimal time depends on the
size of the reference step and disturbance and on the system
input and input slew rate constraints.
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