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Abstract— An algorithm is developed for robust nonlinear
least-squares optimization in which the function to be mini-
mized has dependence on an uncertain parameter. The goal is
to minimize the worst-case norm-square of the function, under
the assumption that the uncertain parameter can take any value
from a given compact region. The algorithm simply replaces
the quadratic optimization in the Gauss-Newton update scheme
with a robust linear matrix inequality (LMI) optimization step.

I. INTRODUCTION

Robust optimization has evolved significantly in the last

two decades and has strong relevance for engineering prob-

lems [1]. The key concern in robust optimization is to achieve

robustness against uncertainty in the data of the considered

problem. As a part of the related development, optimization

based on linear matrix inequalities has spurred the field of

robust control [6], since such problems can now be solved

efficiently with the currently existing software [2], [7]. It

is now well-established how the robust linear least-squares

(LLS) problem can be reformulated in the form of an LMI

optimization (see [6]). The reformulation is equivalent to the

original problem when the dependency on the uncertain pa-

rameter is affine, whereas it usually involves some degree of

conservatism in the general case of polynomial and rational

dependency. This is because one then needs to employ some

relaxations to arrive at a tractable LMI problem (see [5] and

the references therein for various relaxation schemes).

It seems that the robust version of the nonlinear least-

squares (NLS) problem has not yet received similar interest,

understandably because of the complications with general

nonlinear optimization (like the issues of local minima,

convergence and computational load). The goal of this paper

is to make an initial step in this direction and provide

a robust NLS algorithm in the form of consecutive LMI

optimizations. We first make a brief recap of the NLS

problem and the Gauss-Newton algorithm in the next section.

The robust version of the problem and the algorithm that we

propose are provided in Section III. The paper is concluded

after a simple illustrative example.

II. NONLINEAR LEAST-SQUARES

We consider in this section the standard nonlinear least-

squares (NLS) optimization problem

(γ◦nls)
2 , min

u∈Rn
‖e(u)‖2

, (1)

where e : R
n → R

m represents a vector-valued, differentiable

nonlinear function. We also introduce

f (u) , ‖e(u)‖2 (2)

to refer to the function to be minimized. As is usually the

case for general nonlinear optimization problems, the goal is

to develop an update scheme of the form

uk+1 = uk + hk
, (3)

where uk represents the estimate of a minimizer, while hk

serves as the update, both at step k. The challenge is to build

this scheme in such a way that uk is assured to converge

to a local minimizer as k → ∞. In practice, we need to

introduce a stopping criterion for such a consecutive scheme,

which could for instance be ‖uk+1−uk‖< 10−τ , where τ > 0

determines the required precision.

The optimization methods basically differ according to

how they obtain the update vector hk. The Gauss-Newton

method is based on approximating e with an affine function

(and thus f with a quadratic function) in the neighborhood

of uk. Let us represent this linear estimate of e with

e(uk + h)≈ ek(h) , e(uk)+ J(uk)h, (4)

where J is the Jacobian of e defined as

J(u) ,
∂e(u,δ )

∂u
=









∂e1(u,δ )
∂u1

· · · ∂e1(u,δ )
∂un

... · · ·
...

∂em(u,δ )
∂u1

· · · ∂em(u,δ )
∂un









. (5)

With ek denoting the affine estimate of e at step k, we have

a quadratic estimate of f at the same step as

f (uk + h) ≈ f k(h) , ‖ek(h)‖2

= e(uk)T e(uk)+ 2e(uk)T J(uk)h + hT J(uk)T J(uk)h. (6)

In the Gauss-Newton algorithm, hk is chosen as a minimizer

of this function. The minimizers are to be sought among the

solutions of

J(uk)T J(uk)hk = −J(uk)T e(uk). (7)

In order to enforce a unique, explicit solution, the Levenberg-

Marquardt modification is employed by adding εhk to the

left-hand side, with a small ε > 0. In this case, the update

direction is obtained explicitly as

hk = −
(

εI + J(uk)T J(uk)
)−1

J(uk)T f (uk). (8)
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For further details, see [3], [4] and the references therein.

III. ROBUST NONLINEAR LEAST-SQUARES

Let us now consider the general robust nonlinear least-

squares (RNLS) optimization problem

γ◦rnls , min
u∈Rn

{

γ : ‖e(u,δ )‖2 ≤ γ2
,∀δ ∈ ∆

}

. (9)

where e : Rn×∆→ Rm is a function that is differentiable with

respect to its first argument and that has affine dependence

on its second argument, which represents the uncertain

parameter. The uncertainty is described by the compact set

∆ ⊂ R
l , which is assumed to be the convex hull of finitely

many extreme points collected in the set ∆ex = {δ 1, . . . ,δ η}.

With the introduction of δ dependence in e, we loose the

opportunity of obtaining the update direction by an explicit

formula or by a standard minimization over h. Since (9) is

a min-max problem, it would be reasonable to obtain the

update direction by solving a min-max problem of the form

hk = arg min
h∈Rn

{γ : f k(h,δ ) , ‖ek(h,δ )‖2 ≤ γ2
,∀δ ∈ ∆}, (10)

where ek is now a function of δ given by

ek(h,δ ) , e(uk
,δ )+ J(uk

,δ )h. (11)

By applying the Schur-complement lemma, we can refor-

mulate (10) as a robust LMI optimization of the form

hk = arg min
h∈Rn

{

γ :

[

γI ek(h,δ )
ek(h,δ )T γ

]

< 0,∀δ ∈ ∆

}

.

(12)

Thanks to the affine dependence on δ , this problem can be

rendered tractable as

hk = argmin
h

{

γ :

[

γI ek(h,δ j)
ek(h,δ j)T γ

]

<0, j = 1, . . . ,η

}

.

(13)

We have thus developed an RNLS algorithm that is formed

by consecutive LMI optimizations. In each step, one has to

solve an LMI problem over n+1 variables subject to η LMI

constraints of size (m + 1)× (m + 1). It is also possible to

include further constraints expressed in the form of LMIs in

u. For this, one only needs to add those constraints to the

problem in (13) with u = uk + h (e.g. the range constraint

u ≤ umax should be added as h ≤ umax −uk).

IV. EXAMPLE

We consider the RNLS problem for the simple function

e(u,δ ) = q(1 + kqδ )u2 + s(1 + ksδ )u− t, (14)

with the data q = 1,s = 1,kq = 0,ks = 2,t = 6 and the uncer-

tainty range identified as δ ∈ ∆ = [−1,1]. Figure 1 provides

the plots of this function within the range u ∈ [−4,3] for

several δ values (see the top plot). We can detect three local

minima within the considered range obtained at u = 2, u = 0

and u = −3, among which u = 2 is the global minimizer.

The bottom plot shows the worst-case values of |e(u,δ )|2

(i.e. maximum over δ ∈ [−1,1]) versus u, as obtained from

the top plot. The consecutive estimates of local minimizers

(uk with k ≥ 1) obtained with different initial estimates are
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Fig. 1. Robust NLS optimization example.

also displayed in this plot. We observe convergence to the

closest local optima in all the cases.

V. CONCLUDING REMARKS

We have provided a scheme for robust nonlinear least-

squares optimization in the form of consecutive LMI opti-

mizations. Although successful convergence is observed to

the local minima in our simple examples, it is not straight-

forward to adapt the local convergence proof of the Gauss-

Newton scheme, which is in fact established under some

further assumptions on the function (see [3]). The scheme

can be applied in the case of polynomial or rational parameter

dependency as well. Nevertheless, this would require the use

of somewhat complicated relaxation schemes [5] and make

the convergence analysis even more challenging. In some

more complicated examples, we observed better convergence

behavior when the update is implemented as uk+1 = uk +
αkhk, with a step size αk ∈ (0,1] that is smaller than one.

Though it is possible to add an extra minimization over the

step size, this would also be somewhat more complicated

than the ones in the common optimization schemes.
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