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Abstract— The aim of this research is to develop a funda-
mental thermo-inspired framework for modeling and analysis
of network information flows. This framework is partially
motivated by the treatment of energy flows in thermody-
namic systems and Eulerian modeling of continuum network
information flows as well as non-local biological aggregations.
Capturing intrinsic energy or information flows inside these
network systems is a crucial problem, partly because the energy
or information flows within the network systems are the possible
way to uncover the essence of stability and other dynamic
properties of the network system and will definitely help us
understand some fundamental phenomena exhibited by the nat-
ural and engineered systems. Furthermore, the existing theories
for information flow modeling hardly address any systematic
synthesis methods for building engineered complex systems,
which may revolutionize the control theory and applications to
network analysis and synthesis as well as diffusion processes.

The proposed modeling and analysis framework in this paper
is based on our recent research related to system thermody-
namic theory in which energy flow is the central part of this the-
ory and is consistent with some basic thermodynamic properties
such as energy conservation and entropy nonconservation. More
specifically, the proposed framework is inspired by the recently
developed notion of system thermodynamics which results in
model architectures involving the information flow propagated
over a phase space according to certain thermodynamic laws.

I. INTRODUCTION

Advancement in communication and control has now

allowed engineers to build large-scale networks of distribu-

tively controlled dynamic components (also called agents),

in which the dynamic agents interact with each other via

a communication network. Examples of such networked

multiagent systems include groups of intelligent automobiles

in smart highways [1], [2]; coordination of unmanned air ve-

hicles (UAV’s), unmanned ground vehicles (UGV’s), and au-

tonomous underwater vehicles (AUV’s) for hazard mitigation

and surveillance [3]–[6]; distributed mobile sensor networks

for managing power levels of wireless and detection net-

works [7]–[9]; air and ground transportation systems for air

traffic control and payload transport and traffic management

[10]–[13]; swarms of air and space vehicle formations and

maneuvers for command and control between heterogeneous

air and space vehicles [14], [15]; and congestion control in

communication and computer networks for information flow

routing [16], [17].
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Understanding the effect and use of information in the

natural and engineered multiagent systems requires two key

elements: modeling (analysis of system behavior) and mod-

ification (synthesis of applied forces). Appropriate models

must facilitate the study of the interaction between applied

“forces” or “actions” and the resultant “effects” on system

evolution. Today multiagent engineering systems, some of

which are mentioned in the previous paragraph, can be seen

as a first generation of a full-fledged large-scale distributedly

controlled multiagent network. The current generation of

distributed multiagent networks has provided an engineering

solution to the problem of controlling large-scale networks of

dynamic agents. Such distributed control solutions are inher-

ently robust to individual agent failures and communication

link failures and are scalable to a large number of agents due

to the fact that no centralized control is involved and no full

communication architecture is required.

However, emerging research on insect-like, bacteria-

inspired, nano-scale robots and UAV’s poses a great chal-

lenging to the first generation of multiagent control networks

since such a network always consists of a gigantic num-

ber of agents, which is almost impossible to characterize

each individual dynamics and to implement control laws on

individual agents in this case. This scenario is similar to

the study of fluid dynamics and statistical thermodynamics

wherein the microscopic, collective behavior of the overall

system is analyzed through Eulerian modeling and statisti-

cal methods. Instead of focusing on every particle in the

physical system, the description of the flow of particles

in a fixed spatial domain is adopted as an alternative to

overcome this dimensioning disaster. This is more like an

“integral” method for very large-scale swarms compared

with the “differential” method for the first generation of

multiagent networks. Hence, it is plausible to use some

similar “integral” techniques for the analysis and synthesis of

the next generation of very large-scale distributed multiagent

networks [18].

This paper addresses this issue by developing a novel

thermo-inspired analysis framework for Eulerian information

flow models of very large-scale network information swarms.

Dynamic models for very large-scale information swarms

can be characterized by means of Lagrangian modeling and

Eulerian modeling. In most literature on multiagent systems,

Lagrangian modeling is a prevalent way to characterize each

individual dynamics. In this case, each agent is simply ab-

stracted as an ideal particle governed by ordinary differential

or difference equations to do further analysis and synthesis.
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However, this setup is hard to capture the direction of

information flows and to interpret the essence of collective

behaviors such as information consensus. When the number

of agents become enormous so that it is almost impossible to

count the exact number, Lagrangian modeling fails to work,

which, as we mentioned before, is a typical scenario in fluid

mechanics.

To address the information flows in a very large array of

network systems, here a novel Eulerian model is proposed to

describe the local information for a distribution of swarms

with an energy conservation equation by mimicking energy

flow and flux here. It is important to note that the Lagrangian

and Eulerian formulations are not isolated to each other. As a

matter of fact, mathematically they can be connected by a so-

called Fokker-Plank approximation [19]. However, for very

large-scale network systems, it is more natural to use Eule-

rian models to describe the information propagation due to

the dimensioning problem. The proposed continuum network

information flow model not only can describe energy and

information flows in thermodynamic systems and network

systems, but also can be used to study of fluid mechanics

and materials science.

We will develop a series of results to address the con-

vergence and stability for an Eulerian swarm model. Similar

to thermo-inspired analysis whose foundation is system ther-

modynamics [20], the proposed distributed analysis architec-

tures are also predicated on system thermodynamics resulting

in the model architectures involving the exchange of infor-

mation between uniformly distributed swarms over an n-

dimensional (not necessarily Euclidian) space that guarantee

that the proposed distributed-parameter system is consistent

with basic thermodynamic principles. Information consensus

and semistability are shown using the well-known Sobolev

embedding theorems and the notion of generalized (or weak)

solutions. Finally, since the proposed system is guaranteed

to satisfy basic thermodynamic principles, robustness to

individual agent failures and unplanned individual agent

behavior is automatically guaranteed.

II. NETWORK INFORMATION FLOW MODELS

In this paper, we consider an Eulerian information flow

model involving a nonlocal spatio-temporal distribution of

flow density. Specifically, consider the evolution equation

for information flows defined over a compact connected set

V ⊂ R
n with a smooth boundary ∂V and volume volV

characterized by the conservation equation [20], [21]

∂u(x, t)

∂t
= −∇ · φ(x, u(x, t),∇u(x, t)),

x ∈ V , t ≥ t0, u(x, t0) = ut0(x) ∈ X , x ∈ V , (1)

φ(x, u(x, t),∇u(x, t)) · n(x) ≥ 0, x ∈ ∂V , t ≥ t0, (2)

where u : V × [0,∞) → R+ , [0,∞) denotes the density

distribution at the point x = [x1, . . . , xn]T ∈ V and time

instant t ≥ t0, φ : V × [0,∞) × R
n → R

n denotes

a continuously differentiable flux function, ∇ denotes the

nabla operator, “·” denotes the dot product in R
n, nT(x)

denotes the outward normal vector to the boundary ∂V at

x ∈ ∂V , and X denotes a space of two-times continuously

differentiable scalar functions defined on V . Here, we assume

that V = {x ∈ R
n : f(x) ≤ 0} and ∂V = {x ∈ R

n : f(x) =
0}, where f : R

n → R is a given continuously differentiable

function, and consequently, the outward normal vector to the

boundary ∂V at x ∈ ∂V is given by nT(x) = ∇f(x).
Equations (1) and (2) involve an information (or energy)

flow equation for a uniformly distributed continuous system.

Specifically, note that for any smooth, bounded region V ⊂
R

n, the integral
∫

V
u(x, t)dV denotes the total information

(or energy) amount within V at time t. Hence, the rate

of information change within V is governed by the flux

function φ : V ×R+ ×R
n → R

n, which controls the rate of

information transmission through the boundary ∂V . Hence,

for each time t,

d

dt

∫

V

u(x, t)dV

= −

∫

∂V

φ(x, u(x, t),∇u(x, t)) · n(x)dSV ,

where dSV denotes an infinitesimal surface element of the

boundary of the set V . Using the divergence theorem, it

follow that

d

dt

∫

V

u(x, t)dV = −

∫

∂V

φ(x, u(x, t),∇u(x, t))

·n(x)dSV

= −

∫

V

∇ · φ(x, u(x, t),∇u(x, t))dV .

Since the region V ⊂ R
n is arbitrary, it follows that the con-

servation equation over a unit volume within the continuum

V involving the rate of information density change within the

continuum is given by (1) and (2). The physical interpretation

of (1) and (2) is straightforward. In particular, if u(x, t) is

an information (or energy) density at point x ∈ V and time

t ≥ t0, then the conservation equation (1) describes the time

evolution of the information (or energy) density u(x, t) over

the region V , while the boundary condition in (2) involving

the dot product implies that the information (or energy) of the

system (1) and (2) can either be stored or transmitted but not

supplied through the boundary of V from the environment.

III. WELL-POSEDNESS

We denote the information (or energy) distribution over

the set V at time t ≥ t0 by ut ∈ X so that for each

t ≥ t0 the set of mappings generated by ut(x) ≡ u(x, t)
for every x ∈ V gives the flow of (1) and (2). We assume

that the function φ(·, ·, ·) is continuously differentiable so

that (1) and (2) admits a unique solution u(x, t), x ∈ V ,

t ≥ t0, and u(·, t) ∈ X , t ≥ t0, is continuously dependent

on the initial information (or energy) distribution ut0(x),
x ∈ V . It is well known, however, that nonlinear partial

differential equations need not have smooth differentiable

solutions (classical solutions), and one has to use the notion

of Schwartz distributions that provides a framework in which

the information (or energy) density function u(x, t) may be

differentiated in a generalized sense infinitely often [21]. In
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this case, one has a well-defined notion of solutions that

have jump discontinuities, which propagate as shock waves.

Thus, one has to deal with generalized or weak solutions

wherein uniqueness is lost. In this case, the Clausius-Duhem

inequality is invoked for identifying the physically relevant

(i.e., thermodynamically admissible) solution [21], [22].

If ut0 is a two-times continuously differentiable function

with compact support and its derivative is sufficiently small

on [t0,∞), then the classical solution to (1) and (2) can break

down at a finite time. As a consequence of this, one may only

hope to find generalized (or weak) solutions to (1) and (2)

over the semi-infinite interval [t0,∞), that is, L∞ functions

u(·, ·) that satisfy (1) in the sense of distributions, which

provides a framework in which u(·, ·) may be differentiated

in a general sense infinitely often. It is important to note

that we do not assume strict hyperbolicity of (1) and (2)

since our interest in this paper is to address semistability, and

hence, (1) and (2) cannot be hyperbolic. Thus, many results

on well-posedness of solutions of (1) and (2) developed in

the literature are not applicable in this case. Furthermore,

the linearization method also fails to provide any stability

information due to nonhyperbolicity. Global well-posedness

of smooth solutions of nonhyperbolic partial differential

equations of the form (1) and (2) remains an open problem

in mathematics. Finally, the control aim here is to design

a distributed control law so that the corresponding closed-

loop system achieves semistability and uniform information

distribution [20].

In this paper, L2 denotes the space of square-integrable

Lebesgue measurable functions on V and the L2 operator

norm ‖ · ‖L2
on X is used for the definitions of Lyapunov,

semi-, and asymptotic stability. Furthermore, we introduce

the Sobolev spaces

W0
2 (V) , {ut : V → R : ut ∈ C0(V) ∩ L2(V)}co

⊂ L2(V),

W1
2 (V) , {ut : V → R : ut ∈ C1(V) ∩ L2(V), (∇ut)

T

∈ L2(V)}co,

where Cr(V) denotes a function space defined on V with r-

continuous derivatives and {·}co denotes completion of {·}
in L2 in the sense of [23], with norms

‖ut‖W0
2

, ‖ut‖L2
=

[
∫

V

u2
t (x)dV

]
1
2

, (3)

‖ut‖W1
2

,

[

‖ut‖
2

W0
2

+ D(ut, ut)
]

1
2

, (4)

defined on W0
2 (V) and W1

2 (V), respectively, where the gradi-

ent ∇ut(x) in (4) is interpreted in the sense of a generalized

gradient [23], and D(ut, ut) ,
∫

V
∇ut(x)∇Tut(x)dV is the

Dirichlet integral of u [24, p. 88]. Physically the Dirichlet

integral term represents the potential energy in V of the

electrostatic field −∇u. Note that since the solutions to (1)

and (2) are assumed to be two-times continuously differen-

tiable functions on a compact set V and φ is continuously

differentiable, it follows that ut(x), t ≥ t0, belongs to

W0
2 (V) and W1

2 (V).

IV. THERMO-INSPIRED ANALYSIS

In this section, we develop a distributed controller that

guarantees that the infinite-dimensional information flow

model (1) and (2) has convergent flows to Lyapunov stable

uniform equilibrium information density distributions deter-

mined by the system initial information density distribution.

First, however, we establish several key definitions and

stability results for nonlinear infinite-dimensional systems.

Here, the state space is assumed to be a Banach space with

fully nonlinear dynamics.

Let B be a Banach space with norm ‖ · ‖B. A dynamical

system G on B is the triple (B, [t0,∞), s), where s :
[t0,∞) × B → B is such that the following axioms hold: i)

(Continuity): s(·, ·) is jointly continuous, ii) (Consistency):

s(t0, z0) = z0 for all t0 ∈ R and z0 ∈ B, and iii)

(Semigroup property): s(t + τ, z0) = s(τ, s(t, z0)) for all

z0 ∈ B and t, τ ∈ [t0,∞). Given t ∈ [0,∞) we denote

the flow s(t, ·) : B → B of G by st(x0) or st. Likewise,

given x ∈ B we denote the solution curve or trajectory

s(·, x) : [0,∞) → B of G by sx(t) or sx. The positive limit

set of x ∈ B is the set ω(x) of points z ∈ B such that there

exists an increasing sequence {ti}∞i=1 satisfying s(ti, x) → z

as i → ∞. The image of U ⊂ B under the flow st is defined

by st(U) , {y : y = st(x0) for all x0 ∈ U}. Finally, we

define a positive orbit through the point x ∈ B as the motion

along the curve O+
x , {z ∈ B : z = s(t, x), t ≥ t0}.

An equilibrium point of G is a point z ∈ B such that

s(t, z) = s(t0, z) for all t ≥ t0. A set M ⊆ B is positively

invariant if st(M) ⊆ M for all t ≥ 0. The set M is

negatively invariant if, for every z ∈ M and every t ≥ 0,

there exists x ∈ M such that s(t, x) = z and s(τ, x) ∈ M
for all τ ∈ [0, t]. The set M is invariant if st(M) = M,

t ≥ 0. Note that a set is invariant if and only if it is positively

and negatively invariant.

Definition 4.1: Let G be a dynamical system on a Banach

space B with norm ‖ · ‖B and let D be a positively invariant

set with respect to G. An equilibrium point x ∈ D of G
is Lyapunov stable if for every relatively open subset Nε

of D containing x, there exists a relatively open subset Nδ

of D containing x such that st(Nδ) ⊆ Nε for all t ≥ t0.

An equilibrium point x ∈ D of G is semistable if it is

Lyapunov stable and there exists a relatively open subset

U of D containing x such that for all initial conditions in

U , the trajectory s(·, ·) of G converges to a Lyapunov stable

equilibrium point, that is, limt→∞ s(t, z) = y, where y ∈ D
is a Lyapunov stable equilibrium point of G and z ∈ U .

Finally, an equilibrium point x ∈ D of G is asymptotically

stable if it is Lyapunov stable and there exists a relatively

open subset U of D containing x such that limt→∞ s(t, z) =
x for all z ∈ U .

The next result gives a sufficient condition to guarantee

semistability of the equilibria of G. For the statement of

this result, let B and C be Banach spaces and recall that

B is compactly embedded in C if B ⊂ C and a unit ball

in B belongs to a compact subset in C. Furthermore, define

V̇ (z) , limh→0+
1

h
[V s(t0+h, z)−V (z)], z ∈ B, for a given
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continuous function V : B → R and every z ∈ B such that

the limit exists. The following result gives a Lyapunov-based

test for semistability.

Theorem 4.1: Let B and C be Banach spaces such that

B is compactly embedded in C, and let G be a dynamical

system defined in B and C. Assume there exist continuous

functions VB : B → R and VC : C → R such that V̇B

and V̇C are defined on Bc and Cc, respectively, where Bc =
{z ∈ B : VB(z) < η} and Cc = {z ∈ C : VC(z) < η}
for some η > 0 such that Bc ⊂ Cc. Furthermore, assume

that VB(s(t, z0)) ≤ VB(s(τ, z0)) for all t0 ≤ τ ≤ t and

z0 ∈ Bc, and VB(s(t, z0)) ≤ VB(s(τ, z0)) for all t0 ≤ τ ≤ t

and z0 ∈ Cc. If Bc is bounded and every point in the largest

invariant subset M contained in R given by R , {z ∈ Cc :
V̇C(z) = 0} is a Lyapunov stable equilibrium point of G,

then every equilibrium point in M is semistable.

The following result is a generalization of Theorem 4.1.

Theorem 4.2: Let B and C be Banach spaces such that B
is compactly embedded in C, and let G be a dynamical system

defined in B and C. Assume there exist lower semicontinuous

functions VB : B → R and VC : C → R such that Bc ⊂
Cc, where Bc = {z ∈ B : VB(z) < η} and Cc = {z ∈
C : VC(z) < η} for some η > 0. Furthermore, assume that

VB(s(t, z0)) ≤ VB(s(τ, z0)) for all t0 ≤ τ ≤ t and z0 ∈ Bc,

and VB(s(t, z0)) ≤ VB(s(τ, z0)) for all t0 ≤ τ ≤ t and z0 ∈
Cc. Let Rγ ,

⋂

c>γ V −1([γ, c]) ⊆ Cc and let Mγ denote

the largest invariant set contained in Rγ . If Bc is bounded

and every point in the set M ,
⋃

γ∈R
Mγ is a Lyapunov

stable equilibrium point of G, then every equilibrium point

in M is semistable.

Next, we give an extension of the Krasovskii-LaSalle

invariant set theorem to infinite-dimensional dynamical sys-

tems. This result can be found at [25].

Lemma 4.1 ([25]): Consider a dynamical system G de-

fined on a Banach space B. Let Bc ⊂ B be a closed set, and

assume there exists a continuous function V : Bc → R such

that V̇ (z) ≤ 0, z ∈ Bc. Furthermore, let R , {z ∈ Bc :
V̇ (z) = 0}, and let M denote the largest invariant set (with

respect to the dynamical system G) contained in R. Then for

every z0 ∈ Bc such that O+
z0

⊂ Bc and O+
z0

is contained in

a compact subset of B, s(t, z0) → M as t → ∞.

Using the above result, one can obtain a Lyapunov-based

test for semistability without using compact embedding.

Theorem 4.3: Consider a dynamical system G defined on

a Banach space B. Let Bc ⊂ B be a closed set, and assume

there exists a continuous function V : Bc → R such that

V̇ (z) ≤ 0, z ∈ Bc. Furthermore, let R , {z ∈ Bc : V̇ (z) =
0}, and let M denote the largest invariant set (with respect

to the dynamical system G) contained in R. If every point

in M is a Lyapunov stable equilibrium point of G, then for

every z0 ∈ Bc such that O+
z0

⊂ Bc and O+
z0

is contained

in a compact subset of B, every equilibrium point in M is

semistable.

The following assumptions are needed for the main re-

sults of the paper. For the statement of these assumptions,

φ : V × R+ × R
n → R

n denotes the system infor-

mation (or energy) flow within the continuum V , that is,

φ(x, u(x, t),∇u(x, t)) = [φ1(x, u(x, t),∇u(x, t)), . . . , φn(
x, u(x, t),∇u(x, t))]T, where φi(·, ·, ·) denotes the informa-

tion (or energy) flow through a unit area per unit time

in the xi direction for all i = 1, . . . , n, and ∇u(x, t) ,

[D1u(x, t), . . . , Dn(x, t)], x ∈ D, t ≥ t0, denotes the

gradient of u(·, t) with respect to the spatial variable x.

Assumption 1: For every x ∈ V and unit vector

u ∈ R
n, φ(x, ut(x),∇ut(x)) · u = 0 if and only if

F (∇ut(x)u, ut(x)) = 0, where F : R × [0,∞) → R is

a continuous function satisfying F (0, ·) = 0.

Assumption 2: For every x ∈ V and unit vector

u ∈ R
n, φ(x, ut(x),∇ut(x)) · u > 0 if and only if

F (∇ut(x)u, ut(x)) < 0, and φ(x, ut(x),∇ut(x)) · u < 0
if and only if F (∇ut(x)u, ut(x)) > 0.

Note that Assumption 1 implies that φi(x, ut(x),∇ut(x)
) = 0 if and only if F (Diut(x), ut(x)) = 0, x ∈
V , i = 1, . . . , n, while Assumption 2 implies that

φi(x, ut(x),∇ut(x))F (Diut(x), ut(x)) ≤ 0, x ∈ V , i =
1, . . . , n. The physical interpretation of Assumption 1 is that

if the flux function φ in a certain direction is zero, then

information or energy density change in this direction is

not possible. This statement is reminiscent of the zeroth

law of thermodynamics, which postulates that temperature

equality is a necessary and sufficient condition for thermal

equilibrium. Assumption 2 implies that information or energy

flows from information rich or more energetic regions to

information poor or less energetic regions and is reminiscent

of the second law of thermodynamics, which states that heat

(energy) must flow in the direction of lower temperatures.

For further details of these assumptions, see [20].

In this paper, we assume that the solution u(x, t), x ∈ V ,

t ≥ t0, to (1) and (2) is nonnegative for all nonnegative

initial information density distributions ut0(x) ≥ 0, x ∈ V .

Next, we state that if no information flow is allowed into

or out of V (i.e., the boundary ∂V is insulated), then (1) and

(2) is Lyapunov stable.

Lemma 4.2: Consider the dynamical system given by (1)

and (2). Assume that Assumptions 1 and 2 hold. If

φ(x, u(x, t),∇u(x, t)) · n(x) = 0, x ∈ ∂V , t ≥ t0, (5)

and

F (∇ut(x)u, ut(x)) · (∇ut(x)u) ≥ 0, x ∈ V , (6)

for any unit vector u ∈ R
n, then u(x, t) ≡ α, α ≥ 0, is

Lyapunov stable.

Next, we claim that the total L2 norm of the energy of (1)

and (2) is nonincreasing.

Lemma 4.3: Consider the dynamical system given by (1)

and (2). Assume that Assumptions 1, 2, and (6) hold. If

either u(x, t) = 0 for all x ∈ ∂V and t ≥ t0 or (5) holds,

then ‖ut‖W0
2
≤ ‖uτ‖W0

2
for all t0 ≤ τ ≤ t.

Next, we present necessary and sufficient conditions for

semistability of the information flow model (1) and (2).

Theorem 4.4: Consider the dynamical system given by

(1) and (2). Assume that Assumptions 1, 2, and (6) hold.
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Furthermore, assume that

∆ut(x)∇ · φ(x, ut(x),∇ut(x))

+∇ut(x)φ(x, ut(x),∇ut(x)) ≤ 0,

x ∈ V , ut ∈ W1
2 (V), (7)

where ∆ , ∇ · ∇ denotes the Laplace operator. Then for

every α ≥ 0, u(x, t) ≡ α is a semistable equilibrium state

of (1) and (2) if and only if (5) holds. In this case, u(x, t) →
1

volV

∫

V
ut0(x)dV as t → ∞ for every initial condition ut0 ∈

W1
2 (V) and every x ∈ V ; moreover, 1

volV

∫

V
ut0(x)dV is a

semistable equilibrium state of (1) and (2).

Theorem 4.4 shows that the information flow model (1)

and (2) with Assumptions 1, 2, and (6) has convergent

flows to Lyapunov stable uniform equilibrium information

density distributions determined by the system initial infor-

mation density distribution. This phenomenon is known as

equipartition of energy [20] in system thermodynamics and

information consensus or protocol agreement [26], [27] in

cooperative network systems. The following result is a direct

consequence of Theorem 4.4.

Corollary 4.1: Consider the dynamical system G given by

(1) and (2). Assume that Assumption 1, 2, and (6) hold, and

∆ut(x)∇ · φ(x, ut(x),∇ut(x)) ≤ 0,

x ∈ V , ut ∈ W1
2 (V). (8)

Then for every α ≥ 0, u(x, t) ≡ α is a semistable

equilibrium state of (1) and (2) if and only if (5) holds. In

this case, u(x, t) → 1

volV

∫

V
ut0(x)dV as t → ∞ for every

initial condition ut0 ∈ W1
2 (V) and every x ∈ V ; moreover,

1

volV

∫

V
ut0(x)dV is a semistable equilibrium state of (1) and

(2).

Condition (8) implies that for an information (or energy)

density distribution ut(x), x ∈ V , the information (or

energy) flow φ(x, ut(x),∇ut(x)) at x ∈ V is proportional

to the information (or energy) density at this point. Note

that for a linear information (or energy) flow model where

φ(x, ut(x),∇ut(x)) = −k[∇ut(x)]T and k > 0 is a

conductivity constant, condition (8) is automatically satisfied

since ∆ut(x)∇ · φ(x, ut(x),∇ut(x)) = −k[∆ut(x)]2 ≤ 0,

x ∈ V .

V. ADVECTION-DIFFUSION MODELS

The nonlinear partial differential equation (1) describes a

general conservation equation which includes many impor-

tant swarming models discussed in the literature. See, for

example, [28]. In this section, we turn our attention to a

specific form of (1) involving the advection-diffusion model

[28] defined over a compact connected set V ⊂ R
n with a

smooth boundary ∂V and volume volV given by

∂ρ(x, t)

∂t
= −∇ · (ρ(x, t)v(x, t))

+∇ · (ρ(x, t)B(x, t)) , (9)

ρ(x, t0) = ρt0(x), x ∈ V , t ≥ t0, (10)

where ρ : V × [0,∞) → R+ denotes the density distribution

of mobile agents at the point x = [x1, . . . , xn]T ∈ V and

time instant t ≥ t0, v : V × [0,∞) → R
n is a density-

dependent advection velocity, and B : V × [0,∞) → R
n×n

is a diffusion operator. Here, we consider the case where

v(x, t) is given by

v(x, t) = ∇(K(x) ∗ ρ(x, t)), x ∈ V , t ≥ t0, (11)

where ∗ denotes the convolution operator and a smooth,

nonnegative K(·) satisfies 0 <
∫

Rn
K(x)dx < ∞ and

K(x) = K(−x) for all x ∈ R
n, and

B(x, t) = ∇ρ(x, t) (12)

for all x ∈ V and t ≥ t0.

Next, we use an energy-based method to study the asymp-

totic behavior of (9) and (10). To define the energy, we first

rewrite the equation (9) in a slightly different form

∂ρ(x, t)

∂t
= ∇ · (ρ(x, t)∇(ρ(x, t)

−K(x) ∗ ρ(x, t))). (13)

We now define the energy

E(ρ) =
1

2

∫

V

(

ρ2 − ρK ∗ ρ
)

dV , (14)

where the first term arises from avoidance and the second

from aggregation. This energy is dissipated under (9) and

(10), which is given by the following result.

Lemma 5.1: Assume that (5) holds. Then the energy de-

fined by (14) satisfies Ė ≤ 0.

Note that (14) is a non-convex functional composed of a

positive avoidance term 1

2

∫

V
ρ2dV and a negative aggrega-

tion term − 1

2

∫

V
ρK ∗ ρdV which have different nonlinear

dependence on ρ and different length scales. Next, we show

that it is possible for the advection-diffusion equation (9) and

(10) to achieve semistability under certain circumstances.

Theorem 5.1: Consider the dynamical system given by

(9) and (10). Assume that v(x, t) satisfies (11) and B(x, t)
satisfies (12) and all the solutions of (9) and (10) are

bounded. Furthermore, assume that (5) holds and

∇ρ · ∇(K ∗ ρ) ≤ |∇ρ|2, ρ ∈ W0
2 (V). (15)

Then ρ(x, t) ≡ β(x) is a semistable equilibrium state of (9)

and (10), where β(·) is nonnegative and satisfies ∇(K ∗β) =
∇β.

VI. CONCLUSIONS

We construct a continuum model for network informa-

tion aggregations in which the information flows under

the thermodynamic principles. Existence and uniqueness of

solutions, stability and asymptotic behavior of solutions, and

energy-based thermodynamic analysis have been investigated

by merging different techniques and knowledge from PDE,

ODE, control theory, and dynamical systems theory. There

are still a lot of open problems regarding this model such as

relaxing the conditions guaranteeing existence, uniqueness,

and stability of solutions. Finally, numerical implementation

of the proposed model is an ongoing research topic.
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