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Functional Series Expansions For Continuous-Time Switched Systems

Luis A. Duffaut Espinosa®

Abstract— The main objective of this paper is to describe a
class of functional series expansions, known as Fliess operators,
which admit inputs from a ball in an L, space as well as
Poisson random processes. It is shown that a continuous-time
switched input-affine nonlinear system with a Poisson switching
signal can be represented as a Fliess operator, and that the
underlying combinatorics can be used to obtain, for certain
cases, a closed-form solution in terms of Poisson integrals.

I. INTRODUCTION

Fliess operators provide a general framework under which
analytic nonlinear input-output systems can be studied [7],
[81, [11], [12], [18]. In the classical setting, they are de-
scribed by an infinite summation of Lebesgue iterated in-
tegrals codified using the theory of noncommutative formal
power series. Specifically, let X = {xg,z1,...,2,,} be an
alphabet and X* the free monoid comprised of all words
over X (including the empty word ()) under the catenation
product. A formal power series in X is any mapping of
the form X* — R’ and the set of all such mappings
will be denoted by R*((X)). For a measurable function v :
[a,b] — R™ define ||u||Lp = rnax{”ui”Lp 1 << m},
where ||u;|] 1, is the usual L-norm for a measurable real-
valued component function u,. Define recursively for each
n € X* the mapping E, : LT*[to,to + 1] — C[to, to +T'] by
Eplu] =1, and

B[]t o) = / wi(r) By [u] (7, to) di,

where z; € X, ' € X* and uy = 1. For convenience
assume to = 0. The input-output operator corresponding to

c is then
S (en) Bylul(h),

neXx*

Felu](t) =

which is called a Fliess operator. The most general results
regarding the convergence of Fliess operators were presented
in [12]. There it was shown that if the generating series c is
globally convergent, i.e., satisfies the growth condition

[(e,m)| < KM, vy e X,

where |n| denotes the number of symbols in  and K, M > 0,
then Fe[u] converges absolutely on [0, 00) for u € L}'.(0).
On the other hand, if the generating series c is locally
convergent, i.e., satisfies the growth condition

[(e.m| < KM, vn e X7, (1)
then F.[u] converges absolutely on [0,7] for u €

B (R)0,T] £ {u € Ly'[0,T] : |ull, < R} if T and
R sufficiently small. More recently in [4]-[6], it was shown
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that the notion of a Fliess operator can be generalized to
admit a class of Lo-Itd stochastic processes. Specifically,
such operators were defined as an infinite summation of
Lebesgue and Stratonovich iterated integrals, and conditions
for their absolute convergence were given. This class of
input-output systems, however, is still too limited for many
engineering applications.

A number of systems encountered in engineering involve
the stochastic coupling of several subsystems. It is well
known, for example, that the flight control computers on
board fly-by-wire aircraft are subject to faults induced by
lightning and atmospheric neutrons [10], [19]. In turn, these
faults can induce system-level errors by corrupting the con-
trol law computations. Once the system detects a fault, it
switches from a nominal mode, which models the aircraft
under ideal conditions, to a recovery mode, which models
the effect of the fault and the recovery mechanism used to
restore the system back to the nominal mode. Such dynamics
can be modeled as a switched input-affine nonlinear system

z= fv(z) +gv(z)u= Z(O) = 20
y = h(z),

where u € L,y[0,T]; v : [0,00) — {0,1} is a switching
signal; and fy, f1, go,91 and h are analytic functions on
some neighborhood of zy € R™ [15]. Equivalently,

)

z = foz) +g0(2)u+ (fi(z) = fo(2))v
+(91(2) — go(2)) uv
y = h(2).

When the integral process induced by v is a Poisson process,
say N, then

2t) = z+ / fol2(5)) + g0(2(5)) u(s) ds

+ / £1(2(5)) — fo(=(s)) AN ()
n / (61(2(5)) — g0(=(s))) u(s) AN(s), 3)

where [ -dN denotes a stochastic integral with respect to V.
Observe that for each ¢ € [0, 00), v(t) is actually representing
AN(t) £ N(t) — N(t—), where N(t—) = limg_; <¢ N(s)
is the left continuous version of N.

Poisson processes fall into the class of jump processes
or Lévy processes [16], which are distinct from the class
of processes being considered in [1], [4]-[6]. It is, however,
possible to describe (3) in terms of a Fliess operator if a more
general type of stochastic integral is used, namely an integral
with respect to a semimartingale. One challenge of allowing
jumps in the integral is the loss of the chain rule, which
cannot be recovered as is done for the It6 integral by using
the Stratonovich integral [16]. In addition, the underlying
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algebraic structure is no longer the shuffle algebra since the
integration by parts formula admits extra terms [14]. So in
this paper, the necessary extension of the theory is fully
developed. As a result, it will be possible to give a series
solution for (2) and express the map v — y as a Fliess
operator.

The paper is organized as follows. Section II presents
the main results of the paper. In Section III, the analysis
tools from stochastic integration of semimartingales are in-
troduced. In particular, the Poisson integral and its properties
are summarized. Then in Section IV the proofs of the main
results are given. Finally, Section V provides the conclusions
and suggestions for future work.

II. MAIN RESULTS

To model switched systems with more than two modes, the
idea of “thinning” a Poisson process is useful [17]. Consider
a Poisson process N with intensity A. The events are
classified into k disjoint types: type 1, type 2,. . ., type k. Let
p; denote the probability that a given event is of type j, and
let N; denote the process counting the events of type j. Then
Nj is a Poisson process with intensity A\; = p;A\. Moreover,
for any set of positive numbers ti,%s,...,t; the random
variables Ni(t1), Na(t2), ..., Ng(ty) are independent. It is
also important to observe that for every t > 0 and j; # ja
the probability P(N;, (t) + Nj,(t) > 2) = 0. A switching
signal of this type will be called a Poisson switching signal
of k-types with probabilities p;, j =1,... k.

To introduce Poisson processes into the Fliess oper-
ator formalism, consider the following alphabets: X =

{zo,21,...,2m}, Y = {yél), . ,yﬁ), .. .,y(()k), e (k)}
and XY = X UY. For each n € XY*, define recursively a
Poisson-Lebesgue iterated integral £, by first setting Fy = 1

and then, for z; € X and y(j) €Y, letting

[
t

Brglwl(®) & [ i)y lul(s) s @

t
B0, ul(®) £ [ wam) By lul(s-) Ny (s). )
where ' € XY™, w = (u,0), u € B)'(R)[0,T], uog = 1,
and o = (v1,...,v5) = (ANy,...,ANy). The process v
will be called the decomposition of a Poisson process N of
k-types. A Fliess operator over B}'(R)[0,T] with Poisson
jumps is defined as follows.

Definition 1: A causal m-input, ¢-output Fliess operator
F.. ¢ € RY(XY)), driven by u € B;*(R)[0,T] and a
Poisson process N of k-type with probabilities p;, ¢ =

.,k is formally defined as

> (em) Eylw](t), (6)

nexXy*

Fe[w](t) =

where each FE, is given in (4)-(5).

Theorem 1: Suppose ¢ € RY((XY)) satisfies the growth
condition (1). Then there exist R, T > 0 such that for each
u € B"(R)[to,to + T and Poisson process of k-type with
probabilities p;, j = 1,...,k, the series (6) converges in the
mean absolutely on [0, T].

Theorem 2: A switched input-affine nonlinear system
with &k + 1 modes and driven by an input from B} (R)[0, T]
and a Poisson switching signal of k-types with probabilities

pj, j = 1,...,k can be written as a Fliess operator F for
some ¢ € RY((XY)).
Example 1: Consider the n-dimensional switched system

2=A,z+ Byzu, 2(0) =2y, y=_0Cxz, @)
where v : [0,00) — {0,1,...,k} is a switching signal, u €
Bi(R)[0,T], A; € R"™*", B; e R**!, j =0,1,....k C €
R™ and zy € R™*L. For each t € [0, ), let
k
() =Y ju(b), ®)
j=1

where v; = ANj, 7 =0,...,k. Thus, (7) can be expressed

as
k k
2 = (Aoz + Boz u) 1—21}]- —i—Z(Ajz—i—szu)UJ
j=1 j=1
k
= M002+M01zu+z (Mjoz+ M;1z u)vj,
7j=1

where MO,O = Ao, M071 = Bo, Mj.,O = A Ao, J 1=
Bj — By for j =1,...,k, and v is charactenzed as in (8)
by a Poisson switching signal of k-types. It will be shown in
Section IV that y = F.[w], where w = (u, T)) and (¢,n) =
CMyzy with My, = My;M, and M Wy = = M, M, for

n € XY™. Moreover, if the M} ;’s cornmute then

t
y(t) = Cexp (Mo,o t+ MO,I/ u(s) ds)-
0

Hexp (/ In (14 Mjo+ M1 u(s ))de(s))zo

O
III. STOCHASTIC SETTING

Now a brief summary is given of the concepts needed from
the theory of stochastic integration to prove the main results.
The treatment is based on [16] and the references therein.

A. Semimartingales

Assume that (2, 7, F, P) is a complete filtered probability
space, where F = {F,};>0, Fo contains all the P-null sets of
F, and F is right continuous. Denote by D the set of adapted
processes with cadlag (right continuous and left limits) and
IL the set of adapted processes with caglad (left continuous
and right limits).

Definition 2: A process H is said to be simple predictable
if H has a representation

t) + ZHiﬂ(Ti,Ti+1](t)v

i=1

H(t) = H(0)Lioy(
where 0 = 71 < --- < 7,41 < 00 is a finite sequence
of stopping times, 1,4 denotes the indicator function of
the set A, and H; € F,, with |H;| < oo as. for 0 <
1 < n. The collection of simple predictable processes is
denoted by S, and by Sy, when S is endowed with the
topology of uniform convergence on compacts in probability
(ucp convergence). Here a sequence {H"},>o of jointly
measurable stochastic processes converges in the ucp sense
to a process H when for each ¢ > 0 and any € > 0
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lim P < sup |H"(s) — H(s)| > e) = 0.
n—roo 0<s<t
Under upc convergence, the set D is complete and the set .S
is dense in L.

Let L° be the set of random variables endowed with the
topology of convergence in probability. Let X € S be a

stochastic process and define the linear mapping Ix : S —
L° induced by X as

Ix(H) = H(0)X(0) + i H; (Xt
=1

~ X))

The continuity of this mapping is considered next under the
upc topology.

Definition 3: A process X is called a semimartingale if
it is adapted, has cadlag paths, and the mapping Ix is
continuous on any bounded interval [0, ¢].

Definition 4: The pure jump process induced by a semi-
martingale X att¢ > 0 is defined as AX (t) = X (t)— X (t—).

In the same way that Ix maps processes in .S to random
variables in L°, an operator induced by X can map processes
to processes.

Definition 5: Let H € S and X € D. The stochastic
integral of the simple predictable process H with respect to
X is defined by the linear mapping Jx (H); : S — D as

Jx(H)y = HO)X(0)+>  H; (X(EATi1) — X(EAT,)),

=1

where ¢t A 7 £ min(t, 7).
Theorem 3: Let X be a semimartingale. Then the map-
ping Jx : Supe =+ Duype is continuous and linear.
Definition 6: Let X be a semimartingale. The continuous
linear mapping Jx (H); : Lype — Dype obtained as the
unique extension of Jx : S — D is called the stochastic
integral of H with respect to X and is written as

Tx(H), = / H(s—) dX (s). ©)

Theorem 4: Let H € L. and X be a semimartingale.
Then:
i. Jx(H); has no dependence on times exceeding t be-
cause X (t A7ip1) = X(tAT;) for 7410 > 1 > L.
ii. Jx(H); is consistent with the Itd integral definition
because H is calculated at the left end of (74, 711).
iti. If X is cddldg and H is cdgldd, then Jx(H); is a
semimartingale.
iv. The jumps in the integral occur at jump points of X,
e, A (fy H(s)dX(s)) = H(H) AX(2),
The following concepts will be useful in the next subsection.
Definition 7: A stochastic process X is called increasing
if it is adapted, X (0) = 0, and its sample paths are non-
decreasing and a.s. right continuous.
Theorem 5: Let X be an increasing stochastic process
such that E[X ()] < oc. Then there exists a unique increas-
ing process X such that

e[ [ viraxe)] e[ [ veato)

for all ¢ and each non-negative predictable process Y. The
process X is called the dual predictable projection of X.
An important characterization of the dual predictable projec-
tion is given next in terms of Martingales.

Theorem 6: Let X be an increasing process so that
E[X(t)] < oc. Then the dual predictable projection of X
is the only predictable increasing process X such that the
process X — X is a Martingale.

B. The Poisson Integral

Definition 8: Let {7;};>0 be an increasing sequence of
stopping times. A process N(t) £ 3., 1>, taking
values in N is called a Poisson process with intensity \ if it
satisfies:

i. Forany 0 < s <t < oo, N(t) — N(s) is independent
of Fj.
1t. Forany 0 < 51 <t; < oo and 0 < s9 < tg < 0o such
that t1 — s1 = to — $o, the distribution of N (¢1)— N(s1)
is the same as that of N(t2) — N(s2).
From this definition, it can be inferred that N (t) is adapted,
it has a Poisson distribution with intensity A, and N(¢) =
> 0<s<t AN(s). Using Definition 5, the Poisson integral is
defined next.
Definition 9: Let H be a stochastic process and N be a
Poisson process. The Poisson integral of H is defined as

In(H); = /0 H(s—)dN(s)
N(t)
= Y H(t—=)[N(re At) = N(me_1 A 1)].
k=1

Observe that the integral fot N(s)dN(s) =, N(r:)
is a well-defined Stieltjes integral since N () is an increasing
process of finite first variation. But it is not a stochastic
integral because N (t) is not predictable. On the other hand,
fot N(s—)dN(s) is a stochastic integral with the character-
istic that it is indistinguishable from the re-defined Stieltjes
integral fot N(s)dN(s) = >, <, N(7i-1). The advantages
of the Stratonovich integral with respect to Wiener processes
are well-known. In particular, its relationship with the It
stochastic integral has been widely used in the literature [1],
[9]. However, such advantages are not available for stochastic
integrals with respect to jump processes. For example, the
Poisson-It0 integral gives extra terms that cannot be removed
by using the Poisson-Stratonovich integral.

Definition 10: Let X and Y be two semimartingales. The
Stratonovich integral of Y with respect to X is

t t 1 .
fOY(s—)dX(s):/o Y(s=)dX (s) + 5[X, Y

where [X, Y]§ is the continuous part of the quadratic covari-
ation of X and Y defined as

n

XY = 1 X, — X, Y:, =Y,
(X, Y] HHIHILI();( t; tH)( ti tH)a
where ||IT]] = Inax (t; — t;—1) is the measure of the

partition IT of [0, ¢].
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Theorem 7: Let F € C2. The It6 formula for semimartin-
gales is

F(X / F(X(s-)) dX () +

/ (X (5)) dIX. X]7(5) +
(FOX(s)) = FX () = /(X (5
O<

Observe that all the integrals are well-defined since
f'(X(s—)) and f"”(X(s—)) are caglad, and X(s) and
[X, X]¢(s) are cadlag. From (10), the relationship between
the stochastic integral (9) and the Stratonovich integral is

{F’(Xs— X (5) = /tF'u —))dX (s)

/ fl/
Example 2: For a Poisson process N, observe
t t
f F'(N(s— = / F'(N(s—))dN(s).
0 0

This shows that the Itd and Stratonovich integrals for N
coincide since [N, N]§ =0 and [N, N, = N(¢). 0

)AX(s)]. (10)

) d[X, X](s)-

A very useful identity for stochastic iterated integrals with
respect to Poisson processes is presented next.
Theorem 8: Let N be a Poisson process. Then

/ N1} (s

Z ANtl"'ANtn: IlN>n<]\]>
- n

OStl StZ”'tn St

with N{O = 1.
In general, this identity is valid for all pure jump processes.
Lemma 1: Let X and Y be two semimartingales. It fol-

lows that
t
+/ X(s—
0

+/tY(s—)dX(s)+[X,Y]t. (11)

From Theorem 8 and Len?ma 1, the following useful identity
can be obtained.

Theorem 9: Let X and Y be semimartingales satisfying
X(0)=0,Y(0)=0and [X,Y]; = 0. Then

ZX{} ()Y =i @),

Proof: By induction and usmg the integration by parts
formula (11), the statement follows directly. [ |

N 2 ~) dN(s)

XY () = X(0)Y(0

(X +)" @)

IV. PROOF OF MAIN RESULTS

In order to prove Theorem 1, upper bounds for the
Poisson-Lebesgue iterated integral given in (4)-(5) are
needed. The dual predictable projection of the Poisson pro-
cess IV will play a key role in the calculation. To find such
a process, observe

E[N(t) = N(s) | Fs] = E[N() = N(s)] = A(t—s)

E[N(t) —

for 0 < s < t, which means that N (¢) — At is a Martingale.
By Theorem 6, the dual predictable projection of N is the
process At. Now, let |n| , denote the number of letters in 7
that belongs to A for any A C XY, and define the language
Xmym = {n e XY*,|n|y = ni,|nly = n2}. The next
lemma gives upper bounds for Poisson-Lebesgue iterated
integrals.

Lemma 2: Letn € X™Y", u € B'(R)[0,T] and N be
a Poisson process of & types. An upper bound for the iterated
Poisson-Lebesgue integral E,[w] at a fixed t € [0,T] is

k p m o rraitfBi
1By fw](8)]], <A™ _Hpj’ <H%Tﬁ(§)'> (12)

At|F] = N(s)— s

=1
where Uj;(t fo lui(s)| ds, a; = |nl,,, St = na,

k _
B = Zz:O nl o> Bi = ijo Il and 357, 57 =
ZZO Bi = na.

Proof: The inequality is proved by induction over the total
number of n; + ny integrals. For n; + ny = 0, the claim is
trivial. If n; + no = 1, then there are two cases to consider.
The case when n = x is trivial. The second case is when

n= ygj ). Since a Poisson process is an increasing process,
it follows from Theorem 5 that

]@w) t <EUHM ) dN;( ﬂ_M%m@.

Now assume that (12) holds for every " € X™ Y™ up to
some fixed ny +mng > 0. If n = yij)n’ then

t

2,00, 010, =B || [ (51l aico

B[ [ w5 [Ow]<s>| o)

<
t k 5 m Uﬁfﬂrﬁz (S)
< / Bllusts) 3 ([T ) T s
J o ll;[l l g (al +Bl>'
m UOtH-BL(t)
< metl g et ! ,
= P1 p] pk 1}) (Oél'i‘ﬁl)!
1%i
t UaH_BZ( )
Ellu;(s ds
| B35
k
= /\n2+1p/15 pf”rl . pf .
U(()loJrﬁo (t) . UiO‘iJrﬁiJrl(t) . Uglm-‘r,@m (t)
(o 4 Bo)! -+ (i + B + 1)l (v + Bm)!

The inductive step for = x;n’ is done similarly. Hence, the
proof is complete. [ ]

Proof of Theorem 1: Assume that the coefficients of ¢ satisfy
the growth condition (1) for some K, M > 0. Without loss of
generality, it is assumed that £ = 1 and A > 1. Fix some T >
0. Pick any v € LT*(R)[0,T] and let R = max{||ul|,,T}.
For (ao,...,am) € N™*1 define a! = ag!---a,,!. From
Lemma 2 and since p; < 1 for all j’s, it follows for any
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n€ X™Y™ and t € [0, 7] that
, Anz T
E[|(c,n)Ey[w]®)]] < KM T!_(a e

where r = |n| = mn1 + no. Next define a,.(t) =
> pnl=r |(¢;m) Ey[w](¢)[. Then from (13), observe

=Y E[[(c,n)Ey[w](®)]]
[nl=r

r!

(a4 B)!

13)

IN

KM™"R™ Y
[n|=r
KM"\'R" Z

o+ Fam
+Bo++Bm=r

r! r!

(a+p)! alpl

2

Z s
13!
[e%3yoh)
g+t
+Bo+-+Bm=r

= KM"A\"R"(2m + 2)*",

IN

KM"\"R"

where the last step employs the multinomial theorem. It then
follows that

> Ela(t)]

This shows that if R < 1/(4MX(m+1)?) then (6) converges
in the mean absolutely on [0, T]. |

< i K(AMAR(m + 1)?)".
r=0

In [4]-[6], the shuffle product was used to prove results
analogous to Lemma 2 and Theorem 1. However, when
Poisson integrals are present, the shuffle product is not
applicable since the integration by parts formula differs from
the classical case [14]. Instead, E,, E¢ can be expressed as

E EE:EnLuE+EnO£= (14)

where . denotes the usual shuffle product, and <> is defined
recurswely as follows. For 7/, & € XY*, q,(;),qlm € XYy

(:c( = gy, for all i), n = q,(c)n and § = ql( ¢, let

no¢ = ¢ (' 0€) +¢7 (no€’ )+9, Se (' w& +n'og,

where q,(f)<>(/) = 0Oq, @) — 0, and § D = =1if q(Z = y](; ,

(J) = y(J) and i = j, otherwise § o g = = 0. Identity (14)

plays a fundamental role in the proof of Theorem 2.

Proof of Theorem 2 (outline): The objective is to write
any switched input-affine nonlinear system with a Poisson
switching signal as a Fliess operator. Observe that if the
system has k + 1 modes then

m k
2+ Y g0+ > (f5(2) = fo(2)v;
i=0 j=1
m,k
+ Z (g4i(2)

i=0,j=1

= g0i(2))ui v,

where the integrals of the v;’s come from a Poisson switch-
ing signal, N, of k-types with probabilities p; for j =
1,...,k. That is, for each ¢ € [0, 7] either all v;’s are zero

or just one v; = 1. It is sufficient to show that one can write
the following switched system as a Fliess operator

=S ut Y gil)
1=0

i=0,j=1
where u € B'(R)[0,T], and f;, gj; are analytic functions
on some neighborhood of zy € R". Assume for brevity that
m =k =1 and fy = gio = 0. Note that v = AN, so
abusing the notation, let v = dN and z; = z(t). In integral
form, (15) becomes after dropping the subscripts

%iéﬂw%@+42%mwMﬂ

Given a differentiable function F, the semimartingale Pois-
son chain rule is

5)

Ui Uy,

F(z) = F(z0)+/0t (f(zs) %F(@) ws ds

+/ (F(zs) — F(2zs—)) us— dN(s), (16)
0

where F(z:) = F(z— — g(2)). Using this equation,
one can identify the operators L;F(z) = f (z)ag—iz) and
A F(z) £ F(z + g(2)) — F(2). Now, let F(z) in (16) be
replaced by either f(z) or g(z), and substitute f(z) and g(2)
into (15). This yields

¢

¢
zt =20+ f(zo)/o us ds + g(zo) /0 us— AN (s) + Ri(zt),

where R;(z;) contains all the iterated integrals of order 2
whose integrands do not depend on zg. In light of (4)-(5),

define X = {1}, Y = {y; 1)} and the iterated operators
Lyyy = LyLy, and L Yy = L,L MOP where L, = Ly,

L s = = Ay, and 7 61 XY™, Repeatlng this procedure

1terat1ve1y ylelds the Peano-Baker formula for equation (15)

z = = > Ly(id(z0)) Eywl(t),  (7)
neXy*

where id denotes the identity map. Thus (f, g, id, zo) realizes
the operator F¢_ driven by u and a Poisson process N of 1
type when (c.,n) = Ly, (id(20)), ¥n € XY™, is locally
convergent. Note now that if (17) is the solution of (15) then

dzy = Y Lyf(z0) Bylw](t) ue dt
nexy*

+ Z Lng(zo) En[w](t_

nexXy*

) Ut — dN(t)

Considering that the product of Poisson-Lebesgue iterated
integrals satisfies (14), and that the product rule for the
operator A, and any v, 12 € C¥ is

Ag(V11ha) = Y1Ag(Y2) + Ag(th1)ha + Ay (Y1) Ag(2),

the Fliess pre-lemma ([7, Proposition III.1], [18, Lemma
3.4.1)) still holds, and therefore,

2= f(2) we + g(2e) ug vy,

which is the simplified version of (15). Furthermore, for any
analytic output function h such that y, = h(z;), the Fliess

pre-lemma also gives
Z Lyh(zo)
nexy

y(2) = Fe[w](t) = Ey[w](2),
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where (¢,n) = Lyh(20). Hence, the proof is complete. W

Example 3: Reconsider the switched system presented

in Example 1. Let 2o = (1,...,1)7 € R™! and
XY = {zo, 11 y(l) y(k) y(l) y(k)}. Then from
7 sy Y0 yd0 191 »J1
(17) y(t) = Fe[w](t), where w = (u,?), u € By1(R)[0,T],
= (ANy, ..., ANg),

(Cv 77) =

My = MoqMy and M, = MM, for 1 € XY*.

Observe that ¢ satisfies (1) So from Theorem 1, y(t) =
F.[w](t) at least converges to a well-defined output process
for some R, T > 0. Thus,

CLn (Zd(z’o)) = CMnZO,
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From Theorem 9, and assuming that the M ;’s commute,
then
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It is worth pointing out that explicit solutions for the previous
example can also be obtained in terms of exponentials when
the vector fields are not commutative. The expression for the
logarithm of this exponential (known as the Magnus expan-
sion or the Chen-Strichartz formula) has been developed in
terms of iterated Lie brackets [2], [3], [13], [14].

V. CONCLUSIONS AND FUTURE WORK

This paper described a class of convergent Fliess operators
admitting L, and Poisson process inputs. It was then shown

how Poisson switched input-affine nonlinear systems have
an input-output map that can be described in terms of such
Fliess operators. It is conjectured that such an approach can
also be applied to Markov switched systems, i.e., where
the interarrival times are not necessarily exponentially dis-
tributed, but the independence of the increments still holds.
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