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Abstract— This paper proposes a new design method for full-
order mismatch-based anti-windup compensators applicable to
SISO systems. It is based on multiplier theory and path follow-
ing. In contrast to available approaches the new method allows
synthesizing globally stabilizing mismatch-based compensators
with enhanced local performance based on small-signal L2

gains. A hydraulic actuator serves as an example to demonstrate
the effectiveness of the proposed technique.

I. INTRODUCTION

The problem of actuator saturation in control has been

tackled from various different perspectives. Three princi-

pal directions of research are the synthesis of (nonlinear)

controllers which directly account for saturation constraints,

model predictive control strategies and anti-windup tech-

niques which are subject of this paper.

The philosophy of anti-windup is to separate the controller

into a nominal linear controller and an anti-windup compen-

sator (aw compensator). The former is synthesized to achieve

stability and a good performance in case the input saturation

of the plant would not exist. The latter handles the so-called

”windup-effects” caused by actuator constraints. For a recent

survey see [1].

In [2] the goal of anti-windup was properly mathematically

formalized for the first time. Roughly speaking, the task

of an aw compensator is to ensure a swift return of the

plant output to the nominal plant output, i.e. the output in

the absence of saturation. Since then, many systematic anti-

windup approaches have been proposed, e.g. [3], [4], [5] and

the references therein. One of them is the mismatch-based aw

compensator introduced in [6] and further developed in [7],

[8], [9]. Due to its special structure, it can directly account for

the above mentioned goal. Furthermore, the design consists

of a one-step convex optimization problem with a simple and

transparent structure, sureley contributing to the success of

this approach.

Unfortunately, the available design methods may either

guarantee global stability and a sluggish performance or an

improved performance and a restricted region of stability

as discussed in [8]. To improve this situation, we propose

a new design procedure for SISO systems combining the

advantages of both methods: global stability and enhanced

local performance. Global stability is established using an

multiplier approach similar to [10], [11], whereas the local

performance is based on ideas in [8].

Andreas Ortseifen and Jürgen Adamy are with the Institute of Au-
tomatic Control, Control Theory and Robotics Lab, Technische Uni-
versität Darmstadt, Landgraf-Georg Str. 4, 64283 Darmstadt, Germany
{ortseifen,adamy}@rtr.tu-darmstadt.de

The paper is organized as follows. In Section II the

problem is introduced and available design methods are

reviewed. Section III presents new stability conditions based

on multiplier theory. In Section IV the new design method

is described. Its effectiveness is demonstrated by an example

in Section V before some conclusions are drawn.

Notation. A ≻ 0(A ≺ 0) indicates that the matrix A is

symmetric and positive (negative) definite. The symbol ⋆ is

short for the term required to make an expression symmetric

and ∼ is used to denote equivalence of a transfer function

and a state-space representation. The L2 norm of a square in-

tegrable signal y(t) is defined as ‖y‖L2
= (

∫

∞

0
y2(t)dt)1/2.

The phase response of a transfer function W (s) is denoted

as arg W (jω). The symbol ⌊κ⌋ denotes the largest integer

not greater than κ.

II. PROBLEM STATEMENT

The linear plant is assumed to be stable and completely

controllable. It is described by

G(s) = cT(sI − A)−1b ∼

{

ẋ = Ax + bu

y = cTx
(1)

where x ∈ R
np is the plant state, u ∈ R is the control input

to the plant and y ∈ R is the plant output.

The linear controller is given by

uc(s) = K(s)

[

r(s)
yc(s)

]

=
[

Kr(s) Ky(s)
]

[

r(s)
yc(s)

]

(2)

where uc ∈ R is the controller output, r ∈ R the reference

signal and yc ∈ R the controller input. The interconnection

of K(s) and G(s) with u = ulin = uc and y = ylin = yc is

assumed to be stable and depicted in Fig. 1. It is referred to

as the linear closed-loop.

If the actuator saturates, the relation between uc and u is

defined by the saturation function

u = sat(uc) = sgn(uc)min(u0, |uc|) , (3)

limiting the absolute value of the plant input u to u0. The

arising system is called the saturated closed-loop.

The negative effects of saturation are handled by the

mismatch-based aw compensator. The following discussion

is based on [6], [8].

r uc = u
ulin ylin

y
yc K(s) G(s)

Fig. 1. Linear closed-loop system.
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Fig. 2. Anti-windup closed-loop system.
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Fig. 3. Mismatch system: Equivalent representation of the anti-windup
closed-loop system. This structure visualizes the achievable decoupling of
the linear closed-loop and the saturation through a mismatch-based anti-
windup compensator.

The mismatch-based aw compensator feeds additional sig-

nals yd and ud in the controller input and output respectively.

It is parameterized by the transfer function M(s) as follows

ud(s) =
(

M(s) − 1
)

ũ(s) , (4a)

yd(s) = G(s)M(s)ũ(s) = N(s)ũ(s) , (4b)

where ũ = ur − sat(ur). Fig. 2 shows the arising closed-

loop referred to as the anti-windup closed-loop system. The

transfer functions M(s), N(s) are chosen as

M(s) = fT
(

sI− A − bfT
)

b + 1 , (5a)

N(s) = cT
(

sI − A− bfT
)

b , (5b)

where A,b, c are plant matrices and f is the design param-

eter of the aw compensator ensuring that M(s), N(s) are

Hurwitz.

Fig. 2 can be re-drawn as Fig. 3. Following [1], the arising

closed-loop is called mismatch system, consisting of the

linear closed-loop and a nonlinear part highlighted in gray.

The nonlinear part contains the deadzone

ũ = dzn(ur) = ur − sat(ur) (6)

and has the following state-space realization

ż =
(

A + bfT
)

z + b dzn
(

ulin − fTz
)

, (7a)

yd = cTz , (7b)

where z ∈ R
np is the state vector, ulin ∈ R is the input and

yd ∈ R is the output.

A valuable property of the mismatch system is that the

mismatch between ylin and y, which the aw compensator

aims to keep small, is characterized by the output yd of the

nonlinear part. Consequently, the parameter f of the compen-

sator has to be chosen in such a way that an appropriate gain

-ûr

ûrur ur

1

u0 u0

-u0 -u0

ũ ũ
αu

(a) (b)

Fig. 4. (a) Deadzone nonlinearity in the sector [0, 1]. (b) Local sector
bounds of the deadzone [0, αu].

of system (7) from input ulin to output yd is small. Then the

aw compensator is successful at keeping performance close

to the desired linear performance. Choosing the L2 gain1

γ∗ of (7) as a performance criterion leads to the following

theorem proven in [8].

Theorem 1: There exists an aw compensator described

by (5) which guarantees global stability of the anti-windup

closed-loop system in Fig. 2 if a matrix Q11 ≻ 0, a vector

v and positive scalars γ, µ can be found such that for α = 1
the following LMI is satisfied









Q11A
T + vbT + ⋆ bµ − vα 0 Q11c

⋆ −2µ α 0
⋆ ⋆ −γ 0
⋆ ⋆ ⋆ −γ









≺ 0 . (8)

The parameter f of the compensator is given by f = Q−1
11 v

and ensures that (7) has an L2 gain γ∗ ≤ γ.

Theorem 1 allows to cast the design of an aw compensator

into a convex optimization problem:

Minimize γ , subject to (9)

Q11 ≻ 0 , µ > 0 , α = 1 , (8) .

For easy reference, this method will be called ”global ap-

proach”. The drawback is that γ may be unacceptably large

for some practical applications [8]. This is due to a rather

conservative assumption: The deadzone is approximated as a

sector nonlinearity in the sector [0, 1] as shown in Fig. 4(a).

A solution to this problem is given in [8] by relaxing

the sector constraints. Locally, the deadzone is contained

in a narrower sector [0, αu], αu < 1 as shown in Fig 4(b).

Choosing α = αu in Theorem 1 leads to a compensator

guaranteeing local stability and a local performance level

γ, i.e. a small-signal L2 gain γ∗

s ≤ γ of (7), as long as

|ur| < ûr = u0(1 − αu)−1. This ”local approach” can

significantly improve the performance. The drawbacks are

that global stability is abandoned and the resulting region of

attraction for the closed-loop system is connected to αu in

a rather complex way as discussed in [8].

To sum it up, the global and the local approach are not

completely satisfying and an aw compensator combining

global stability and a local performance level γ would be

highly desirable. A first step in this direction is done in the

next section by stating a less conservative stability criterion.

1System (7) with z(0) = 0 is said to have an L2 gain γ∗ ≤ γ, if
sup(‖yd‖L2

/‖ulin‖L2
) ≤ γ and ‖ulin‖L2

6= 0. The following statements
will be used synonymously from now on: 1.) System (7) has an L2 gain
less or equal than γ. 2.) The aw compensator has a performance level of γ.
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III. NEW CONDITIONS FOR ANTI-WINDUP

COMPENSATOR DESIGN

A. Multiplier Based Stability Results

The stability of the nonlinear part of the mismatch system

in Fig. 3 with ulin = 0 is solely determined by the stability

of the following closed-loop system

ud(s) =
(

M(s) − 1
)

ũ(s) , (10a)

ũ = dzn (ur) = dzn (−ud) . (10b)

Note that the linear part M(s)− 1 is Hurwitz by design and

the deadzone ũ = dzn(ur) is a static, time-invariant and

monotone nonlinearity, i.e. it satisfies

ũ (ũ − ur) ≤ 0 and
d

d ur
dzn(ur) ≥ 0 . (11)

The latter condition is a slope restriction which is not taken

into account in Theorem 1. Therefore, Theorem 1 guarantees

stability for a broader class of nonlinearities than necessary

at the expense of restricting M(s). A less conservative

stability lemma regarding M(s) can be stated if the class

of nonlinearities is constrained to satisfy (11). To show this,

the notion of positive realness is recalled first.

Definition 1 (Positive realness, [12]): A transfer function

W (s) is positive real (p.r.) if all poles are in Re(s) < 0 and

Re {W (jω)} ≥ 0 ∀ω ∈ R. It is called strictly positive real

(s.p.r.) if W (s − ǫ) is positive real for some ǫ > 0.

Furthermore, two subsets of strictly positive real systems are

introduced, as e.g. in [13].

Definition 2: The set WRL consists of all linear systems

W (s) =

ν
∏

j=1

s + θj

s + ηj
∼

{

ẋw = Awxw + bwuw

yw = cT

wxw + 1 · uw

(12)

with ǫ < θ1 < η1 < ... < θν < ην for an arbitrary small

ǫ > 0. The set WRC consists of all linear systems (12) with

ǫ < η1 < θ1... < ην < θν for an arbitrary small ǫ > 0.

Note, that if W (s) ∈ WRC, then −90◦ < arg W (jω) ≤
0 ∀ω ≥ 0. If W (s) ∈ WRL, then 0 ≤ argW (jω) <
90◦ ∀ω ≥ 0. Now, a well-known stability result for sector-

and slope-restricted nonlinearities satisfying (11) can be

restated.

Lemma 1: The nonlinear loop (10) has a globally asymp-

totically stable equilibrium point at the origin if there exists

a transfer function W (s) ∈ W = WRL ∪ WRC such that

M(s)W (s) is strictly positive real.

Proof: Follows directly from [13, Crit. 2a].

Remark 1: W (s) is called stability multiplier. As de-

scribed in [14] the multiplier of Theorem 1 is static, i.e.

W (s) = Wc ∈ R and stability is guaranteed if M(jω)Wc

is s.p.r., i.e. | argM(jω)Wc| < 90◦. This condition is

satisfied if and only if | arg M(jω)| < 90◦. Constraining

the nonlinearities to satisfy (11) offers the possibility to use

all multipliers contained in W . For example, if argM(jω)
exceeds 90◦ in a certain frequency range a multiplier W (s) ∈
WRC can compensate this with an appropriate negative

phase. Hence, more freedom is gained in the design of M(s).

Remark 2: Note that [10], [11] consider more general

multipliers. However, the advantage of (12) is that it has

a simple structure and can intuitively be chosen by the

designer.

To state an LMI-based stability condition for (10), the

following lemma is required.

Lemma 2 (strictly positive real lemma, e.g. [15]):

Assume that G(s) = CT(sI − A)−1B + D, where A is

Hurwitz. Then G(s) is strictly positive real if, and only if,

there exists P ≻ 0 such that
[

ATP + PA PB − C
⋆ −2D

]

≺ 0 . (13)

Considering (5) and (12), a minimal state-space realization

of M(s)W (s) is given by

[

A B

CT D

]

=





A + bfT 0 b

bwfT Aw bw

fT cT

w 1



 (14)

where A is Hurwitz. This leads to the desired result.

Lemma 3 (stability lemma): The nonlinear loop (10) has

a globally asymptotically stable equilibrium point at the

origin if there exists a symmetric matrix Q ≻ 0 such that
[

QAT + AQ B − QC
⋆ −2D

]

≺ 0 (15)

is satisfied with A,B, C,D according to (14).

Proof: Inequality (15) equals (13) after applying a

congruence transformation diag(Q−1, I) and substituting

Q−1 = P. It ensures strict positive realness of M(s)W (s)
and thus global stability according to Lemma 1.

B. Global Stability and Local Performance

A combination of the stability results from the last section

and the local version of Theorem 1 leads to globally stabi-

lizing aw compensators with a performance based on local

L2 gains. The following theorem can be stated.

Theorem 2: If there exist matrices

Q =

[

Q11 Q12

QT

12 Q22

]

≻ 0 , (16)

a vector f as well as positive scalars µ, γ and a multiplier

(12), such that for a given α ∈ (0, 1] the matrix inequalities








Y bµ − Q11fα 0 Q11c

⋆ −2µ α 0

⋆ ⋆ −γ 0
⋆ ⋆ ⋆ −γ









≺ 0 , (17)

X + LFΛT + ΛFTLT ≺ 0 (18)

with

Y = Q11A
T + AQ11 + bfTQ11 + Q11fb

T ,

L = diag
(

Q11,Q
T

12, 0
)

,FT =
[

fT fT 0
]

,

ΛT =
[

bT bT

w − 1
]

,

X =

[

QÃT + ÃQ B − QC̃

⋆ −2

]

,

Ã = diag (A,Aw) , C̃T =
[

0 cT

w

]
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are satisfied, then there exists a globally stabilizing aw

compensator (5). If α = 1 system (7) has an L2 gain γ∗ ≤ γ.

If α < 1 it has a small-signal L2 gain γ∗

s ≤ γ.

Proof: Matrix inequality (17) equals (8) in Theorem

1 if v = Q11f is substituted. It ensures the performance

level γ. Matrix inequality (18) equals (15) after expanding

the products of L,F,Λ. It ensures global stability due to

Lemma 3.

The matrix inequalities in Theorem 2 are not linear in

the decision variables2 and thus the design of a globally

stabilizing compensator with local performance level can

not be cast directly into a convex optimization problem.

Therefore, a two-step approach is proposed. First we find

an initial aw compensator by tightening the constraints of

Theorem 2. This aw compensator is then optimized by an

iterative optimization algorithm based on path following [16].

To compute an initial solution, the following corollary of

Theorem 2 is required.

Corollary 1: If there exist matrices

Q = diag (Q11,Q22) ≻ 0 , (19)

a vector v as well as positive scalars µ, γ and a multiplier

(12), such that for a given α ∈ (0, 1] the linear matrix

inequalities (8) and

X + VΛT + ΛVT ≺ 0 (20)

are satisfied with Λ,X as in Theorem 2 and

VT =
[

vT 0 0
]

, (21)

then there exists a globally stabilizing aw compensator (5)

with f = Q−1
11 v. If α = 1 system (7) has an L2 gain γ∗ ≤ γ.

If α < 1 it has a small-signal L2 gain γ∗

s ≤ γ.

Proof: Follows directly from Theorem 2 by choosing

Q12 ≡ 0 and substituting v = Q11f in (17) and (18). Then

(17) is equal to (8) and (18) is equal to (20).

IV. ANTI-WINDUP COMPENSATOR DESIGN

A. Computing an Initial Solution

The computation of an initial solution via Corollary 1

requires a multiplier W (s) enabling less conservative designs

(see Remark 1). Inspired by the phase design aid, which

states that the dynamic behaviour of the closed-loop (10)

can be improved if the phase of M(jω) is allowed to stay

within the range of ±125◦ (see discussion in [5]), we choose

the multiplier as follows.

Step 1: Compute a globally stabilizing aw compensator (5)

with performance level γ by solving optimization problem

(9). The phase of the resulting M(jω) will be restricted to

±90◦, as shown for example in Fig. 5.

Step 2: Locate the global extremum Φe of argM(jω) at

frequency ωe. If Φe > 0◦, select W (s) ∈ WRC. If Φe < 0◦,

select W (s) ∈ WRL.

Step 3: Parameterize the multiplier in such a way that in

a crucial frequency intervall [ωl, ωh] the phase argW (jω) is

2The inequalities (17) and (18) contain products of Q11 and f . Addi-
tionally, (18) contains products of Q12 and f .

10−1 100 101 102 103

−35

0

35

70 Φe

ωl ωhωe

arg M(jω)

arg W (jω)

ω in rad/s

p
h
as

e
in

◦

Fig. 5. Phase plots of M(jω) (— solid) and the chosen multiplier
W (jω) ∈ WRC (- - - dashed).

approximately Φd = −35◦ if W (s) ∈ WRC or Φd = 35◦ if

W (s) ∈ WRL. A precondition to keep arg W (jω) close to

the target value Φd is a sufficiently high order ν of W (s).
A reasonable choice for the intervall would be

[10−κωe, 10κωe] with κ > 0 and a desired parameterization

can be found by choosing ν = 3 + ⌊κ⌋ and minimizing the

squared error (argW (jω) − Φd)
2

in this intervall.

Remark 3: The above mentioned method yielded good

results in all analyzed examples. However, it is based on

the empiric phase design aid [5] and therefore not optimal

in any sense. The final choice of W (s) is left to the designer.

Once a multiplier is chosen, the initial solution can be

computed by solving the following convex optimization

problem for an α ∈ (0, 1].

Minimize γ , subject to (22)

Q = diag (Q11,Q22) ≻ 0 , µ > 0 , (8), (20) .

If all the steps are succesfully completed a parameter set

Q, f , µ, γ and a multiplier W (s) satisfying (17) and (18)

for a chosen α is found.

Remark 4: The parameter α does not affect the region of

stability as in the local approach [8]. Thus for now, the choice

of α is also left to the designer. Another possibility would

be to incorporate α in the optimization process as discussed

in Section IV-C.

B. Optimization via Path Following

The initial solution can be improved by an iterative opti-

mization algorithm based on path following [16]. The main

idea of this technique is to linearize nonlinear matrix inequal-

ities around a solution3 and solve the arising optimization

problem. This leads to a four-step optimization algorithm.

Step 1: Linearize the matrix inequalities (17), (18) around

the parameter set Q, f , µ, γ by means of perturbations Q∆,

f∆, µ∆, γ∆. This leads to the linearized matrix inequalities

shown on top of the next page. The perturbations are kept

small by the constraint ‖Q∆‖ < β‖Q‖ which can be

expressed as
[

βQ Q∆

⋆ βQ

]

≻ 0 . (23)

3The linearization of matrix inequalities is demonstrated by the example
QP + ⋆ ≻ 0 where Q, P are variables. Around a valid solution Q0, P0

we have P ≈ P0 + P∆ and Q ≈ Q0 + Q∆. A first order Taylor series
expansion of the matrix inequality is Q0P0 + Q∆P0 + Q0P∆ + ⋆ ≻ 0

where the perturbations Q∆ and P∆ are the new variables.
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Y11 b(µ − µ∆) − Q11∆fα − Q11(fα + f∆α) 0 Q11c − Q11∆c

⋆ −2(µ + µ∆) α 0

⋆ ⋆ −γ − γ∆ 0
⋆ ⋆ ⋆ −γ − γ∆









≺ 0 (24)

with Y11 = Q11

(

A + b(f + f∆)T
)T

+ (A + b(f + f∆)T)Q11 + Q11∆(A + bfT)T + (A + bfT)Q11∆

X + X∆ + Λ(FTLT + FTLT

∆ + FT

∆LT) + (LF + L∆F + LF∆)ΛT ≺ 0 (25)

with L∆ = diag
(

Q11∆,QT

12∆, 0
)

, FT

∆ =
[

fT

∆ fT

∆ 0
]

,

X∆ =

[

Q∆ÃT + ÃQ∆ −Q∆C̃

⋆ 0

]

and L,F,Λ,X, Ã, C̃ as in Theorem 2

The parameter β plays the role of a step size and is adapted

during the optimization. Now, the conditions (17), (18) of

Theorem 2 are locally approximated by (24), (25) and can

be cast into the following convex optimization problem4.

Minimize γ∆ , subject to

Q + Q∆ ≻ 0 , Q11 + Q11∆ ≻ 0 , µ + µ∆ > 0 , (26)

γ∆ ≤ 0 , γ + γ∆ > 0 and (23), (24), (25).

Step 2: Update the decision variables. The new values are

f := f + f∆, µ := µ + µ∆, γ := γ + γ∆.

Step 3: Validation. With the updated values, solve the

following feasibility problem in the variable Q.

Find Q, subject to

Q ≻ 0 , Q11 ≻ 0 and (17), (18). (27)

If this problem is feasible, a new, improved parameter set

Q, f , µ, γ has been found. Let β := 1.02 · β and go to step

4. If this problem is not feasible, let β := β/2, restore the

old values of Q, f , µ, γ prior to step 2 and go to step 4.

Step 4: Termination conditions. Stop the algorithm after a

preset number of iterations or if the decrease of γ is smaller

than the desired accuracy γ∆. Otherwise go to step 1.

C. Possible Extensions and Refinements of the Method

The parameter α and the multiplier W (s) can be incor-

porated in the optimization process. This enables the design

algorithm to modify α and the multiplier autonomously in

order to improve the solution. To this end, the matrix inequal-

ities (17), (18) have to be linearized around the extended

parameter set Q, f , µ, γ, α, Aw, bw, cw. Furthermore, the

constraints α + α∆ − αl > 0 and α + α∆ − 1 < 0 have

to be added to the optimization problem (26) to ensure that

a valid α ∈ (αl, 1) with αl > 0 is chosen.

Incorporating the multiplier into the optimization problem

requires a state-space description of (12) given by

ẋw = diag(−η)xw + ηuw , (28a)

yw = [k1 . . . kν ]xw + uw , (28b)

4This optimization problem is always feasible, since Q∆ = 0, f∆ = 0,
µ∆ = 0 and γ∆ = 0 is a valid solution.

where η = [η1 . . . ην ]T ∈ R
ν . The additional constraints

0 < ǫ < η1 < . . . < ην , (29)

ki > 0 ∀ i = 1, . . . , ν , (30)

have to be added to (26) if W (s) ∈ WRC. If W (s) ∈ WRL

the additional constraints are (29) and

ki < 0 ∀ i = 1, . . . , ν and

ν
∑

i=1

ki ≥ −1 . (31)

This extension may lead to better results if an initial solution

is hard to find. Then α and the multiplier can be adjusted

such that (22) is feasible and are optimized by the algorithm.

V. EXAMPLE

The hydraulic actuator depicted in Fig. 6 is considered. A

state-space model of the stable plant is given by

ẋ =





0 1 0
−10 −1.167 25

0 0 −0.8



x +





0
0

2.4



u , (32a)

y =
[

1 0 0
]

x , (32b)

where the states are the position of the load mass x1 = σ
in cm, the velocity of the mass x2 = σ̇ in cm/s and the

pressure x3 = p1 in N/cm
2

[17]. The plant input is limited

by the saturation function (3) with u0 = 10,5 V.

A PID controller with additional phase lead controls the

position of the load mass. Its transfer matrix is given by

K(s) = [Kc(s) − Kc(s)] where

Kc(s) =
17.764(s2 + 1.167s + 10)

s(s + 100)

(s + 0.731)

(s + 5)
. (33)

This linear controller guarantees a fast step response of the

linear-closed loop with a negligible overshoot of 1% but

causes enormous windup effects in the saturated closed-loop

for large reference values. To recover the linear performance,

an aw compensator is designed according to Section IV. The

multiplier W (s) ∈ WRC is of order 7 and given by

W (s) =
(s + 0.16)(s + 0.594)(s + 2.977)

(s + 0.063)(s + 0.363)(s + 1.559)
·

·
(s + 13.22)(s + 64.14)(s + 275.5)(s + 1595)

(s + 7.564)(s + 33.59)(s + 168.5)(s + 627.1)
, (34)
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u
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Fig. 6. Hydraulic actuator: The converter transforms the input voltage u
in a pressure p1. This pressure induces a fluid current q̇ in the cylinder
causing a movement of the piston which is connected to a load mass. The
position of the load mass σ needs to be controlled.
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Fig. 7. Step responses and related input signals for the linear system
(linear), the saturated closed-loop without aw (sat w/o aw) and the aw
closed-loop with a compensator designed by the new method (new aw),
the global approach (global aw) and the local approach (local aw).

with a constant phase of Φd = −35◦ in the frequency range

[0.1, 1000]. Fig 5 shows the phase plots of the multiplier and

of the solution arg M(jω) of optimization problem (9).

Solving the convex optimization problem5 (22) with α =
0.5 leads to an initial solution which is further optimized by

the iterative algorithm from Section IV-B with β = 0.01 and

γ∆ = 10−4. The resulting aw compensator is given by (5)

where f = fnew = [−2.98 − 3.35 − 21.06]T. The global

approach results in fglobal = [13.01 − 0.158 − 81.19]T and

the local approach with α = 0.5 yields the vector flocal =
[−2 · 104 − 516.4− 158.4]T.

Fig. 7 shows simulation results for a reference value of

20cm. The new method almost recovers the performance of

the linear system. Choosing α = 0.25 or α = 0.75 does

not change this behaviour significantly. The global approach

guarantees a stable closed-loop but shows an unsatisfying

performance. The local approach exhibits limit cycles for

reference values larger than 2.25cm if α = 0.5. Increasing

α to 0.9995 leads to a performance comparable to the one

of the new method for this particular reference value but

without a global stability guarantee. Furthermore, this aw

compensator has a very fast pole at s = −9.3 · 106 which

may cause problems when implementing the control strategy.

5All convex optimization problems are solved with [18], [19].

VI. CONCLUSIONS

This paper proposed a new design method for full-order

mismatch-based aw compensators based on less conservative

stability conditions and an iterative path following algorithm.

In contrast to available approaches it allows to synthesize

globally stabilizing compensators with enhanced local per-

formance based on small-signal L2 gains. First, an initial so-

lution is obtained by solving a convex optimization problem.

Then, the initial solution is improved using a path following

technique which sequentially optimizes a local linearization

of the problem. By designing an aw compensator for a

hydraulic actuator, the considerable improvement compared

to standard approaches was shown.
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