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Abstract— This paper, which is the first of two parts, brings
in the notions of vector addition and the associated scalar
multiplication operations on probabilistic finite state automata
(PFSA). A class of PFSA is shown to constitute a vector space
over the real field R, where the zero element is semantically
equivalent to a subclass of PFSA, referred to as symbolic white
noise. A norm is introduced on the vector space of PFSA and it
quantifies the non-probabilistic behavior of a PFSA. The second
part constructs a family of inner products on this vector space
and presents numerical examples and applications.

I. INTRODUCTION

Probabilistic finite state automata (PFSA) have emerged as

a tool for modeling uncertain dynamical systems [1][2]. In

this respect, symbolization-based techniques have been de-

veloped for probabilistic representation of dynamical systems

to compensate for certain inadequacies of classical time-

domain and frequency-domain system identification. The key

feature of the work reported in this paper, which is the

first of two parts, is formal language-theoretic and symbolic

modeling instead of classical continuous-domain modeling.

The basic approach is symbolic dynamic filtering (SDF) [3]

that partitions the (possibly pre-processed) time series or

image data observed from the underlying system to generate

a string of symbols. Then, semantic models are constructed

in the symbolic domain.

Although many algorithms have been proposed for con-

structing PFSA models from time series data, the theory

of how to algebraically manipulate two PFSA has not been

explored except for a few cases. The notion of vector space

construction for finite state automata over the finite field

GF (2) was reported by Ray [4]. Barfoot and D’leuterio [5]

proposed an algebraic construction for control of stochastic

systems, where the algebra is defined for m × n stochastic

matrices, which is only directly applicable to PFSA of the

same structure (see Definition IV.6). A structural manip-

ulation of PFSA models of dynamical systems has been

addressed by Chattopadhyay and Ray [6], where the ability

to project a PFSA model to an arbitrary structure is critical

for synthesis of supervisory control algorithms for symbolic

models.

⋆ This work has been supported in part by the U.S. Office of Naval
Research under Grant No. N00014-09-1-0688, and the U.S. Army Research
Laboratory and the U.S. Army Research Office under Grant No. W911NF-
07-1-0376.

The major contribution of this paper is formulation of a

normed vector space of a certain class of PFSA over the

real field R. The vector space formalism enriches the current

theory for PFSA by taking into account disparate automaton

structures and probability measures, as needed for many

engineering applications (e.g., information fusion in sensor

networks).

II. PRELIMINARIES

In the formal language theory, an alphabet Σ is a (non-

empty finite) set of symbols whose cardinality is denoted as

|Σ|. A string x over Σ is a finite-length sequence of symbols

in Σ, and its length, denoted by |x|, represents the number

of symbols in x. The Kleene closure of Σ, denoted by Σ⋆, is

the set of all finite-length strings of events including the null

string ǫ; cardinality of Σ⋆ is ℵ0. The set of all strictly infinite-

length strings is denoted as Σω; cardinality of Σω is ℵ1. The

string xy is called concatenation of x and y. It is obvious

that the null string ǫ is the identity for the concatenation

operation.

Definition II.1 (PFSA) A probabilistic finite state automa-

ton (PFSA) is a tuple G = (Q, Σ, δ, q0, π̃), where

• Q is a (nonempty) finite set, called set of states;

• Σ is a (nonempty) finite set, called input alphabet;

• δ : Q × Σ → Q is the state transition function;

• q0 ∈ Q is the start state;

• π̃ : Q × Σ → [0, 1] is an output mapping which is

known as a probability morph function and satisfies the

condition
∑

τ∈Σ π̃(qj , τ) = 1 for all qj ∈ Q.

The transition map δ naturally induces an extended tran-

sition function δ⋆ : Q × Σ⋆ → Q such that δ⋆(q, ǫ) = q and

δ⋆(q, xτ) = δ(δ⋆(q, x), τ) for q ∈ Q, x ∈ Σ⋆ and τ ∈ Σ.

The probability morph function π̃ is represented in a

matrix form as Π̃ with the element Π̃ij , π̃(qi, σj), where

qi ∈ Q and σj ∈ Σ. This paper assumes that all states in

a PFSA are reachable from the start state. Otherwise, the

non-reachable states should be removed from Q.

Definition II.2 (Probability Measure Space) Given an al-

phabet Σ, the set BΣ , 2Σ⋆

Σω is defined to be the σ-

algebra [7] generated by the set
{
xΣω : x ∈ Σ⋆

}
.
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For brevity, the probability p(xΣω) is denoted as

p(x), ∀x ∈ Σ⋆, in the sequel. That is, p(x) is the probability

of occurrence of all (infinitely long) strings with x as the

prefix.

Definition II.3 (Probabilistic Nerode Relation [6]) Given

an alphabet Σ, any two strings x, y ∈ Σ⋆ are said to satisfy

the probabilistic Nerode relation Np on a probability space

(Σω, BΣ, p), and are denoted by xNpy, if either of the

following conditions is true:

1) p(x) = p(y) = 0;

2) ∀σ ∈ Σ⋆, p(xσ)
p(x) = p(yσ)

p(y) if p(x) 6= 0 and p(y) 6= 0.

It is proven in [6] that the probabilistic Nerode relation

Np forms a right-invariant equivalence class. In the sequel,

the probabilistic Nerode equivalence class of a string x on

Σ⋆ is denoted by [x]p, i.e., [x]p , {z ∈ Σ⋆ : xNpz}.

Remark II.1 The probabilistic Nerode equivalence of a

measure p induces a partition of strings on Σ⋆. In general,

such a partition of Σ⋆ could have infinite index, i.e., consist

of infinitely many equivalence classes. However, there must

be finitely many equivalence classes for a probability mea-

sure that is encoded by a PFSA [6]. In other words, each

PFSA must have a finite index as discussed later in this paper

at the end of Section III.

III. VECTOR SPACE OF PROBABILITY MEASURES ON BΣ

Given the probability measure space (Σω , BΣ, p), let P

denote the space of all probability measures on BΣ. Let

P+ , {p ∈ P : p(x) > 0, ∀x ∈ Σ⋆}, which is a proper

subset of P . Thus, each element of P
+ is a strictly positive

probability measure that assigns a non-zero probability to any

string on BΣ.

Definition III.1 (Vector Addition) The operation of vector

addition ⊕ : P+ × P+ → P+ is defined as p3 , p1 ⊕
p2, ∀p1, p2 ∈ P+ such that

1) p3(ǫ) = 1;

2) ∀x ∈ Σ⋆ and τ ∈ Σ,
p3(xτ)
p3(x) = p1(xτ)p2(xτ)∑

α∈Σ
p1(xα)p2(xα) .

3) For all countable pairwise disjoint sets {xiΣ
ω},

p3(
⋃

i{xΣω}) =
∑

i p3(xi)

In the above equation, p3 is a probability measure on P+

because Σ
τ∈Σ

p3(xτ) = Στ∈Σ
p1(xτ)p2(xτ)∑

α∈Σ
p1(xα)p2(xα)p3(x) =

p3(x) ∀x ∈ Σ⋆.

Proposition III.1 (P+,⊕) forms an Abelian group.

Proof: The closure and commutativity properties are

obvious. Associativity, existence of identity, and existence

of the inverse element are established below.

• Associativity:

Following Condition (2) in Definition III.1, it suffices to

show (p1 ⊕ p2) ⊕ p3 = p1 ⊕ (p2 ⊕ p3) ∀x ∈ Σ⋆ and τ ∈ Σ.

((p1 ⊕ p2) ⊕ p3)(xτ)

((p1 ⊕ p2) ⊕ p3)(x)
=

(p1 ⊕ p2)(xτ)p3(xτ)∑
β∈Σ(p1 ⊕ p2)(xβ)p3(xβ)

=
p1(xτ)p2(xτ)p3(xτ)∑

β∈Σ p1(xβ)p2(xβ)p3(xβ)

=
p1(xτ)(p2 ⊕ p3)(xτ)∑

β∈Σ p1(xβ)(p2 ⊕ p3)(xβ)

=
(p1 ⊕ (p2 ⊕ p3))(xτ)

(p1 ⊕ (p2 ⊕ p3))(x)

• Existence of identity:

Let a probability measure e of symbol strings be defined

such that e(x) ,
(

1
|Σ|

)|x|

∀x, where |x| denotes the length

of a string x ∈ Σ⋆. It follows that ∀τ ∈ Σ,
e(xτ)
e(x) = 1

|Σ| .

Then, for a probability measure p ∈ P
+ and ∀τ ∈ Σ,

(p ⊕ e)(xτ)

(p ⊕ e)(x)
=

p(xτ)e(xτ)∑
α∈Σ p(xα)e(xα)

=
p(xτ) 1

|Σ|

1
|Σ|

∑
α∈Σ p(xα)

=
p(xτ)

p(x)

The above relations imply that p⊕e = e⊕p = p by Definition

III.1 and by commutativity. Therefore, e is the identity of the

monoid (P+,⊕).

• Existence of inverse:

∀p ∈ P+, ∀x ∈ Σ⋆ and ∀τ ∈ Σ, let a probability measure

−p be defined as:

(−p)(ǫ) , 1 and
(−p)(xτ)

(−p)(x)
,

p−1(xτ)∑
α∈Σ p−1(xα)

where p−1(xτ) = 1
p(xτ) . Then, it follows that

(p ⊕ (−p))(xτ)

(p ⊕ (−p))(x)
=

p(xτ)(−p)(xτ)∑
α∈Σ p(xα)(−p)(xα)

=

p(xτ)p−1(xτ)∑
β∈Σ

p−1(xβ)
∑

α∈Σ p(xα) p−1(xα)∑
β∈Σ

p−1(xβ)

=
1

|Σ|

The above expression yields p ⊕ (−p) = e and hence

(P+,⊕) is an Abelian group.

In the sequel, the zero-element e of the Abelian group

(P+,⊕) is denoted as symbolic white noise. Next, the scalar

multiplication operation is defined over the real field R.

Definition III.2 (Scalar Multiplication) The scalar multi-

plication operation ⊙ : R × P+ → P+ is defined as

follows:

1) (k ⊙ p)(ǫ) = 1;

2)
(k⊙p)(xτ)
(k⊙p)(x) = pk(xτ)∑

α∈Σ
pk(xα)

3) For all countable pairwise disjoint sets {xiΣ
ω},

(k ⊙ p)(
⋃

i{xΣω}) =
∑

i(k ⊙ p)(xi)

where pk(xτ) = [p(xτ)]k, k ∈ R, p ∈ P+, x ∈ Σ⋆, and

τ ∈ Σ.

It follows that k⊙p is a valid probability measure on P+.
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Remark III.1 By convention, it is assumed that the scalar

multiplication operation has a higher precedence than the

addition operation. For example, k ⊙ p1 ⊕ p2 implies (k ⊙
p1) ⊕ p2.

Theorem III.1 (Main Result) (P+,⊕,⊙) defines a vector

space over the real field R.

Proof: Let p, p1, p2 ∈ P+, k, k1, k2 ∈ R, x ∈ Σ⋆, and

τ ∈ Σ. We check the following equalities:

• It suffices to show that k ⊙ p1 ⊕ k ⊙ p2 = k ⊙ (p1 ⊕ p2).

(k ⊙ p1 ⊕ k ⊙ p2)(xτ)

(k ⊙ p1 ⊕ k ⊙ p2)(x)

=
(k ⊙ p1)(xτ) · (k ⊙ p2)(xτ)

Σα∈Σ [(k ⊙ p1)(xα) · (k ⊙ p2)(xα)]

=

pk
1
(xτ)∑

α∈Σ
pk
1
(xα)

pk
2
(xτ)∑

α∈Σ
pk
2
(xα)

∑
α∈Σ

pk
1
(xα)∑

β∈Σ
pk
1
(xβ)

pk
2
(xα)∑

β∈Σ
pk
2
(xβ)

=
pk
1(xτ)pk

2(xτ)∑
α∈Σ pk

1(xα)pk
2(xα)

=
(p1 ⊕ p2)

k(xτ)∑
α∈Σ(p1 ⊕ p2)k(xα)

=
(k ⊙ (p1 ⊕ p2))(xτ)

(k ⊙ (p1 ⊕ p2))(x)

• It suffices to show that (k1 + k2)⊙ p = k1 ⊙ p⊕ k2⊙ p.

((k1 + k2) ⊙ p)(xτ)

((k1 + k2) ⊙ p)(x)
=

pk1+k2(xτ)∑
α∈Σ pk1+k2(xα)

=

pk1 (xτ)∑
γ∈Σ

pk1 (xγ)
pk2 (xτ)∑

γ∈Σ
pk2 (xγ)

∑
α∈Σ

pk1 (xα)∑
γ∈Σ

pk1 (xγ)
pk2 (xα)∑

γ∈Σ
pk2 (xγ)

=
(k1 ⊙ p)(xτ) · (k2 ⊙ p)(xτ)∑

α∈Σ [(k1 ⊙ p)(xα) · (k2 ⊙ p)(xα)]

=
(k1 ⊙ p ⊕ k2 ⊙ p)(xτ)

(k1 ⊙ p ⊕ k2 ⊙ p)(x)

• It suffices to show that k1 ⊙ (k2 ⊙ p) = (k1k2) ⊙ p.

(k1 ⊙ (k2 ⊙ p))(xτ)

(k1 ⊙ (k2 ⊙ p))(x)
=

(k2 ⊙ p)k1(xτ)∑
α∈Σ(k2 ⊙ p)k1(xα)

=

(
pk2 (xτ)∑

β∈Σ
pk2 (xβ)

)k1

∑
α∈Σ

(
pk2 (xα)∑

β∈Σ
pk2 (xβ)

)k1

=
pk1k2(xτ)∑

β∈Σ pk1k2(xβ)
=

((k1k2) ⊙ p)(xτ)

((k1k2) ⊙ p)(x)

• The equality 1⊙ p = p follows from Definition III.2.

So far an algebraic structure on P+ has been established.

Now, a topological structure is introduced on a subspace of

the vector space P+ with an appropriate norm.

Definition III.3 (Subspace P+
∞) The subspace P+

∞ of the

vector space P+ is defined as:

P
+
∞ =

{
p ∈ P

+ : sup
x∈Σ⋆

log

(
p(xτmax)

p(xτmin)

)
< ∞

}
(1)

where p(xτmax) , maxτ∈Σ{p(xτ)} and p(xτmin) ,
minτ∈Σ{p(xτ)},

Theorem III.2 A function ‖· ‖ : P+
∞ → [0,∞) defined as:

‖p‖ = sup
x∈Σ⋆

log

(
p(xτmax)

p(xτmin)

)
(2)

is a norm on the vector space P+
∞.

Proof: Let p ∈ P+
∞. The following properties are

established:

• Strict positivity: Since
p(xτmax)
p(xτmin) ≥ 1, it follows that

‖p‖ ≥ 0. Clearly for the zero element e,
e(xτmax)
e(xτmin) = 1 for

all x ∈ Σ⋆ and thus ‖e‖ = 0.

Conversely, if ‖p‖ = 0 then it forces that
p(xτmax)
p(xτmin) = 1 for

all x ∈ Σ⋆.

It follows that
p(xτ)
p(x) = 1

|Σ| for all x ∈ Σ⋆ and τ ∈ Σ.

Indeed, p = e.

• Homogeneity: A non-negative real k preserves the order

of p(xτ) for any fixed x and a negative real k reverses the

order. Therefore, for k ≥ 0,

‖k ⊙ p‖ = sup
x∈Σ⋆

log

(
(k ⊙ p)(xτmax)

(k ⊙ p)(xτmin)

)

= sup
x∈Σ⋆

log

(
p(xτmax)

p(xτmin)

)k

= |k| · ‖p‖

and for k < 0,

‖k ⊙ p‖ = sup
x∈Σ⋆

log

(
(k ⊙ p)(xτmax)

(k ⊙ p)(xτmin)

)

= sup
x∈Σ⋆

log

(
p(xτmin)

p(xτmax)

)k

= sup
x∈Σ⋆

log

(
p(xτmax)

p(xτmin)

)−k

= |k| · ‖p‖

•Triangular inequality:

‖p1 ⊕ p2‖ = sup
x∈Σ⋆

log

(
(p1 ⊕ p2)(xτmax)

(p1 ⊕ p2)(xτmin)

)

≤ sup
x,y∈Σ⋆

log

(
p1(xτmax)p2(yτmax)

p1(xτmin)p2(yτmin)

)

= ‖p1‖ + ‖p2‖

The proof is now complete.

It follows from Theorem 4 in [6] that a probability measure

p ∈ P+
∞ can be encoded into a PFSA if and only if the

probabilistic Nerode equivalence Np is of finite index. Let

P
+
f denote the set of positive probability measures, which

has only finitely many Nerode equivalence classes.
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IV. PFSA SPACE AND PROBABILITY MEASURE SPACE

There is a close relationship between the space of prob-

abilistic finite state automata (PFSA) and the space of

probability measures on BΣ. A concept of equivalence is

introduced in this section to establish a bijection between

these two spaces to admit similar vector space structures.

Following Definition II.1, let Ã , {G = (Q, Σ, δ, q0, π̃) :
π̃(q, σ) > 0 for all q ∈ Q and all σ ∈ Σ}.

Definition IV.1 (Mapping of PFSA [6]) Let a PFSA G =
(Q, Σ, δ, q0, π̃) ∈ Ã and the associated probability measure

p ∈ P
+
f . Then, a map H̃ : Ã → P

+
f is defined as H̃(G) =

p such that

p(x) = π̃(q0, σ1)

r−1∏

k=0

π̃(δ⋆(q0, σ0σ1 · · ·σk), σk+1) (3)

where x , σ1 · · ·σr ∈ Σ⋆ is a symbol string of length r ∈ N

and the set {σ0} signifies the empty string ǫ.

Algorithm 1 Construction of PFSA G from the probability

measure p associated with the measurable space (Σω, BΣ)

Input: (Σω, BΣ, p) such that Np is of finite index n ∈ N;

Output: G;

Let Q =
{
qj : j ∈ {1, · · · , n}

}
be the set of equivalence

classes of the relation Np ;

Set the initial state of G as qo ∈ Q such that the null string

ǫ belongs to the equivalence class qo;

for each qj ∈ Q do

Pick an arbitrary string x ∈ qj ;

for each σ ∈ Σ do

if xσ ∈ qk then

Set δ(qj , σ) = qk;

Set π̃(qj , σ) = p(xσ)
p(x) ;

end if

end for

end for

Algorithm 1 is constructed in the context of the probabilis-

tic Nerode equivalence Np (see Definition II.3) such that the

map H̃ : Ã → P
+
f in Definition IV.1 is surjective. However,

H̃ may not be injective as explained below.

There may exist different PFSA realizations that encode

the same probability measure on BΣ due to two reasons:

(i) non-minimal realization and (ii) state relabeling. In this

respect, the equivalence of two PFSA is addressed as follows.

Definition IV.2 (PFSA equivalence) Two PFSA G̃ and G
are said to be equivalent if the associated probabilities are

equal, i.e., if H̃(G̃) = H̃(G). The equivalence class of G is

denoted as Ξ(G) , {G̃ ∈ A : H̃(G̃) = H̃(G)}.

Definition IV.2 is interpreted as follows. There is no

distinction among the PFSA that encode the same probability

measure on BΣ, because it is not important how the measure

is encoded but what the measure itself is. This formulation

of equivalence classes bears a direct analogy with that of the

Lp space, where for each f ∈ Lp, the vector f means the

equivalence class of f defined as {g ∈ Lp : f = g a.e.}.

Next we define the quotient space A , Ã /Ξ and the

associated quotient map

H : A −→ P
+
f (4)

is well defined because any member in the equivalence class

Ξ(G) yields the same function value. The equivalence class

Ξ(G) is simply denoted as G for brevity in the sequel.

The quotient map H : A −→ P
+
f in Eq. (4) is a bijection,

because the original map H̃ : Ã → P
+
f is constructed to be

surjective (see Algorithm 1) and the quotient map is naturally

injective. The bijection H permits a similar definition of a

normed vector space on A . In this setting, the inverse of the

map H is denoted as:

F : P
+
f → A such that HF = Id : P

+
f → P

+
f (5)

where Id is the identity map. Note that the inverse map F

is generated by Algorithm 1.

Definition IV.3 (Perfect Encoding) Given an alphabet Σ,

a PFSA G = (Q, Σ, δ, q0, π̃) is said to be a perfect encoding

of the measure space (Σω, BΣ, p) if p = H(G).

Next we present Proposition IV.1 and Corollary IV.1,

which together show that P
+
f is a subspace of the normed

space (P+
∞, ‖ · ‖) (See Theorem III.2).

Proposition IV.1 Let p1, p2 ∈ P+ and x, y ∈ Σ⋆.

1) If z1, z2 ∈ [x]p1
∩ [y]p2

, then z1Np1⊕p2
z2;

2) If z1, z2 ∈ [x]p1
and k ∈ R, then z1Nk⊙p1

z2

where [x]p , {z ∈ Σ⋆ : xNpz}.

Proof: Let un = τ1τ2 . . . τn ∈ Σ⋆ and p3 = p1 ⊕ p2

where τi ∈ Σ. For Eq. (1), it will be proven that
p3(z1un)

p3(z1)
=

p3(z2un)
p3(z2)

for any un ∈ Σ⋆. This can be achieved by induction.

p3(z1u1)

p3(z1)
=

p1(z1u1)p2(z1u1)∑
α∈Σ p1(z1α)p2(z1α)

=

p1(z1u1)
p1(z1)

p2(z1u1)
p2(z1)∑

α∈Σ
p1(z1α)
p1(z1)

p2(z1α)
p2(z1)

=

p1(z2u1)
p1(z2)

p2(z2u1)
p2(z2)∑

α∈Σ
p1(z2α)
p1(z2)

p2(z2α)
p2(z2)

=
p3(z2u1)

p3(z2)

Now for the inductive step,

p3(z1un+1)

p3(z1)
=

p3(z1un)

p3(z1)

p3(z1un+1)

p3(z1un)

=
p3(z2un)

p3(z2)

p3(z2un+1)

p3(z2un)
=

p3(z2un+1)

p3(z2)

The second identity is derived in the same way.

Corollary IV.1 P
+
f is a subspace of the normed space

(P+
∞, ‖ · ‖) over R with ⊕ and ⊙ being the vector addition

and scalar multiplication operations, respectively.
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Proof: Let k ∈ R and let the probability measures

p1, p2 ∈ P
+
f induce M1 and M2 equivalence classes,

respectively, where M1, M2 ∈ N (see Remark II.1). From

Proposition IV.1, it follows that p1⊕p2 has at most M1 ·M2

equivalence classes and k ⊙ p1 has at most M1 equivalence

classes. Hence the closure property is satisfied.

Next it is shown that ‖ · ‖ is a valid norm. Since every

p ∈ P
+
f has only finitely many equivalence classes, the

supremum in Eq. (III.3) is replaced by its maximum:

‖p‖ = max
x∈Σ⋆

log

(
p(xτmax)

p(xτmin)

)
(6)

as there are only finitely many values
p(xτmax)
p(xτmin) can take.

It is obvious that ‖p‖ < ∞, ∀p ∈ P
+
f . Now, by virtue of

Theorem III.2 with the maximum instead of the supremum,

‖ · ‖ is indeed a valid norm on P
+
f .

So far we have established the vector space (P+
f ,⊕,⊙).

By use of the bijection H and its inverse F, we introduce

new vector addition and scalar multiplication operations on

A .

Definition IV.4 (Vector space A ) Let G1, G2 ∈ A and

k ∈ R. Then,

• The addition operation + : A ×A → A is defined as

G1 + G2 = F(H(G1) ⊕H(G2))

• The scalar multiplication operation · : R × A → A is

defined as

k · G1 = F(k ⊙ (H(G1))

Remark IV.1 It follows from the Definition IV.4 that

H(G1+G2) = H(G1)⊕H(G2) and H(k·G1) = k⊙H(G1).
This construction implies that the bijection H is linear and

hence the bijection H becomes an isomorphism between the

vector spaces (P+
f ,⊕,⊙) and (A , +, ·).

A norm on the vector space A is defined in the same way.

Definition IV.5 (Normed Space A ) The norm ‖·‖A on the

vector space A is defined as

‖G‖A = ‖H(G)‖ ∀G ∈ A

This makes the quotient map H : A −→ P
+
f in Eq. (4) an

isometric isomorphism between the two normed spaces.

For brevity, the scalar multiplication · is omitted in the

expression. Again, by using the same precedence rule as

before, multiplication takes precedence over addition. For

example, kG1 + G2 implies (k · G1) + G2 rather than

k · (G1 + G2). Furthermore, (−1) · G is denoted by −G.

Definition IV.4 does not provide an efficient way of

computing the algebraic operations. An alternative means is

explored to express these operations in terms of PFSA only.

Definition IV.6 (Structural Similarity) Two PFSA Gi =
(Qi, Σ, δi, q

i
0, π̃i) ∈ A , i = {1, 2}, are said to have the same

structure if Q1 = Q2, q1
0 = q2

0 and δ1(q, σ) = δ2(q, σ) ∀q ∈
Q1 and ∀σ ∈ Σ.

Proposition IV.2 If two PFSA G1, G2 ∈ A are of the same

structure, i.e., Gi = (Q, Σ, δ, q0, π̃i), i = {1, 2}, then G1 +
G2 = (Q, Σ, δ, q0, π̃) where

π̃(q, σ) =
π̃1(q, σ)π̃2(q, σ)∑

α∈Σ π̃1(q, α)π̃2(q, α)
(7)

Proof: Denoting pi = H(Gi), i = {1, 2}, since G1 and

G2 have the same structure, it follows from Eq. (3) that

pi(xσ)

pi(x)
= π̃i(δ

⋆(q0, x), σ) = π̃i(q, σ)

for all string x in state q ∈ Q and all σ ∈ Σ.

Now, by Definition III.1 and Definition IV.1,

π̃(q, σ) =
(p1 ⊕ p2)(xσ)

(p1 ⊕ p2)(x)
=

p1(xσ)p2(xσ)∑
α∈Σ p1(xα)p2(xα)

=

p1(xσ)p2(xσ)
p1(x)p2(x)∑

α∈Σ
p1(xα)p2(xα)

p1(x)p2(x)

=
π̃1(q, σ)π̃2(q, σ)∑

α∈Σ π̃1(q, α)π̃2(q, α)

The proof is now complete.

Definition IV.7 (Synchronous Composition) The binary

operation of synchronous composition of two PFSA

Gi = (Qi, Σ, δ, q
(i)
0 , π̃i) ∈ A where i = 1, 2, denoted by

⊗ : A × A → A is defined as:

G1 ⊗ G2 = (Q1 × Q2, Σ, δ′, (q
(1)
0 , q

(2)
0 ), π̃′)

where ∀qi ∈ Q1 ∀qj ∈ Q2 ∀σ ∈ Σ,

δ′((qi, qj), σ) = (δ1(qi, σ), δ2(qj , σ)) and

π̃′((qi, qj), σ) = π̃1(qi, σ)

Proposition IV.3 If G1, G2 ∈ A , then H(G1) = H(G1 ⊗
G2) and therefore G1 = G1 ⊗ G2.

Proof: See Theorem 4.5 in [6].

Proposition IV.4 G1 ⊗ G2 and G2 ⊗ G1 have the same

structure up to state relabeling.

Proof: Let us define a function T : Q × Q → Q × Q
such that T (p, q) = (q, p). It is noted that T is a bijection.

Theorem IV.1 Given two PFSA G = (Q, Σ, δ, q0, π̃) ∈ A ,

G̃ ∈ A and k ∈ R. Then

1) G + G̃ can be computed via Proposition IV.2 and

Definition IV.7 as follows

G + G̃ = G ⊗ G̃ + G̃ ⊗ G (8)

2) kG = (Q, Σ, δ, q0, π̃
′) where

π̃′(q, σ) =
(π̃(q, σ))k

∑
α∈Σ(π̃(q, α))k

(9)
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for all q ∈ Q and σ ∈ Σ.

3) The norm of E is

‖G‖A = max
q∈Q

log

(
maxσ1∈Σ π̃(q, σ1)

minσ2∈Σ π̃(q, σ2)

)
(10)

Proof:

1) It follows from Proposition IV.4 and Proposition IV.3

that

H(G + G̃) = H(G) ⊕H(G̃)

= H(G ⊗ G̃) ⊕H(G̃ ⊗ G) = H(G ⊗ G̃ + G̃ ⊗ G)

2) By Proposition IV.1, scalar multiplication by k does

not change the structure of G and therefore the tran-

sition function δ and the start state also remain un-

changed. Denoting p = H(G), it follows from Eq. (3)

that
p(xσ)

p(x)
= π̃(δ⋆(q0, x), σ) = π̃(q, σ)

for all string x in state q ∈ Q and all σ ∈ Σ. By

Definition III.2, it follows that

π̃′(q, σ) =
k ⊙ p(xσ)

k ⊙ p(x)
=

pk(xσ)∑
α∈Σ pk(xα)

=

pk(xσ)
pk(x)∑

α∈Σ
pk(xα)
pk(x)

=
(π̃(q, σ))k

∑
α∈Σ(π̃(q, α))k

3) It directly follows from Definitions III.3 and IV.1.

The proof is now complete.

V. INTERPRETATION OF ALGEBRAIC OPERATIONS

The probabilistic finite state automata (PFSA), constructed

from an alphabet Σ, are regarded as semantic models of the

underlying physical process. Interpretations of the algebraic

operations in the vector space of PFSA are presented below.

The vector sum p1 ⊕ p2 of two probability measures p1

and p2 increases the probability of the symbol strings that

are most likely to occur in both p1 and p2. If p1 and p2 are

probability distributions of positively (negatively) correlated

processes, then the distribution p1 ⊕ p2 approaches a delta

(uniform) distribution. In the extreme case, if p1 = −p2

(i.e., perfect negative correlation), then their vector addition

exactly yields e that represents the uniform distribution.

Hence, the norm of the sum of two measures p1 and p2

reflects the correlation between these two measures. The zero

element e, called symbolic white noise, in the vector space

P
+
f corresponds to the uniform distribution on BΣ and is

perfectly encoded by the PFSA E ∈ A , expressed as:

E = F(e) = {{q}, Σ, δ, {q}, π̃}

where δ(q, σ) = q and π̃(q, σ) = 1
|Σ| , ∀σ ∈ Σ.

Every string of the same length has equal probability

of occurrence in the PFSA E that has only one state,

where the symbols occur independently of each other and

have equal probability of occurrence. The knowledge of the

history does not provide any information for predicting the

future of any symbol sequence generated by E. Thus, E

is viewed as a semantic model for symbolic white noise in

a dynamical system, because no additional information is

provided through vector addition of E to any PFSA.

Scalar multiplication relates to reshaping the probability

distribution p ∈ P
+
f on BΣ. For example, multiplication

by k > 0 alters the probability assigned to strings in the

sense that a string with a higher probability will now have

a higher probability and vice versa for k < 0. As k → +∞
or k → −∞, the distribution p approaches the delta distri-

bution; similarly, as k → 0, the distribution p approaches

e that is the uniform distribution. In Definition III.3, the

uniform distribution yields a zero norm, while PFSA whose

distributions are close to the delta distribution would have

their respective norms close to infinity. With the increase

of k, ‖k ⊙ p‖ is a non-decreasing function of k. The norm

provides a uniform bound on the deviation from the uniform

distribution to quantify the non-probabilistic behavior of a

PFSA.

VI. SUMMARY AND CONCLUSIONS

This paper, which is the first of two parts, constructs a

vector space for a class of probabilistic finite state automata

(PFSA) in the measure-theoretic setting. The operations of

vector addition and scalar multiplication are introduced by

establishing an isomorphism between the space of probability

measures and the quotient space of PFSA relative to a

specified equivalence relation. This isomorphism is made

isometric by constructing appropriate norms on the respective

vector spaces. This mathematical framework is motivated

by various applications in dynamical systems modeling,

analysis, and control in the stochastic setting. Significance

of the algebraic operations is interpreted in terms of the

semantic models of the underlying process as the vector

space of PFSA. The second part [8] of this two-part paper

constructs a family of inner products for model identification

and order reduction.
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