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Abstract— The problem of designing a PID controller is posed
in a setting where a selected reference system presents the
design requirements. This leads to a simple problem of equating
coefficients of like powers in polynomials originating in the
reference system transfer function, the transfer function of
the system to be controlled as well as the PID coefficients.
Effectively, an overdetermined system of equations in the PID
coefficients results, which is solved in the minimum least squares
sense. We refer to this controller as the Matching Coefficients
PID (MC PID). The computation is very simple involving
only basic high school mathematics. While there is no explicit
criterion for a selection of a reference system that will guarantee
closed loop stability, systematic approaches can be designed for
modifying the reference system in these cases.

I. INTRODUCTION

PID (Proportional, Integral, Differential) controllers for

single input single output (SISO) as well as multiple input

multiple output (MIMO) systems are the most common

controllers in industry today. Thus, they are a very interesting

and popular research topic, with many papers published

every year. Dominant pole placement is guaranteed with

PID controllers in [1], using a modified root locus method

and a modified Nyquist plot for systems with time delays.

Naturally, the guaranteed dominant pole placement may not

guarantee specifications in terms of overshoot or settling

time due to the effect of closed loop zeros. However, the

methods are simple and easy to work with. Processes are

approximated by a simple second order transfer function

without regular zeros but with a time delay in [2]. The

PID zeros are then used to cancel the poles of the second

order system, leaving just the time delay, the PID integrator

and a gain to be adjusted to set the closed loop poles. PID

tuning methods have been popular, see e.g. [3] where the

tuning is based on a P controlled step experiment. Another

tuning method for high-order oscillatory systems is reported

in [4]. A MIMO system is decomposed into equivalent single

loops for design of multiloop PI/PID controllers in [5], where

various other MIMO PID methods are also briefly discussed.

An approximation is made such that each controller can be

designed without knowledge of controllers in other loops.

Research on transfer function responses for continuous

as well as discrete time [6],[7] has lead to several research

topics. The general problem on how to optimize zero loca-

tions such as to get a system to track a reference system,

is reported in [8] and [9]. Optimized zero locations are

then applied in model reduction in [10]. An optimized PID

controller has also been developed, tracking a given open
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loop reference system that effectively includes the design

requirements for the resulting closed loop system. Then the

squared difference between the open loop impulse or step

response of the system we want to control and the reference

system’s open loop is minimized. The zero locations of the

PID controllers or generalized PID controllers with more

than two zeros are then optimized to get the best tracking

of the design requirements, see [11]. Stability of the closed

loop is not automatically inherited, however, by Parseval’s

theorem the difference in the frequency responses of the

controlled system and the stable reference system is bounded,

thus required phase and gain margins may be achieved by a

simple gain reduction.

Recently, in [12], the optimized PID controller for a SISO

system was expanded to an optimized MIMO PID controller.

Most recently, this approach has been extended by adding

an outer iteration procedure to the optimizer that allows

the user to specify more precisely the nature of the design

requirements for the resulting closed loop controlled system

[13].

In this paper, we view the problem of PID design in yet

another way, simply by equating coefficients of like powers

in polynomials coming from the reference system transfer

function, the transfer function of the system to be controlled

as well as the PID coefficients. We state the problem in

Section II. We then present the MC PID in continuous and

discrete time in Sections III and IV, respectively, including

examples. Finally, conclusions are discussed in Section V.

II. PROBLEM STATEMENT
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Fig. 1. A closed loop controlled SISO system.

Our approach is to control the closed loop system in Figure

1 in such a way that it behaves like the closed loop reference

system in Figure 2. We are dealing with a SISO system where

the transfer function for the system G(s) is given by

G(s) =
Y (s)

U(s)
=

b(s)

a(s)
=

bmsm + bm−1sm−1 + · · · + b1s + b0

sn + an−1sn−1 + · · · + a0

(1)
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Fig. 2. A SISO reference system.

corresponding to the standard differential equation

any(n)(t) + an−1y
(n−1)(t) + · · · + a0y(t)

= bmu(m)(t) + bm−1u
(m−1)(t) + · · · + b0u(t),

(2)

where an = 1. The transfer function of a standard PID

controller is given by

Gc(s) =
c(s)

s
=

KDs2 + KP s + KI

s
. (3)

The closed loop transfer function is then given by

Y (s)

V (s)
=

c(s)b(s)
sa(s)

1 + c(s)b(s)
sa(s)

=
c(s)b(s)

sa(s) + c(s)b(s)
. (4)

The transfer function for the reference system is chosen

such as to represent design requirements, the general form

being

Gr(s) =
br(s)

sar(s)
. (5)

The integrator assures a PID like behavior in closed loop in

terms of input signal tracking and disturbance rejection. The

closed loop of the reference system is given by

Yr(s)

V (s)
=

br(s)
sar(s)

1 + br(s)
sar(s)

=
br(s)

sar(s) + br(s)
. (6)

We now wish to choose c(s) such that the deviation

between the closed loop controlled system and the closed

loop reference system is in some sense minimal, i.e.

c(s)b(s)

sa(s) + c(s)b(s)
≈ br(s)

sar(s) + br(s)
. (7)

Then

c(s)b(s)(sar(s) + br(s)) ≈ br(s)(sa(s) + c(s)b(s)) (8)

and hence

c(s)b(s)ar(s) ≈ br(s)a(s). (9)

By matching the polynomial coefficients on each side of the

expression, we obtain an overdetermined system of equations

in the unknown coefficients of c(s), which can be solved

for by the method of least squares, e.g., by using Matlab’s

backslash command.

It is worth noting that the same expression is obtained by

considering the deviation between the controlled open loop

system and the open loop reference system, both with or

without the integrator, namely

c(s)b(s)

a(s)
≈ br(s)

ar(s)
. (10)

Thus, the least squares solution of the open loop (10) is the

same as the least squares solution of the closed loop (7).

While this fact is no guarantee of stability, and stability can

indeed be lost for highly underdamped reference systems as

well as for close to unstable plants, it should be noted that

the loss of stability is easily tested for and that systematic

approaches can be designed for modifying the reference

system in these cases, e.g., in a similar vein as proposed

in [13].

Remark 1: A simple choice of the reference system is

given by

Gr(s) =
ω2

r

s(s + 2ζrωr)
(11)

which results in the the standard 2nd order system in closed

loop

GCL
r (s) =

ω2
r

s2 + 2ζrωrs + ω2
r

. (12)

Note that the reference system essentially states the design

requirements of the system and may be chosen of a higher

order if desirable. The derivations in this paper assume this

simple choice of reference system. If, e.g., a settling time

of approximately 4 seconds is required and less than 5%
overshoot, one would choose ωr =

√
2 and ζr = 1/

√
2 for

the reference system.

III. MATCHING COEFFICIENTS PID - CONTINUOUS TIME

Returning to Eq. (9) and considering the simple reference

system in Remark 1, we are dealing with an overdetermined

system of equations of the form
(

KDs2 + KP s + KI

)

(bmsm + · · · + b1s + b0) (s + 2ζrωr)
≈ ω2

r

(

sn + an−1s
s−1 + · · · + a1s + a0

)

.
(13)

We further assume m = n − 3 such as to make the degrees

of the polynomials on each side of the ≈ sign equal. If

m < n − 3, we simply put the corresponding b-coefficients

equal to zero. If m > n − 3, we must add high frequency

dummy poles to the a-polynomial of the form 1
s/N+1 . We

now define
[

φ0 φ1 · · · φn−2

]

=
[

2ζωr 1
]

[

b0 b1 · · · 0
0 b0 b1 · · ·

]

(14)

φ3×(n+1) =





φ0 φ1 · · · φn−2 0 0
0 φ0 φ1 · · · φn−2 0
0 0 φ0 φ1 · · · φn−2





(15)

and

C =
[

KI KP KD

]T
. (16)

We thus have to find the least squares solution to the system

φTC ≈ ω2
r

[

a0 a1 · · · an−1 1
]T

, (17)

which may, e.g., simply be solved by the backslash command

in Matlab.

Remark 2: Disturbance rejection can in general be bad

and in this case a slightly more complicated controller than

a simple PID may be needed in order to reject a disturbance,
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e.g., into highly underdamped poles. A fairly simple way to

deal with such a disturbance is to try to estimate its effects

from the control signal u(t) and measurements of the output

signal y(t) and use the estimation to correct the effect of the

disturbance, i.e., we build a kind of a disturbance observer.

We have

Y (s) = Gp2(s)D(s) + Gp(s)U(s)

where Gp(s) = Gp1(s)Gp2(s) and the disturbance enters

right after Gp1(s) and right before Gp2(s). We need to inject

the disturbance correction right after the PID to become a

part of the control signal entering the plant. In effect we need

to produce

− D̂(s)

Gp1(s)
= A(U(s) − Y (s)

Gp(s)
)

where A is a constant to enhance the disturbance rejection.

So we add an inner feedback loop − A
Gp(s) from Y (s) to the

output of Gc(s) and then we add AU(s) to form U(s) or

equivalently multiply by 1
1−A . This closed loop setup has

the transfer function

Y (s)

V (s)
=

Gc(s)Gp(s)

1 + Gc(s)Gp(s)

not affected by A. The transfer function from the disturbance

to the output becomes

Y (s)

D(s)
= (1 − A)

Gp2(s)

1 + Gc(s)Gp(s)
.

The open loop transfer function is still

Y (s)

E(s)
= Gc(s)Gp(s)

so the root locus is not affected. Note that care must be taken

in implementing 1/Gp(s) by padding it with high frequency

poles of the form 1/(s/N + 1)α as is done in a regular PID

controller, where α = n − m denotes the relative degree of

the plant.

Example 1: We first consider a highly underdamped 3rd

order benchmark system from [14], with ζ = 0.2 and ω0 = 1
in the underdamped part and a third pole at −2, given by

b(s)

a(s)
=

2

(s + 2)

1

(s2 + 0.2s + 1)
. (18)

We choose a reference system

br(s)

sar(s)
=

1

s(s + 1)
(19)

leading to a closed loop system having a damping coefficient

of ζr = 0.5 and ωr = 1. This results in PID coefficients given

by
[

KI KP KD

]

=
[

0.775 0.15 0.725
]

. (20)

The system is subject to a unit step input at time t = 0 and

to a unit step disturbance at time t = 20. The disturbance

hits the system after the 2/(s + 2) part and before the

1/(s2 + 0.2s + 1) part. The resulting closed loop control

signal and output and the corresponding root locus are shown

0 5 10 15 20 25 30 35 40
−4

−2

0

2

c
o
n
tr

o
l 
s
ig

n
a
l

t(s)

0 5 10 15 20 25 30 35 40
0

1

2

t(s)

o
u
tp

u
t

 

 

PID controlled system

reference system

−2.5 −2 −1.5 −1 −0.5 0 0.5
−2

0

2

 

 

Root Locus

Real Axis

Im
a

g
in

a
ry

 A
x
is

PID controlled system

reference system

Fig. 3. Example 1. MC PID for a highly underdamped system - ζr = 0.5
and ωr = 1.
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Fig. 4. Example 1. MC PID for a highly underdamped system with
disturbance rejection - A = 0.75, ζr = 0.5 and ωr = 1.

in Figure 3. The maximum control signal of 14.65 occurs in

the very beginning. The PID controlled step response has

a slightly smaller overshoot than the closed loop reference

system and a slight continued oscillation. The closed loop

poles of the reference system are given by −0.5±j0.87. The

closed loop poles of the PID controlled system are given by

−1.03 ± j0.695,−0.074 ± j1.002, all maintaining similar

imaginary parts as the reference system. All closed loop

poles are labeled by ∗ on the corresponding root locus.

As noted, stability for the closed loop is not guaranteed, in

particular a very underdamped reference system of ζr = 0.1
results in an unstable PID controlled system. For this ex-

ample, though, stability seems to be maintained for stable

system poles.

Similar to [2], when the real system pole is the same as

the reference system pole, the MC PID simply cancels the

remaining system poles completely in a third order system

with a constant numerator. Even in the case of a full can-

cellation of the underdamped system poles, the disturbance

rejection is naturally still very bad, as the disturbance travels

through the underdamped poles, before the cancelling zeros

of the PID hit it.

Implementing the approach in Remark 2 with A = 0.75,

but with the same reference system, leads to the results

shown in Fig. 4. The disturbance is roughly 1/4 of what

it was before, the minimum control signal in the beginning
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Fig. 5. Example 2. MC PID for a system with multiple equal poles with
disturbance rejection - A = 2/3, ζr = 2 and ωr = 1.

of the disturbance is −2.95. The activity in the control signal

at the onset of the input step is naturally increased, having

a first maximum of 58.6 and a first minimum of −15.27.
Moving the KDs/(s/20 + 1) into the feedback from Y (s)
decreased the initial input activity significantly, but at a too

high cost in the tracking of the reference system. Further,

1/Gp(s) was implemented by padding it with 1/(s/10+1)3.

Example 2: We now consider another challenging bench-

mark system from [14], given by

b(s)

a(s)
=

1

(s + 1)4
. (21)

We choose a reference system

br(s)

sar(s)
=

1

s(s + 4)
(22)

leading to a closed loop system having a damping coefficient

of ζr = 2 and ωr = 1. This results in MC PID coefficients

given by

[

KI KP KD

]

=
[

0.176 1.253 1.0
]

. (23)

The system is subject to a unit step input at time t = 0 and

to a unit step disturbance at time t = 20. The disturbance

hits the system at the input.

The resulting closed loop control signal and output and

the corresponding root locus are shown in Figure 5. The

maximum control signal of 3.75 occurs in the very beginning.

The PID controlled step response follows the reference sys-

tem quite well. The disturbance rejection, implemented with

A = 2/3, is also quite good. In this case KDs/(s/20+1) was

implemented into the feedback from Y (s). Further, 1/Gp(s)
was implemented by padding it with 1/(s/10 + 1)4.

In this example, closed loop stability is obtained for a

reference system with damping down to ζr = 0.2 and when

one of the system poles approaches zero at −0.2 the PID

controlled system performance becomes very slow and has

lost stability in −0.1.

IV. MATCHING COEFFICIENTS PID - DISCRETE TIME

Now consider the discrete time case with a transfer func-

tion

G(z) =
bmzm + bm−1z

m−1 + · · · + b1z + b0

zn + an−1zn−1 + · · · + a1z + a0
(24)

corresponding to the difference equation

any[k + n] + an−1y[k + n − 1] + · · · + a0y[k]
= bmu[k + m] + bm−1u[k + m − 1] + · · · + b0u[k],

(25)
where an = 1. In order to render a similar interpretation to
the PID coefficients as in the continuous case we express the
transfer function of the PID controller as

z

z − 1

(

KD

(

z − 1

z

)

2

+ KP

(

z − 1

z

)

+ KI

)

=
1

z(z − 1)
c(z)

(26)

where

c(z) =
(

K2z
2 + K1z + K0

)

(27)

with




K2

K1

K0



 =





1 1 1
0 −1 −2
0 0 1









KI

KP

KD



 (28)

and we note that the matrix in Eq. (28) is the inverse of

itself. Here we have replaced the differential operator in

the continuous case, represented by s, by the backward

difference operator ∇ in the discrete time case, represented

by 1 − z−1 = z−1
z .

Similarly, we express the reference system as

Gr(z) = z
z−1

ω2

r
z−1

z
+2ζrωr

1
z = z

z−1
ω2

r/(1+2ζrωr)
z−1/(1+2ζrωr)

= z
z−1

br

z+ar

(29)

where we replace s by z−1
z and add a delay, such that the

reference system will have a relative degree of one. Further

note that

ωr =

(

− br

ar

)1/2

and ζr = −ar + 1

2ωrar
(30)

and that ar ∈]−1, 0[ whenever ζrωr ∈]0,∞[. Proceeding in

the same way as before we obtain

1

z2
c(z)b(z)(z + ar) ≈ bra(z) (31)

or
(

K2z
2 + K1z + K0

)

(bmzm + · · · + b1z + b0) (z + ar)
≈ brz

2
(

zn + an−1z
n−1 + · · · + a1z + a0

)

.
(32)

Here we assume m = n − 1. Then, the original system has

a relative degree of one and the degrees of the polynomials

on each side of the ≈ sign are equal. Thus, the coefficients

C =
[

K0 K1 K2

]T
are now found as the least squares

solution to the system

φ̂T C ≈ br

[

0 0 a0 a1 · · · an−1 1
]

(33)

where φ̂ is defined as φ in (15) except
[

2ζrωr 1
]

is

replaced by
[

ar 1
]

. We then close the loop using the
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integrator z
z−1 as shown in Figure 6. The delay in the PID-

part is consistent with replacing the differential operator in

the continuous case with the backward difference operator

in the discrete case.

v(k)
+

−

e(k) z
z−1

1
z2 c(z)

u(k)
b(z)
a(z)

d(k)

y(t)

Fig. 6. A closed loop controlled SISO discrete time system.

Example 3: We consider an arbitrary unity DC gain

discrete time system given by

b(z)

a(z)
=

0.5 × 0.4 × 0.3z2

(z − 0.5)(z − 0.6)(z − 0.7)
(34)

We choose a slow underdamped reference system with ar =
−0.8 and br = 1 corresponding to ωr = 1.12 and ζr = 0.11.
Thus

br

z + ar
=

1

z − 0.8
(35)

We compute the PID coefficients as in the continuous time

case resulting in
[

K0 K1 K2

]

=
[

4.43 −16.71 16.65
]

(36)

or alternatively
[

KI KP KD

]

=
[

4.36 7.85 4.43
]

(37)

where we implement the PID as

z
(z−1)

1
z2 c(z) = KD(z−1)2+KP (z−1)z+KIz2

z(z−1) . (38)

The resulting closed loop step response and the correspond-

ing root locus are shown in Figure 7, where all closed loop

poles are labeled by ∗ on the corresponding root locus. The

PID controlled step response follows the closed loop refer-

ence system very well. Reducing ar down to −0.1 produced

a stable but highly oscillating PID controlled system and

stability was lost for ar = −0.08. On the other side stability

is lost for ar = −0.99. The PID controlled system remains

stable even if the system pole at 0.7 slides all the way up to

1.1, but then looses stability. Finally, selecting the reference

pole as one of the system poles, promptly results in the PID

canceling the other two system poles and a complete match

of the two responses.

Example 4: We now consider the same discrete time

system as in Example 3, but this time we choose a faster

reference system with ar = −0.2 and br = 1, corresponding

to ωr = 2.24 and ζr = 0.89. Then the reference system in

the z domain is given by

br

z + ar
=

1

z − 0.2
. (39)

This results in MC PID coefficients given by
[

K0 K1 K2

]

=
[

12.70 −26.63 16.67
]

(40)

0 10 20 30 40 50 60
0

0.5

1

1.5

2

 

 

Step Response

Time (sec)

A
m

p
lit

u
d

e

closed loop reference system

PID controlled system

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

Root Locus

Real Axis

Im
a

g
in

a
ry

 A
x
is

Fig. 7. Example 3. Discrete time MC PID for a slow underdamped
reference system.
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Fig. 8. Example 4. Discrete time MC PID for a faster reference system.

or

[

KI KP KD

]

=
[

2.75 1.23 12.70
]

. (41)

The resulting closed loop step response and the correspond-

ing root locus are shown in Figure 8, where all closed loop

poles are labeled by ∗ on the corresponding root locus.

The PID controlled step response follows the closed loop

reference system quite well.

V. CONCLUSIONS

The problem of designing a PID controller is posed in a

setting where a selected reference system presents the design

requirements. This leads to a simple problem of equating

coefficients of like powers in polynomials originating in the

reference system transfer function, the transfer function of

the system to be controlled as well as the PID coefficients.

Effectively, an overdetermined system of equations in the

PID coefficients results, which is solved in the minimum

least square sense. We refer to this controller as the Matching

Coefficients PID (MC PID). The computation is very simple

involving basic high school mathematics only.

In addition, a disturbance rejection scheme based on a

disturbance observer was set up in the continuous time,

in particular to deal with a disturbance entering highly

underdamped system poles. A similar disturbance rejection

scheme may be set up in the discrete time case.
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Several examples are presented showing excellent results.

Simulation tests were also done demonstrating that stable

closed loop systems were obtained until the reference system

became highly underdamped, naturally resulting in degraded

performance and eventually unstability. Some test were also

done indicating stable well performing closed loops, even

with slightly unstable system poles.

While there are no explicit criteria for a selection of a

reference system that will guarantee closed loop stability,

systematic approaches can be designed for modifying the

reference system in these cases.

APPENDIX A: MATLAB CODE FOR COMPUTATION OF PID

COEFFICIENTS IN EXAMPLE 1 - CONTINUOUS TIME:

a1=[1 2]’; a2=[1 0.2 1]’;

a=conv(a1,a2); bra=omega^2*a;

beta1xnimpnus1=conv([2*zeta*omega 1 ],b);

beta3xnplus1=[beta1xnimpnus1 0 0; ...

0 beta1xnimpnus1 0;0 0 beta1xnimpnus1]’;

PID=beta3xnplus1\bra(end:-1:1);

KD=PID(3); KP=PID(2); KI=PID(1);

APPENDIX B: MATLAB CODE FOR COMPUTATION OF PID

COEFFICIENTS
[

K0 K1 K2

]

,
[

KI KP KD

]

AND CLOSING OF LOOP IN EXAMPLE 3 - DISCRETE TIME:

b=0.5*0.4*0.3*poly([0 0]);

a=(poly([0.5 0.6 0.7]))’;

ar=-0.8; br=1; bra=br*[0; 0; a];

hatphi=[conv([ar 1],b) 0 0; ...

0 conv([ar 1],b) 0;0 0 conv([ar 1],b)]’;

k012=hatphi\bra(end:-1:1);

kPID=[1 1 1;0 -1 -2;0 0 1]*k012(end:-1:1);

cb=k012(1)*[0 0 b]+k012(2)*[0 b 0] ...

+k012(3)*[b 0 0];

cbPID=kPID(3)*([b 0 0]-2*[0 b 0]+ [0 0 b]) ...

+kPID(2)*([b 0 0]-[0 b 0])+kPID(1)*[b 0 0];

zminus1xzxa=[a’ 0 0]-[0 a’ 0];

OL=tf(cb,zminus1xzxa,1); LL=feedback(OL,1);
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