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Abstract— In this paper, we consider a sensor scheduling
problem for a class of hybrid systems named as the Stochastic
Linear Hybrid System (SLHS). We propose an algorithm which
selects one (or a group of) sensor at each time from a set
of sensors. Then, the hybrid estimation algorithm computes
the estimates of the continuous state and the discrete state of
the SLHS based on the observation from the selected sensors.
As the sensor scheduling algorithm is designed such that a
Bayesian decision risk is minimized, the true discrete state
can be better identified. At the same time, the continuous
state estimation performance of the proposed algorithm is
better than that of other hybrid estimation algorithms using
only predetermined sensors. Finally, our algorithm is validated
though an illustrative target tracking example.

I. INTRODUCTION

The problem of sensor scheduling involves utilizing mul-

tiple sensing agents to estimate the true state of a system.

This problem arises in many applications [1] [2]. By properly

switching between different sensors and merging/exchanging

the information between them, sensor scheduling often gives

more information about a system and yields better estimation

accuracy but increases the complexity of the whole system.

Generally speaking, sensor scheduling can be regarded as a

optimal control problem which involves deriving an optimal

control logic for sensor selection such that some cost (e.g.

the estimation error) is minimized. The seminal work in this

area can be found in [3] and [4]. Recently, R. M. Murray’s

group and B. Sinopoli’s group presented interesting results

(see [5] [6] and the references therein). Also, He et. al. have

applied the Monte Carlo method to the sensor scheduling

problem [7]. Other relative research can be found in [8], [9],

and [10].

Plant (stochastic hybrid system)

w(k)

Sensor 1

Sensor n

Sensor 2
x(k)

y(k) x̂(k), q̂(k)
Hybrid estimation algorithm

Fig. 1. Configuration of the stochastic hybrid system, the sensor network
and the hybrid estimator.
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We can model a system with switching sensors as a

hybrid system, a class of system with interacting continu-

ous dynamics and discrete dynamics. A switching between

different sensors can be regarded as a transition between

different discrete states of a hybrid system. In [11] and [12],

the authors solved the sensor scheduling problem using the

hybrid systems’ approaches, but the nominal system itself

is a Linear-Time-Invariant (LTI) system. In this paper, we

consider the case in which the nominal system is a hybrid

system with multiple switching modes, each observed by

multiple sensing agents (See also Figure 1). Past research

has shown that the state estimation itself is challenging

for hybrid systems with synchronized sensors. If we do

not know the discrete state transition history, the evolution

of a hybrid system involves the exponentially increasing

number of hypotheses over time [13]. This makes “optimal

estimation” of the hybrid system computationally prohibitive.

In this paper, we derive the optimal sensor scheduling al-

gorithm to estimate the discrete state and the continuous state

of the SLHS. The proposed algorithm is divided into two

parts: first, the optimal switching logic (switching history)

of the sensors is determined through a sensor scheduling

algorithm; second, the hybrid estimation is carried out based

on the optimal sensor switching history. Due to the com-

plexity of the whole system involving both switching system

dynamics and switching observation model, the computation

of the optimal sensor switching logic is intractable if it is

designed such that the estimation error is minimized directly.

To avoid this difficulty, we choose the “best” switching

logic in the sense that the Bayesian decision risk in the

estimation algorithm is minimized. The Bayesian decision

risk is parameterized as the common area (or volume) under

the different likelihood functions of the different hypotheses.

Although there is no closed-form solution, its upper bound

can be easily computed. In the case of two hypotheses

testing, the area is bounded by the Battacharyya Bound [14].

The Bayesian decision risk bound of multiple hypotheses can

be found in [15]. The proposed optimal sensor switching

logic is designed such that the Bayesian decision risk bound

is minimized at each estimation step. Numerical simulations

show that the proposed sensor scheduling algorithm gives

better estimation accuracy than the estimation algorithms just

using predetermined sensor(s).

The rest of this paper is organized as follows: Section II

introduces the SLHS model and the switching sensor model.

In Section III, an illustrative example is presented to show

the relation between the Bayesian decision risk computation

and hybrid estimation. Also, we introduce the definition of

the Battacharyya bound. In Section IV, the optimal sensor
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switching logic and the corresponding hybrid estimation

algorithm are derived. In Section V, the performance of

the proposed algorithm is validated through an illustrative

example. Conclusions are given in Section VI.

II. PROBLEM FORMULATION

In this section, we review the Stochastic Linear Hybrid

System (SLHS) [16] and a switching sensor model is pre-

sented for hybrid estimation.

A. Stochastic Linear Hybrid System

We consider the following Stochastic Linear Hybrid Sys-

tem (SLHS) model. The discrete-time continuous dynamics

of the SLHS is given by:

x(k) = Aq(k)x(k− 1)+Bq(k)u(k)+Fq(k)w(k) (1)

where x(k)∈X =R
n is the state vector; u∈R

mu is the known

input vector; q(k) ∈ Q = {1,2, . . . ,nd} is the discrete state

at time k; Q is a finite set of all the discrete states; Aq, Bq

and Fq are the system matrices with appropriate dimensions,

corresponding to each discrete state q ∈ Q, and w(k) ∈R
mw

is the white Gaussian process noise with w(k)∼N (0,W (k))
where W is a covariance matrix.

There are two types of discrete state transitions in the

SLHS:

1) Markov-jump transition model: the discrete state tran-

sition history is a realization of a homogeneous

Markov Chain. The finite state space of the Markov

Chain is the discrete state space Q. Suppose at each

time k, the probability vector is given by π(k) =
[

π1(k) · · ·πnd
(k)

]T
, with πi(k) denotes the probability

of the event that the system’s true discrete state at time

k is i. Then, at the next time step k+1, the probability

vector is:

π(k+ 1) = Γπ(k) (2)

where a constant matrix Γ is the Markov transition

matrix with ∑ j Γi j = 1 (we use Γi j to denote the scalar

component in the i-th row and j-th column of the

Markov transition matrix Γ).

2) State-dependent transition model: the discrete state

transition is governed by:

q(k+ 1) = γ(q(k),x(k),θ ) (3)

where θ ∈ Θ = R
l and γ : Q × X × Θ → Q is the

discrete-state transition function defined as:

γ(i,x,θ ) = j if [xT θ T ]T ∈ G(i, j)

We call G(i, j) as a guard condition. For each combi-

nation of (i, j), the guard condition G(i, j) is a subset

of the space Ω = X ×Θ.

In this paper, we consider a specific kind of the guard

condition {G(i, j)|i, j ∈ Q} named as the stochastic

linear guard condition:

G(i, j) =

{[

x

θ

]∣

∣

∣

∣

x ∈ X ,θ ∈ Θ,Li j

[

x

θ

]

+ bi j ≤ 0

}

(4)

where θ ∈ Θ = R
l and θ ∼ N (θ̄ ,Σθ ) is a l-

dimensional Gaussian random vector with mean θ̄ and

covariance Σθ representing uncertainties in the guard

condition; Li j is a ν × (n + l) matrix, bi j is a ν-

dimensional constant vector, and ν is the dimension of

the vector inequality. Here, a vector inequality y ≤ 0

means that each scalar element of y is non-positive.

B. Observation Model

In the observation model, several sensing agents are work-

ing cooperatively to provide the observation information.

Suppose the cardinal number of the sensor set is M. We

make the following assumption:

Assumption 1: At each time k, only one sensor is operat-

ing from a set of M sensors.

Assumption 1 is a common assumption in the research area

of sensor scheduling. It can be extended to a more general

case: if we allow several sensors working together at the

same time, we can stack the observation vector from each

sensor to get a bigger observation vector, and treat this vector

as an observation coming from a new fictional sensor. Thus,

Assumption 1 still holds.

The observation model of the i-th sensor is given by:

zi(k) =Cix(k)+ vi(k) (5)

where i ∈ M and M := {1, . . . ,M} is the set of M sensors;

zi(k) ∈ R
p is the measurement (output) of the i-th sensor;

Ci are the observation matrices with appropriate dimension;

and v(k) ∈ R
p is the white Gaussian observation noise with

v(k) ∼ N (0,Ri(k)). We use M N to denote the set of all

ordered sequence of sensor schedules up to time N. Thus,

an element σN = {σN
0 ,σN

1 , . . . ,σN
k−1} ∈ M N is a N-horizon

sensor schedule. Under a given sensor schedule σN , the

measurement sequence is given by:

z(k) = zσ N (k) =Cσ N
k

x(k)+ vσ N
k
(k),∀k ∈ {0,1, . . . ,N − 1}

(6)

III. BAYESIAN DECISION RISK FOR HYBRID

ESTIMATION

Most hybrid estimation algorithms [13] involve a Bayes

decision procedure of computing the likelihood of each

discrete state based on the new measurement at each time

step. Generally speaking, the purpose of sensor scheduling

is to minimize the Bayesian decision risk in this procedure.

p[x(k)]

p[x(k + 1)|H0]Pr{H0}

p[x(k + 1)|H1]Pr{H1}

x1

x20

1-σ ellipsoid of Gaussian
distribution

Fig. 2. Constinuous evolution of a simple stochastic linear hybrid system.
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Fig. 3. Bayesian decision risk of the two sensors.

A. An Illustrative Example

We consider a stochastic hybrid system whose continuous

state consists of two elements x = [x1 x2]
T and its one-step

evolution is shown in Figure 2. Suppose the system has two

discrete states Q = {1,2} and at time k, the continuous state

probability distribution function (pdf) is given by p[x(k)] 1.

Without loss of generality, we assume the distributions are

Gaussian and the system is a linear hybrid system. At time

k+1, before the arrival of measurement zi, we propagate the

system under the two hypotheses:

H0 : q(k+ 1) = 1 and H1 : q(k+ 1) = 2

The pdf of p[x(k+1)|H0]Pr{H0} and p[x(k+1)|H1]Pr{H1}
are shown in Figure 2 using their 1− σ ellipsoid of the

Gaussian distribution. Suppose we are to choose only one

sensor to provide the measurement at each time. The sensor

models are given by:

z1(k) = [1 0]x(k)+ v1(k) = x1(k)+ v1(k) (7)

z2(k) = [0 1]x(k)+ v2(k) = x2(k)+ v2(k) (8)

where v1 and v2 are the observation noise. From (7) and (8),

we can compute the likelihoods of the two hypotheses H0

and H1 under the condition that Sensor 1 or 2 is currently

in use, which is shown in Figure 3. In Figure 3, the upper

figure shows the likelihood functions of the two hypotheses

when Sensor 1 is activated, and the lower figure shows the

likelihood functions when Sensor 2 is activated. In Figure 3,

the difference between the likelihoods in the upper figure is

much bigger than that in the lower figure, i.e., Sensor 1 can

clearly identify the true discrete state under this scenario.

The probability of making a wrong decision in this scenario

can be regarded as the Bayesian decision risk. The shaded

area is a measure of the Bayesian decision risk of the two

hypotheses scenario. Obviously, the probability of the Bayes

decision error is low if the shaded area is small.

B. Bound of the Bayesian Decision Risk

Given an observation sequence Z and a sensor schedule

σ , the Bayes decision involves multiple decision regions Ri

where Hi is the most likely hypothesis:

Ri = {Z|p[Z|Hi,σ ]> p[Z|H j,σ ] ∀ j 6= i} (9)

1Throughout this paper, we use Pr{•} to denote the probability of an
event and p[•] for the probability distribution function (pdf).

Thus, the Bayesian decision risk can be computed by:

Pr{error}= ∑
i

∑
j 6=i

Pr{Z ∈ R j,Hi|σ}

= ∑
i

∑
j 6=i

Pr{Z ∈ R j|Hi,σ}Pr{Hi}

= ∑
i

∑
j 6=i

∫

R j

p[Z|Hi,σ ]Pr{Hi}dZ

(10)

In (10), the probability Pr{error} (Bayesian decision risk)

can be regarded as the objective function to be minimized

for the sensor scheduling algorithm. However, Equation (10)

is computationally intractable, yet it is possible to bound the

Bayesian decision risk in a closed form. If there are only

two hypotheses H0 and H1, the Battacharyya Bound can be

applied, which is given by:

Pr{error} ≤ Pr{H0}
1
2 Pr{H1}

1
2

∫

√

p[Z|H0]p[Z|H1]dZ

(11)

If the likelihood functions of the both hypotheses are

Gaussian: p[Z|H0] ∼ N (µ0,Σ0) and p[Z|H1]∼ N (µ1,Σ1),
integral (11) can be evaluated analytically:

Pr{error} ≤ Pr{H0}
1
2 Pr{H1}

1
2 exp{−k} (12)

where

k =
1

4
[µ1 − µ0]

T [Σ0 +Σ1]
−1[µ1 − µ0]+

1

2
ln
|(Σ0 +Σ1)/2|
√

|Σ0||Σ1|

Note that in (12) the upper bound of the probability

Pr{error} can be regarded as a cost that the sensor schedul-

ing algorithm is to minimize. If the Bayes decision involves

multiple hypotheses, each being a Gaussian distribution:

p[Z|Hi] = N (µi,Σi), the Bayes decision risk upper bound

can be computed by [15]:

Pr{error} ≤ ∑
i

∑
j>i

Pr{Hi}
1
2 Pr{H j}

1
2 exp{−k(i, j)} (13)

where

k(i, j) =
1

4
[µ j − µi]

T [Σi +Σ j]
−1[µ j − µi]+

1

2
ln

∣

∣(Σi +Σ j)/2
∣

∣

√

|Σi||Σ j|

To summarize, we have derived a relationship between the

upper bound of the Bayesian decision risk and the sensor

selection problem for hybrid estimation.

IV. SENSOR SCHEDULING AND HYBRID

ESTIMATION ALGORITHM

In this section, we present a sensor scheduling algo-

rithm combined with a hybrid estimation algorithm. Our

algorithm uses the “mixing” step which is similar to the

IMM algorithm [17] to keep the exponentially growing

computational complexity constant. First, we compute mode

transition probabilities using the discrete state transition

model. Then we compute the initial conditions for a bank

of Kalman Filters (KF), each matched to a discrete state of

the hybrid system. Based on the initial conditions, the sensor

scheduling algorithm decides which sensor should be used

at the next time step, so that the Bayesian decision risk is
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minimized. Finally, the estimate of the continuous state is

given by a weighted sum of the output of each KF, and the

discrete state estimate is given by the discrete state with the

highest probability among all discrete states. Each step of

our algorithm is described as follows (see also Figure 4):

p[q(k)|Zk] x̂i(k) Pi(k)

xj0(k) Pj0(k)

rij(k + 1) Sij(k + 1) x̂j(k + 1) Pj(k + 1)

p[x(k + 1)|q(k + 1) = j, Zk+1, σk+1]

p[x(k + 1)|Zk+1, σk+1]

p[q(k + 1)|Zk+1, σk+1]

p[q(k + 1)|Zk+1, σk+1]

output

update discrete state pdf

compute initial conditions

compute discrete transtion prob-
ability

KF 1 KF 2 KF r...

Sensor
scheduling

zl(k + 1)

Continuous
state x

p[q(k + 1)|q(k),
Zk, σk]

Fig. 4. The proposed sensor scheduling and hybrid estimation algorithm.

• Step 1. Mixing (merging) probabilities: The mixing

probabilities Pr{q(k) = i|q(k + 1) = j,Zk,σ k} for all

i, j ∈ Q are defined as:

µ ji(k) := Pr{q(k) = i|q(k+ 1) = j,Zk,σ k} (14)

By the Bayes’ Theorem,

Pr{q(k) = i|q(k+ 1) = j,Zk,σ k}=

1

c j

Pr{q(k+ 1) = j|q(k) = i,Zk,σ k}p
[

q(k)|Zk,σ k
]

(15)

where c j is a normalizing constant. To evaluate (14)

and (15), we use the following approach to compute

the discrete state transition probability Pr{q(k + 1) =
j|q(k) = i,Zk,σ k}:

1) Markov-jump transition: the Markov transition

matrix provides the a priori knowledge directly.

The discrete state transition probability Pr{q(k+
1) = j|q(k) = i,Zk,σ k} in (15) can be written as:

Pr{q(k+ 1) = j|q(k) = i,Zk,σ k}= Γi j = const.

2) State-dependent transition: we recall that θ ∈ Θ =
R

l ∼N (θ̄ ,Σθ ) has a multivariate Gaussian distri-

bution (if Θ 6= /0). With the linear guard condition

given in (4), we compute the discrete state transi-

tion probability Pr{q(k+ 1) = j|q(k) = i,Zk,σ k}

in (15) as [16]:

Pr{q(k+ 1) = j|q(k) = i,Zk,σ k}

= Φν

(

Li j

[

x̂i(k)
θ

]

+ bi j,Li j

[

Pi(k) 0

0 Σθ

]

LT
i j

)

where Φν (ȳ,Σy) is the ν-dimensional Gaussian

cumulative density function (cdf) with mean ȳ and

covariance Σy:

Φν (ȳ,Σy) := Pr{y ≤ 0}

=

∫ 0

−∞

∫ 0

−∞
· · ·

∫ 0

−∞
Nν (y; ȳ,Σ)dy1dy2 · · ·dyν

• Step 2. Initial conditions for each KF: At each time

k, we approximate the initial condition of each KF by

a single Gaussian distribution. The initial conditions

(mean x̂ j0(k) and covariance Pj0(k)) for the j-th KF

are given by:

x̂ j0(k) =
nd

∑
i=1

µ ji(k)x̂i(k) (16)

Pj0(k) =
nd

∑
i=1

µ ji(k)
{

Pi(k)

+[x̂i(k)− x̂ j0(k)][x̂i(k)− x̂ j0(k)]
T
}

(17)

• Step 3. Sensor scheduling: For mode j, compute the

prior distribution (likelihood function) of the observa-

tion zi(k+ 1) (recall that the subscript i means the i-th

sensor is used for observation):

p[zi(k+1)|q(k+1)= j,Zk,σ k] =N (ri j(k+1),Si j(k+1))

where

ri j(k+ 1) =CiA jx̂ j0(k)+CiB ju(k+ 1)

Si j(k+ 1) =CiA jPj0(k)A
T
j CT

i +CiQ(k)CT
i +Ri(k)

Based on the likelihood function p[zi(k+1)|q(k+1) =
j,Zk,σ k], compute the Battacharyya Bound of the

Bayesian decision risk of the i-th sensor using (12) or

(13). The sensor schedule σ k is augmented to σ k+1 such

that the upper bound in (12) or (13) is minimized at time

k+ 1.

• Step 4. Mode-matched filtering: Suppose at time k+1,

the l-th sensor in the sensor set M is chosen in Step 3.

After the arrival of the new measurement zl(k), each KF

computes the posterior mean and covariance x̂ j(k+1),
Pj(k+ 1) conditioned on q(k) = j for ∀ j ∈ Q.

• Step 5. Discrete-state probability update: For each

KF, the likelihood function is

Λ j(k+ 1) :=p[z(k+ 1)|q(k+ 1) = j,Zk,σ k+1]

=Np(ri j(k+ 1);0,Si j(k+ 1))
(18)

By Bayes’ Theorem, the discrete state probability

α j(k+1|k+1) := Pr{q(k+1) = j|Zk+1,σ k+1} is given

by

α j(k+1|k+ 1) =
1

δ j

Pr{zl(k+ 1)|q(k+ 1) = j,

Zk,σ k+1}Pr{q(k+ 1) = j|Zk,σ k+1}

(19)
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where δ j is a normalizing constant. Substituting (18)

into (19) and using the total probability theorem on the

term Pr{q(k+ 1) = j|Zkσ k+1} in (19), we get

α j(k+ 1|k+ 1) =
1

δ j

Λ j(k+ 1)

×
nd

∑
i=1

[Pr{q(k+ 1) = j|q(k) = i;Zk,σ k+1}

×Pr{q(k) = i|Zk,σ k+1}]

(20)

• Step 6. Output: By the total probability theorem, the

continuous state pdf at time k+ 1 is given by

p[x(k+ 1)|Zk+1,σ k+1] =
nd

∑
j=1

{p[x(k+ 1)

|q(k+ 1) = j,Zk+1,σ k+1]

× p[q(k+ 1) = j|Zk+1,σ k+1]}

(21)

We approximate the sum of the r terms in (21) via

moment matching by a single Gaussian pdf [18]:

p[x(k+ 1)|Zk+1,σ k+1]≈ Nn(x; x̂(k+ 1),P(k+ 1))

where

x̂(k+ 1) =
nd

∑
j=1

α j(k+ 1|k+ 1)x̂ j(k+ 1|k+ 1)

P(k+ 1) =
nd

∑
j=1

{

Pj(k+ 1|k+ 1)+α j(k+ 1|k+ 1)

[x̂ j(k+ 1|k+ 1)− x̂(k)][x̂ j(k+ 1|k+ 1)− x̂(k)]T
}

The discrete state probability at time k+ 1 is given by

Pr{q(k+ 1) = j|Zk+1,Σk+1}= α j(k+ 1|k+ 1)

and its estimate is:

q̂(k+ 1) = argmax
j

Pr
{

q(k+ 1) = j|Zk+1,σ k+1
}

V. SIMULATIONS

In this section, we validate the performance of our algo-

rithm through a target tracking scenario.

A. Target Dynamics

For the purpose of illustration, we consider the dynamics

of a target which has three discrete states (modes): Left

Turn (LT), Right Turn (RT) and Constant Velocity (CV).

In the LT mode and the RT mode, the target performs a

coordinated turn with a constant turning rate while the target

keeps its velocity constant in the CV mode. We assume that

the transition between different modes to be governed by a

time-homogeneous Markov Chain whose evolution is given

by (2). Let π(k) = [π1(k) π2(k) π3(k)]
T , where π1(k), π2(k)

and π3(k) are the probabilities that the true discrete state is

LT, RT or CV, respectively. The Markov transition matrix is

parameterized as:

Γ =





0.6 0.2 0.2
0.2 0.6 0.2
0.2 0.2 0.6



 (22)

The continuous state of the target is represented by the

state vector: x= [ξ ξ̇ η η̇ ]T ∈X =R
4 in the ξ −η frame. The

continuous dynamics is governed by stochastic difference

equations, each corresponding to one discrete state. The

dynamics corresponding to the CV mode is given by [16]:








ξ (k+ 1)

ξ̇ (k+ 1)
η(k+ 1)
η̇(k+ 1)









=









1 Ts 0 0

0 1 0 0

0 0 1 Ts

0 0 0 1

















ξ (k)

ξ̇ (k)
η(k)
η̇(k)









+











T 2
s
2

0

Ts 0

0
T 2

s
2

0 Ts











[

wξCV (k)
wηCV (k)

]

(23)

where wξCV and wηCV are independent white Gaus-

sian noise with E[w2
ξCV

(k)] = 12, E[w2
ηCV (k)] = 12 and

E[wξCV (k)wηCV (k)] = 0; Ts = 1sec is the sampling time. The

continuous dynamics corresponding to the LT and the RT

modes is given by [16]:









ξ (k+ 1)

ξ̇ (k+ 1)
η(k+ 1)
η̇(k+ 1)









=









1
sin(ωTs)

ω 0 − 1−cos(ωTs)
ω

0 cos(ωTs) 0 −sin(ωTs)

0
1−cos(ωTs)

ω 1
sin(ωTs)

ω
0 sin(ωTs) 0 cos(ωTs)

















ξ (k)

ξ̇ (k)
η(k)
η̇(k)









+











T 2
s
2

0

Ts 0

0
T 2

s
2

0 Ts











[

wξ L/RT (k)

wηL/RT (k)

]

(24)

where ω = 10deg/sec for the LT mode and ω =−10deg/sec

for the RT mode; wξ L/RT and wηL/RT are independent white

Gaussian noise with E[w2
ξ L/RT

(k)] = 12, E[w2
ηL/RT

(k)] = 12

and E[wξ L/RT (k) wηL/RT (k)] = 0.

We assume that there are two sensing agents providing the

observation information. At each time k, only one sensor is

turned on. The observation model for Sensor 1 is given by:

z1(k) =C1x(k)+ v1(k) =

[

1 0 0 0.1
0 1 0.1 0

]

x(k)+

[

v11(k)
v12(k)

]

(25)

and the observation model for Sensor 2 is given by:

z2(k) =C2x(k)+ v2(k) =

[

0.1 0 0 1

0 0.1 1 0

]

x(k)+

[

v21(k)
v22(k)

]

(26)

In (25) and (26) v11, v12, v21 and v22 are mutually inde-

pendent white Gaussian noise with E[v2
11(k)] = E[v2

12(k)] =
E[v2

21(k)] = E[v2
22(k)] = 12

We simulate the target motion for 110 seconds. Figure 5

shows the actual target trajectory and compares it with the

position estimation results computed by different observation

setups: two sensors working cooperatively, using Sensor 1

only, and using Sensor 2 only. From Figure 5, we can see that

the proposed hybrid estimation algorithm combined with the

sensor scheduling algorithm gives the best position estimates.

If a predetermined sensor is applied, the Bayesian decision
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Fig. 5. Target trajectory and position estimation results.

risk for the sensor is high, which leads to big position

estimation errors. However, if the two sensors working

cooperatively, the Bayesian decision risk is always reduced

to a low level.
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Fig. 6. Result of Monte Carlo simulation: Root-Mean-Square(RMS) error
of position estimates.

Figure 6 compares the RMS position estimation errors

obtained via a 100 run Monte Carlo simulation. In Figure

6, the RMS errors of the sensor scheduling algorithm stays

below the error of the hybrid estimation algorithms that

utilize one predetermined sensor. The simulation shows that

the sensor scheduling algorithm selects the “best” sensor

such that the estimation error is minimized at each step.

Table I compares the discrete state estimation errors and

summarizes the continuous state estimation errors given by

the three algorithms. From the simulation results, we can see

that the hybrid estimation algorithm with scheduled multiple

sensors is the best among the three algorithms.

VI. CONCLUSIONS

In this paper, we have considered the problem of optimal

sensor scheduling for hybrid state estimation. We have pro-

posed the Bayesian decision risk for the hybrid estimation

with multiple sensors. The optimal sensor scheduling is

designed such that the Bayesian decision risk (or its upper

TABLE I

PERFORMANCE COMPARISON OF PERFORMANCE: STATISTICS OF 100

SIMULATION RUNS

Algorithm Sensor Sensor 1 Sensor 2
scheduling only only

RMS position Peak 4.3354 7.5244 5.8382
error (m) Overall average 3.5233 4.4327 4.2359

Average no. of discrete 17 35 33
state estimation error

bound) is minimized. The performance of the proposed algo-

rithm has been validated through a target tracking scenario.
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