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Abstract— The paper presents a new approach for feedfor-
ward control of inhomogeneous distributed parameter systems.
Inhomogeneous means that we consider a partial differential
equation (PDE) with a spatially distributed control input. For
the system we propose a transformation that homogenizes
the PDE by transforming the input action on the boundary.
Based on the transformation, a feedforward control approach is
presented, allowing for an iterative computation of the control
input from a desired output trajectory. To demonstrate the
approach we apply it in detail to two examples: a continuous
furnace and a counterflow heat exchanger.

I. INTRODUCTION

Realizing desired output trajectories by open loop feed-

forward control is an important topic in control applications

as well as in control theory. From an engineering point

of view, the basic problem is the appropriate inversion of

the in-/output dynamics. For linear and nonlinear systems

with lumped parameters, described by ordinary differential

equations (ODEs), many capable methods are known. See

for example [1], [2], [3] and references therein.

Control design for distributed parameter systems (DPSs)

on the other hand, can roughly be grouped in two different

approaches. Methods applied subsequently to an approxi-

mation are called early-lumping. Usually the approximation

includes the discretization of the partial differential equations

(PDEs) to obtain ODEs or difference equations. Afterwards

the well known methods for lumped parameter systems can

be applied to the approximated system. The counterpart are

the so-called late-lumping methods, with the control design

being derived directly for the distributed parameter system.

Thus the often physically motivated model is advantageously

maintained throughout the entire control design process. In

doing so, non physically motivated parameters, like dis-

cretization parameters are avoided. But the analysis is more

complicated and usually late-lumping leads to control laws

that cannot be implemented directly. So again approximation

is necessary, but at a late stage instead of an early stage

within the design process, which motivates the naming.

Most contributions in the field of control of distributed

parameter systems focus on feedback control design. Though

from lumped parameter systems it is known that a sup-

plemental feedforward control can significantly increase

the tracking performance; a fact that also holds for dis-

tributed parameter systems. See for example [4], where
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a two-degree-of-freedom tracking control approach of a

boundary controlled diffusion convection reaction system is

presented. The applied method bases on a formal power

series parametrization of the system and is applicable to

a broad class of one-dimensional, parabolic distributed pa-

rameter systems [5], [6]. A related method is shown in [7],

which enables the treatment of parabolic PDEs on higher-

dimensional spatial domains, with the feedforward control

being computed iteratively, by solving an integral equation.

In [8] a distributed parameter system, described by first order

PDEs, modeling an heat exchanger is covered. The control

law is derived explicitly, but it includes so-called distributed

delays described by integrals over Bessel functions. These

methods emerged from the field of flatness based control

for distributed parameter systems; see [9], [10] for further

details.

Indeed, feedforward control of distributed parameter sys-

tems is an active area of research, but most of the cited meth-

ods are specifically designed for boundary control, whereas

spatially distributed inputs are little considered. That means

the corresponding PDEs are homogeneous, the control input

is in the boundary conditions. As a consequence the internal

dynamics and zero dynamics usually are of order zero and

have not to be taken into account. This is not the case

with spatially distributed control inputs, where the internal

dynamics influence is fundamental within the feedforward

control design. The topic of internal dynamics and zero

dynamics of distributed parameter systems has gained some

attention recently, see for example [11], [12].

The rest of the paper is organized as follows: Section II

describes the considered control problem and our method, to

solve it. Section III clarifies the approach by demonstrating

the application at two examples and Section IV gives the

conclusions and a short outlook.

II. FEEDFORWARD CONTROL PROBLEM

In this Section, the feedforward control problem is defined

and the method is described, which we propose for solving it.

A linear, first order distributed parameter system with scalar

control input u(t) and scalar output y(t) is considered. The

control aim is to realize a desired output trajectory yd(t),
such that y(t) = yd(t). Thus the control problem is the

determination of the appropriate control input u(t), i.e. the

considered system is to be inverted.

Consider the linear, one dimensional, first order distributed
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parameter system

∂tx+ v∂zx+ αx = β(z)u(t), z = (0, L), t > 0 (1)

x(0, t) = 0, x(z, 0) = 0. (2)

with positive flow rate v and homogeneous initial and

boundary conditions. The right hand side of (1) is separated

in a time dependent, scalar part u(t), which is the control

input and a spatially dependent part β(z), we refer to as

characteristic of the input.

Let the output be defined as

y(t) =

∫ L

0

h(ζ)x(ζ, t)dζ, t ≥ 0 (3)

with the weighting function h(z).
We assume, that the zero dynamics of system (1)-(3) are

asymptotically stable. For linear, time invariant systems, this

corresponds to the minimum phase property of the associated

irrational transfer function. See [13] for an overview of this

topic.

A. Transformation of the Distributed Parameter System

To allow for an inversion of the distributed parameter

system, we introduce a transformation, that homogenizes the

PDE. A prerequisite, with respect to the characteristic, is

stated in the following Assumption:

Assumption 1: The Q-th derivative of the characteristic

β(z) ∈CQ is a linear combination of the derivatives up to

Q, i.e. β(Q)(z) =
∑Q−1

k=0 bk+1β
(k)(z), Q > 0, bk ∈ R. Also

β(i), β(j), i, j < Q are linear independent for i 6= j. We

note that the trivial case β(Q) ≡ 0 is included.

For system (1)-(3), we define the transformation as

x(z, t) = x̃(z, t) +ΦT (z)ξ(t). (4)

With the spatial dependent vector ΦT (z) =
[

β(z) β′(z) . . . βQ−1(z)
]

consisting of the

characteristic and its derivatives and the time dependent

vector ξ(t) =
[

ξ1(t) ξ2(t) . . . ξQ(t)
]T

. The minimum

Q that satisfies Assumption 1 is picked. Inserting

transformation (4) in PDE (1) and taking Assumption

1 into account yields

∂tx̃+ v∂zx̃+ αx̃ = β(u− αξ1 − ξ̇1 − vb1ξQ)

+ β′(−vξ1 − αξ2 − ξ̇2 − vb2ξQ) + · · ·

+ β(Q−1)(−vξQ−1 − αξQ − ξ̇Q − vbQξQ).

(5)

From the right hand side of (5), we obtain Q ODEs for the

formal variables ξ(t), depending on the control input

ξ̇(t) =











−α −vb1
−v −α · · · −vb2

. . .
...

0 −v −α− vbQ











ξ(t)+











1
0
...

0











u(t) (6)

with zero initial conditions ξ(0) = 0. System (6) is control-

lable, the controllability matrix is upper triangular and has

full rank.

Σξ

Σ̃∞

u(t)

q(t)

yξ(t)

y∞(t)

+ y(t)

Fig. 1. System structure after transformation.

Inserting (6) in (5) yields the homogeneous PDE

∂tx̃+ v∂zx̃+ αx̃ = 0. (7)

The corresponding initial and boundary conditions are ob-

tained, by applying transformation (4) to equation (2):

x̃(z, 0) = 0, x̃(0, t) = −ΦT (0)ξ(t) = q(t). (8)

Transforming the output, given by equation (3) yields

y(t) =

∫ L

0

h(ζ)x̃(ζ, t)dζ + cT ξ(t) (9)

with cT =
∫ L

0
h(ζ)ΦT (ζ)dζ.

Figure 1 shows the structure of the transformed distributed

parameter system. It is separated in two parts, one part is

directly dependent of the input, while the other part is not.

The direct part Σξ is a system described by the ODEs (6),

depending on u(t). The indirect part Σ̃∞ is a boundary

controlled distributed parameter system, described by the

homogeneous PDE (7) and the conditions (8).

The output y(t) can be described as sum of the direct out-

put yξ(t) and the indirect output y∞(t). These are obtained

from equation (9) as

yξ(t) = cT ξ(t), y∞(t) =

∫ L

0

h(ζ)x̃(ζ, t)dζ. (10)

That reveals the benefit of the proposed transformation:

instead of inverting the original distributed parameter system,

we only have to invert the direct part, described by ODEs.

This can be done using standard techniques like [2] or

flatness based methods [3]. Still, the indirect part’s influence

has to be considered. This is done via an iterative algorithm,

described in the following Section.

B. Iterative Computation of the Feedforward Control

Having a distributed parameter system, as specified in

Figure 1, the control input u(t) and the inner states ξ(t)
of the direct part can be written as a functional depending

on the direct parts output yξ(t)

u(t) = Ψu[yξ], ξ(t) = Ψξ[yξ]. (11)

Subsequently, the indirect part Σ̃∞, depending on ξ(t) can

be solved to obtain y∞(t)

y∞(t) = Ψ∞[ξ]. (12)
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Using equations (11) and (12), the actual computation of the

feedforward control is done in the following iterative scheme.

For the initial step the following holds

yξ,0(t) = yd(t)

u0(t) = Ψu[yξ,0], ξ0(t) = Ψξ[yξ,0]

y∞,0(t) = Ψ∞[ξ0].

(13)

So basically the influence of the indirect part to the real

output is neglected in the initial step. However it is taken

into account in the following steps. The k-th step is given as

yξ,k(t) = −y∞,k−1

uk(t) = Ψu[yξ,k], ξk(t) = Ψξ[yξ,k]

y∞,k(t) = Ψ∞[ξk].

(14)

The complete feedforward control is given by the infinite

series

u(t) =

∞
∑

k=0

uk(t) (15)

which yields the desired output

y(t) = yd(t) + y∞,0(t) +
∞
∑

k=1

y∞,k(t)− y∞,k−1(t)

= yd(t).

(16)

C. Transformation of coupled PDEs

The proposed approach is not limited to distributed pa-

rameter systems of form (2). We show that it can also be

applied to systems described by coupled PDEs.

Consider the linear, one dimensional first order distributed

parameter system, described by two coupled PDEs

∂tx1 + v1∂zx1 + α1x1 = −λ(x1 − x2) + β(z)u(t)

∂tx2 + v2∂zx2 + α2x2 = λ(x1 − x2)

z ∈ (0, L), t > 0

(17)

with nonzero flow rates v1, v2, positive coefficient λ and

homogeneous initial and boundary conditions

x1(z, 0) = 0, x2(z, 0) = 0

x1(z1, t) = 0, x2(z2, t) = 0
(18)

and Assumption 1 holds for β(z).
Similar to (3), the output is defined as

y(t) =

2
∑

k=1

∫ L

0

hk(ζ)xk(ζ, t)dζ, t ≥ 0. (19)

For system (17)-(19), the transformation is defined as

[

x1(z, t)
x2(z, t)

]

=

[

x̃1(z, t)
x̃2(z, t)

]

+

[

ΦT 0

0 ΦT

]







ξ1(t)
...

ξ2Q(t)






. (20)

Inserting transformation (20) in (17) and following the steps,

described in Section II-A, yields the homogeneous PDE

∂tx̃1 + v1∂zx̃1 + α1x̃1 = −λ(x̃1 − x̃2)

∂tx̃2 − v2∂zx̃2 + α2x̃2 = λ(x̃1 − x̃2)
(21)

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

t

y d
,y

Des

Sim. A

Sim. B

Fig. 2. Desired output trajectory yd(t) and simulated output y(t) of
example A and B.

with the boundary conditions

x̃1(z1, t) = −ΦT (z1)
[

ξ1(t) . . . ξQ(t)
]T

= q1(t)

x̃2(z2, t) = −ΦT (z2)
[

ξQ+1(t) . . . ξ2Q(t)
]T

= q2(t).
(22)

Referring to Figure 1, the input to the boundary controlled

distributed parameter system Σ̃∞ is q(t) =
[

q1(t) q2(t)
]T

.

The ODEs for the formal variables ξ(t) are obtained as

ξ̇1 = −(α1 + λ)ξ1 + λξQ+1 − v1b1ξQ + u

ξ̇2 = −v1ξ1 − (α1 + λ)ξ2 + λξQ+2 − v1b2ξQ

. . .

ξ̇Q = −v1ξQ−1 − (α1 + λ+ v1bQ)ξQ + λξ2Q

ξ̇Q+1 = −(α2 + λ)ξQ+1 + λξ1 − v2b1ξ2Q

ξ̇Q+2 = −v2ξQ+1 − (α2 + λ)ξQ+2 + λξ2 − v2b2ξ2Q

. . .

ξ̇2Q = −v2ξ2Q−1 − (α2 + λ+ v2bQ)ξ2Q + λξQ

(23)

with zero initial conditions ξ(0) = 0. The controllability of

System (23) can be shown for λ 6= 0 and v2 6= 0.

Inserting (20) in the output equation (19) yields

y∞(t) =

2
∑

k=1

∫ L

0

hk(ζ)x̃k(ζ, t)dζ, t ≥ 0. (24)

and

yξ(t) = cT ξ(t), cT =

[

∫ L

0
h1(ζ)Φ(ζ)dζ

∫ L

0
h2(ζ)Φ(ζ)dζ

]T

. (25)

III. EXAMPLES

We demonstrate the proposed approach with two exam-

ples. Both are described by first order PDEs. Example A

is a simple transport process, described by a single PDE.

Example B consists of two transport systems with opposing

flow directions, described by two coupled PDEs. Figure 3

depicts the structure of both considered distributed parameter

systems.
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z = 0 z = L

x(0, t) y(t)
v

β(z)u(t)

(a)

z = 0 z = L

y(t)

x1(0, t)

x2(L, t)
v2

v1

β(z)u(t)

(b)

Fig. 3. Schematic diagram of example A continuous furnace (a) and example B counter-flow heat exchanger (b)

The desired output trajectory yd(t) is piecewise defined as

yd(t) =











0 t ≤ t0,

γ(t) t0 < t < T,

1 t ≥ T.

(26)

The function γ(t) is a polynomial of order eleven, with the

first five derivatives being zero at t = t0 and t = T . Figure

2 illustrates yd(t) with t0 = 0s and T = 10s.

A. Continuous Furnace

In this scenario we derive a feedforward control for the one

dimensional, first order distributed parameter system (1)-(2).

A typical application for this kind of distributed parameter

system is a continuous furnace [14], [15], [16], [17]. Then

x(z, t) is a temperature at point z and time t, v a flow

or feed-through velocity and α a heat loss coefficient. The

heat input is the product of the control input u(t) and the

spatial characteristic β(z): u(t) represents the intensity of gas

burners or heating lamps, whereas β(z) includes the spatial

dependence, due to geometric factors. Using (3) with the

Dirac delta function h(z) = δ(z − L), the output is defined

as

y(t) = x(L, t), (27)

which corresponds to the outlet temperature in the case of a

continuous furnace.

The spatial characteristic is given as

β(z) = 1/2− z/6 (28)

and with Assumption 1 we determine Q = 2. This can

be easily verified since the second derivative is β′′(z) =
b1β(z) + b2β

′(z) with b1 = b2 = 0.

The control objective is to realize the desired output

trajectory y(t) = yd(t) shown in Figure 2. To that we

perform transformation (4), what yields the homogenized

PDE

∂tx̃+ v∂zx̃+ αx̃ = 0. (29)

with the boundary condition

x̃(0, t) = −[β(0) β′(0)]

[

ξ1(t)
ξ2(t)

]

. (30)

The ODEs of the formal variables are

ξ̇(t) =

[

−α 0
−v −α

]

ξ(t) +

[

1
0

]

u(t), ξ(0) = 0 (31)

We define

yξ(t) = [β(L) β′(L)]

[

ξ1(t)
ξ2(t)

]

, y∞(t) = x̃(L, t). (32)

Now the distributed parameter system is transformed into the

structure illustrated in Figure 1.

The feedforward control approach includes the inversion

of system (31) with respect to yξ(t). This can easily be done,

for example with a flatness based approach. Introducing

the flat output y∗ = ξ2 for system Σξ yields directly a

parametrization of ξ(t) and u(t)

ξ1(t) = −α/vy∗(t)− 1/vẏ∗(t),

ξ2(t) = y∗(t),

u(t) = (α2y∗(t) + 2αẏ∗(t)− ÿ∗(t))/v.

(33)

To a given reference trajectory for yξ(t), we can calculate the

corresponding flat output y∗(t) by solving the zero dynamics

ẏ∗(t)β(L)/v + y∗(t)(α/vβ(L)− β′(L)) = −yξ(t). (34)

With equations (33) and (34), system Σξ can be inverted.

So the control input u(t) and the formal variables ξ(t) are

dependent of yξ(t). This corresponds to equation (11). In the

example (29) and (30) can even be solved, which yields

y∞(t) = −e−αL/v[β(0) β′(0)]

[

ξ1(t− L/v)
ξ2(t− L/v)

]

. (35)

So we can compute y∞(t) from the formal variables ξ(t),
which is postulated in equation (12). Finally we can apply

the algorithm (13),(14) to calculate the feedforward control,

as specified in equation (15).

A simulation with the parameter values given in Table I

is performed. The infinite series (15) is evaluated up to the

fourth element. The desired trajectory of the output (26) is

matched (see Figure 2). Figure 4 shows the feedforward con-

trol u(t) and the spatio-temporal profile x(z, t) is illustrated

in Figure 5. It can be seen that there is still some control

action necessary, although the output remains constant on

its new level. This clearly indicates the presence of internal

dynamics.

In this paper we skip the question of convergence for this

example and refer to [15], where a sufficient condition for

the convergence of (15) is derived. It is to mention that this

example can be extended by time varying parameters and

still be solved in the same way.
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Fig. 4. Feedforward control continous furnace.
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Fig. 5. Profile x(z, t) with y(t) = x(1, t).

B. A counterflow heat exchanger

In the second example, we consider system (17)-(18),

given by two coupled, linear first order PDEs. The flow

velocity v1 is positive, while v2 is negative, which means

they are directed opposing. A typical application is a counter

flow heat exchanger, see [8] for a similar problem with

boundary control. We consider homogeneous boundary con-

ditions, defined at the inlet

x1(0, t) = 0, x2(L, t) = 0. (36)

As illsutrated in Figure 3, the output is the value at the outlet

of the second layer. From (19) with h1(z) = 0, h2(z) =
δ(z), we get

y(t) = x2(0, t). (37)

The spatial characteristic is

β(z) = sin (2πz/(3L) + 0.3π) . (38)

Using Assumption 1, we determine Q = 2 and β′′(z) =
b1β(z) + b2β

′(z) with b1 = −(2π/3L)2, b2 = 0.

0 5 10 15 20
−20

−10

0

10

20

30

t

u

Fig. 6. Feedforward control counterflow heat exchanger.

Applying transformation (20) yields the homogenized

PDEs

∂tx̃1 + v1∂zx̃1 + α1x̃1 = −λ(x̃1 − x̃2)

∂tx̃2 + v2∂zx̃2 + α2x̃2 = λ(x̃1 − x̃2)
(39)

with the boundary conditions

x̃1(0, t) = −Φ(0)
[

ξ1(t) ξ2(t)
]T

x̃2(L, t) = −Φ(L)
[

ξ3(t) ξ4(t)
]T

.
(40)

Accordingly to (23), the ODEs for the formal variables

ξ(t) are determined as

ξ̇1 = (λ− α1)ξ1 − v1ξ2 − λξ3 + u(t)

ξ̇2 = (λ− α1)ξ2 + v1 (2π/(3L))
2
ξ1 − λξ4

ξ̇3 = (λ− α2)ξ3 − v2ξ2 − λξ1

ξ̇4 = (λ− α2)ξ4 + v2 (2π/(3L))
2
ξ1 − λξ2

(41)

with zero initial conditions ξ(0) = 0.

Further, the following holds

y∞(t) = x̃2(0, t) (42)

yξ(t) =
[

0 0 β(L) β′(L)
]

ξ(t). (43)

Referring to Figure 1, the finite dimensional part Σξ is de-

fined through (41) and (43), whereas the infinite dimensional

part Σ̃∞ is given by (39), (40) and (42). The feedforward

control can be calculated as in the previous example.

A simulation with the parameter values given in Table I

was performed. The infinite series (15) was evaluated up to

the fourth element. The desired trajectory of the output (26)

is matched (see Figure 2). The feedforward control u(t) is

plotted in Figure 6 and the spatio-temporal profiles x1/2(z, t)
are plotted in Figure 7.

IV. CONCLUSIONS AND OUTLOOK

The feedforward control of linear first order distributed

parameter systems with inhomogeneous PDE is considered.

A late-lumping approach is proposed that allows for the

inversion of the considered system. The control input can
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Fig. 7. Temporal-spatial profile of x1(z, t) (a) and x2(z, t) (b) with y(t) = x2(0, t).

TABLE I

PARAMETER VALUES USED IN EXAMPLE A AND EXAMPLE B.

Example A Example B

α 0.04 α1,2 0.05
v 0.05 v1, v2 0.05,−0.1

λ 0.01
L 1 L 1

iteratively be computed in terms of an infinite series to a

desired trajectory of the output.

The approach is based on a transformation of the dis-

tributed parameter system, it is separated in a direct part

and an indirect part. The direct part is described by a

finite dimensional linear system. Whereas the indirect part

is described by a boundary controlled distributed parameter

system with a homogeneous PDE. The feedforward control

is obtained from inverting the direct part, which can be done

using standard methods. Yet the influence of the indirect part

cannot be neglected and is incorporated in the presented

approach. This results in an iterative algorithm, with the

complete feedforward control law given in terms of an

infinite series.

We note that the applicability of the proposed method

is not limited to first order nor one-dimensional distributed

parameter systems. The transfer to linear second order

parabolic and hyperbolic systems can be done straight for-

ward. As it is the case for linear time variant systems or

systems in two or three spatial dimensions. Yet the main

objective of our current research is aimed towards general

necessary conditions for the convergence of the feedforward

control law, that is described by an infinite series.
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[10] F. Woittennek. Beiträge zum Steuerungsentwurf für lineare, örtlich
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