
 
 

 
Abstract—This work aims to develop a novel non-destructive 

technique for real-time condition monitoring to enhance 
reliability and availability of fossil power systems during 
steady-state and transient operations. We focused on 
mechanical fatigue in plant components with the specific 
objectives of detection and identification of failure precursors, 
and compression of pertinent damage information to enable 
transmission over a wireless communication network. A 
symbolic encoding based technique is employed that utilizes 
analytic representation of ultrasonic signals for monitoring 
crack formation and propagation. The signal processing tools 
are implemented in MATLAB/Simulink environment, for 
which the direct code generation capability enables the 
algorithms to be executed on the microprocessor in real-time. 

I. INTRODUCTION 

urrently, about 45% of the total electric power in USA 
is generated by fossil fuel plants. These plants, on the 

average, have a service life of 40 to 60 years; and about 70% 
of these plants are over 40 years old [1]. Therefore, extended 
operation of aging power plants would require prognostic 
condition monitoring to reduce the probability of forced 
outage that is largely caused by component failures at high 
temperature and pressure at supercritical steam conditions 
[2]. High temperature low cycle fatigue and creep at 
supercritical steam conditions are examples of structural 
failures in power plants [3]. Most high temperature 
components in power plants such as superheater and reheater 
tubes, and main steam and hot reheat headers undergo 
thermo-mechanical fatigue and creep [4],[5]. Unless 
appropriate and timely maintenance actions are taken, these 
structural defects may lead to forced outage and colossal loss 
of plant availability. Condition monitoring for power plants 
aims reliable prognosis of structural damage and estimation 
of remaining service life at an early stage of material 
degradation. The goal is to enhance plant reliability and 
availability without compromising generation efficiency and 
performance during steady-state and transient operations. 

 
This work was supported in part by Department of Energy SBIR contract 

no. DE-SC0000914 
M. Yasar is with Techno-Sciences, Inc., Beltsville, MD 20705 USA; 

phone: 240-790-0673; fax: 240-790-0605; e-mail: yasarm@technosci.com 
G. Bajpai is with Techno-Sciences, Inc.; e-mail: bajpai@technosci.com 
S. Chakraborty, E. Keller and Asok Ray are with the Pennsylvania State 

University, University Park, PA 16802 USA, e-mail: szc138@psu.edu, 
eekeller@psu.edu, axr2@psu.edu 

Inspection techniques for power plants generally assume 
that the detection of a fault is sufficient. Thus, most efforts 
are placed on invention of sensors, or novel implementation 
of sensors. While this is adequate when a macro fault exists, 
i.e. a fatigue crack of sufficient length for detection, 
capturing progress of faults is not generally the goal of these 
technologies. The assumption is that a fault of sufficient size 
for detection exists, and thus can be located. Examples of 
such existing technologies are guided wave inspection, fiber 
optic sensing, acoustic emissions, eddy current testing, and 
electrically induced ultrasonic testing [6]-[9].  

In this paper, we address detection of incipient structural 
damage and failure precursors in crucial power system 
components sufficiently in advance. This information is vital 
for real-time intelligent decision-making for optimization of 
plant operation and maintenance (O&M) scheduling. The 
method used here is a synergistic combination of symbolic 
signal processing and ultrasonic damage sensing. The core 
concept is built upon the principles of Hilbert Transform, 
Symbolic Encoding, and Finite State Automata. We aim to 
deduct material conditions from time series data of 
piezoelectric transducers. The information on gradually 
evolving thermo-mechanical fatigue is extracted as statistical 
patterns from time series data at the time scale of plant 
operation, and textural features in the observed data sets are 
mapped into the symbol space for damage identification.  

This paper extends our previous work on Hilbert 
Transform analysis [10],[11] to two-dimensional analytic 
signal space partitioning, and presents an application to 
fatigue monitoring. This paper also reports dimensionality 
reduction of signals to suit efficient and error-corrected 
transmission of compressed data over a wireless 
communication network. The wireless sensing capability is 
essential to facilitate exchange of damage information 
among non-collocated components to enhance overall plant 
availability. The ensemble of distributed damage 
information at spatially disparate locations of the power 
plants can be inputs to the control and operation system for 
making O&M scheduling decisions in real time. 

This paper consists of six sections including the present 
one. Section II elaborates the algorithm development and 
Section III details the implementation. Section IV describes 
the test setup and the results are presented in section V. The 
paper is summarized and concluded in section VI. 
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II. ALGORITHM DEVELOPMENT 

In this paper, Symbolic Encoding technique is used for 
analysis of the time series data and Finite State Automata for 
compression of information into finite dimensional pattern 
vectors [12]. For preprocessing of the sensor data we also 
utilize analytic signal transformation, obtained by Hilbert 
Transform of the data, to discard the negative frequency 
components of the Fourier spectrum, providing a complex-
valued signal. This technique is well suited for time-
frequency analysis of non-stationary signals, for separation 
of frequency components in raw time series without any 
significant loss of pertinent information [10]. Once the 
analytic representation of the signal is obtained, it can be 
partitioned into non-overlapping segments using Symbolic 
Encoding to generate a symbol sequence from the signal. A 
fixed structure Finite State Automaton extracts the 
information for real-time monitoring of power plant 
components. Specifically, micro-structural anomalies can be 
captured as statistical patterns of the data. The evolving 
patterns are used to detect the damage and monitor the 
degraded components of the system. The procedure for crack 
formation and propagation monitoring using this concept 
requires the following steps: 

Data Acquisition: Relevant ultrasonic signals are 
sampled at suitable rate to generate time series data. The 
period of data acquisition is significantly small compared to 
that of damage evolution. Data is acquired at various slow 
time epochs ݐ଴, ⋯,ଵݐ ,  .௞ starting from the nominal conditionݐ

Preprocessing: Hilbert Transform is performed on time 
series data, and the complex-valued analytic signal is 
decomposed into phase and magnitude as explained below.  

Given ݔሺݐሻ, a real-valued function whose domain is the 
real field Թ, Hilbert Transform of ݔሺݐሻ is defined as:  

ሻݐ෤ሺݔ ൌ ࣢ሾݔሿሺݐሻ ൌ
ଵ

గ
׬ 	Թ

௫ሺఛሻ

௧ିఛ
݀߬ (1) 

That is, ݔ෤ሺݐሻ is the convolution of ݔሺݐሻ with 
ଵ

గ௧
 over Թ, 

which is represented in the Fourier domain as:  

࣠ሾݔ෤ሿሺߦሻ ൌ െ݅	sgnሺߦሻ	࣠ሾݔሿሺߦሻ (2) 

where sgnሺߦሻ ൌ ൜
൅1 ߦ	݂݅	 ൐ 0	
െ1 ߦ	݂݅	 ൏ 0	 

Given Hilbert Transform of a real-valued signal ݔሺݐሻ, the 
corresponding complex-valued analytic signal is defined as:  

ࣛሾݔሿሺݐሻ ൌ ሻݐሺݔ ൅  ሻ (3)ݐ෤ሺݔ	݅

ࣛሾݔሿሺݐሻ ൌ  ሻሻ (4)ݐ߮ሺ	expሺ݅	ሻݐሺܣ

where ܣሺݐሻ and ߮ሺݐሻ are called the instantaneous amplitude 
and instantaneous phase of ࣛሾݔሿሺݐሻ, respectively. For a real-
valued time series of ܰ data points, the analytic signal of this 
data sequence yields a pseudo-phase plot. This phase plot is 
constructed by a bijective mapping of the complex domain 
onto the Թଶ, i.e., by plotting the real and the imaginary parts 
of the analytic signal on the ݔ and ݕ axes, respectively. The 
time-dependent analytic signal in Eq. (3) is now represented 

as a (one-dimensional) trajectory in the two-dimensional 
pseudo-phase space. 

Signal Space Partitioning: The phase and magnitude 
data of the nominal signal are transformed from the 
continuous domain to the symbolic domain by partitioning 
the pseudo-phase space into finitely many discrete segments 
[13]. Either a uniform partition or the maximum entropy 
principle can be used for partitioning. 

In this paper, the analytic signal partitioning is based on 
maximum entropy principle which maintains the same 
number of data points in each segment of the partition, 
thereby maximizing the Shannon entropy [14]. In other 
words, the symbol probability occurrence is uniform. Let Ξ 
be a compact region in the pseudo-phase space, which 
encloses the trajectory. The objective here is to partition Ξ 
into finitely many mutually exclusive and exhaustive 
segments, where each segment is labeled with a symbol. The 
segments are determined by the instantaneous magnitude 
and phase of the analytic signal as well as based on the 
density of data points in these segments. 

Symbol Generation: Once the partition is generated, it 
remains invariant in further analysis. Symbols are generated 
from phase and magnitude data at different time epochs 
based on this partition. 

If the magnitude and phase of a data point of the analytic 
signal lies within a segment or on its boundary, then the data 
point is labeled with the corresponding symbol. Thus, a 
symbol sequence is naturally derived from the (complex-
valued) sequence of the analytic signal. The set of (finitely 
many) symbols is called the alphabet Σ. 

Pattern Representation: The nominal symbol sequence 
is utilized for construction of a Finite State Automaton using 
Hidden Markov Modeling techniques [12]. The structure of 
the Finite State Automaton remains fixed for all time epochs. 

In consequent time epochs, the state probability vector, 
which is derived from the state transition matrix of the 
constructed Finite State Automaton, is considered to be the 
statistical pattern of the time-series data. In fact, the state 
transition matrix can be called the Perron-Frobenius operator 
and the state probability vector is the stationary probability 
distribution of this operator (i.e. the left eigenvector 
corresponding to the unity eigenvalue of the matrix.) 
Therefore, the pertinent damage information can be 
compressed as low-dimensional pattern vectors to suit 
efficient transmission over a wireless network. 

Pattern Identification: Statistical characteristics of the 
data are defined by the state probability vectors of the 
automaton, and computation of these statistical pattern 
vectors at different slow time epochs are performed online 
from frequency counting of the automaton states.  

Given a representative symbol sequence derived from the 
complex-valued analytic signal, this data-driven analysis 
method utilizes a D-Markov Machine to detect the change in 
the underlying dynamics of the observed system. The D-
Markov machine starts with a state space structure where the 
states of the machine represent all the symbols 
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.௜ାଶߪ௜ାଵߪ௜ߪ . .  ௜ା஽ିଵ which occur in the sequence. Given theߪ
cardinality, |Σ|, of the alphabet and the depth, ܦ, the 
maximum number of states in the machine is given by |Σ|஽. 
The state machine moves from one state to another upon 
occurrence of a symbol. All sequences that have the same 
last ܦ symbols lead to the same state (hence, the name D-
Markov). 

Damage Detection: At this point, the rich information 
embedded in the sensor signal is mapped to a finite 
dimensional statistical pattern vector for information 
compression. The changes in the signal relative to the 
nominal condition can easily be identified from the 
evolution of this pattern vector.  

When the dynamics of the underlying system are highly 
similar, there will be minimal variation in the statistics of the 
symbol sequence, thus yielding state transition matrices with 
similar probabilities. A change in the dynamics will result in 
a different distribution of the symbols yielding distinctly 
different transition probabilities. One possible measure of 
this variation, which is used in this paper, is the angle 
between the state probability vectors at the nominal and off-
nominal conditions. The measure is defined as: 

௞܌ ൌ ݀ሺ݌଴, ௞ሻ݌ ൌ arccos ቀ
〈௣బ,௣ೖ〉

‖௣బ‖		‖௣ೖ‖
ቁ (5) 

where 〈݌଴,  ଴݌ ௞〉 is the inner product of probability vectors݌
and ݌௞ for the nominal condition and the current signal at 
ݐ ൌ  .• ௞, respectively, and ‖•‖ is the Euclidian norm ofݐ

III. ALGORITHM IMPLEMENTATION 

We have implemented the developed algorithms in 
MATLAB/Simulink environment. This implementation 
gives us a direct code generating capability so that the 
generated code can be executed in a computer or onboard a 
microprocessor of an electronic board. We have used a two-
step procedure, where the data partitioning is performed in 
step 1 and the state probability vector computation is 
implemented in step 2.  

Step 1: The first implemented step was to create a 
partitioning based on the nominal (reference) data of the 
component under test. This step can be done off-line after 
the data is collected by data acquisition hardware. However, 
the MATLAB/Simulink implementation was designed to 
create a partitioning method for both on-line and off-line 
application. During the implementation, we used two 
separate building blocks for Symbolic Encoding algorithms. 
One block performs the Hilbert Transform and the other 
block performs Maximum Entropy Partitioning.  

Analytic signal space partitioning methodology was used 
to determine the partitions for the symbol sequence 
generation. This was based upon the Hilbert Transform of 
the observed real-valued data sequence as explained before. 
In algorithm implementation, we decomposed the sensor 
signal into its magnitude and frequency components by first 
mapping the signal to analytic space and then computing the 
instantaneous frequency from the time difference of 

instantaneous phase as seen in Figure 1. Note that 
unwrapping is required to have a continuous phase signal at 
 edges. Gain block is used to scale the signal based on ߨ0/2
the sampling rate of the data and the order of the filter used 
in analytic signal block. 

 
Figure 1. Analytic signal transformation and decomposing the 
signal to magnitude and frequency 

In MATLAB/Simulink implementation, after Hilbert 
Transform the analytic signal is processed by the Maximum 
Entropy Partition block for phase-space partitioning as seen 
in Figure 2. ܰ data points are buffered and sorted for 
partitioning. Based on the number of segments, ݇, we select 
the average of data points ܰ ∙ ݅/݇ and ሺܰ ∙ ݅/݇ሻ ൅ 1, 
݅ ൌ 	1	,⋯ , ݇ െ 1 for borders of the partition. This assures 
that each segment has ܰ/݇ number of data points, therefore 
the resulting partition satisfies maximum entropy criterion. 

 
Figure 2. Maximum entropy partitioning 

Step 2: The second implemented step of the algorithm 
was to analyze the sensor signals online and in real-time to 
detect incipient faults and anomalies in the signal. This was 
implemented separately in MATLAB/Simulink. The 
detection method uses statistical pattern representations of 
the data, obtained by a Finite State Automaton in terms of a 
probability vector.  

In implementation, once again the data is mapped to an 
analytic signal using Hilbert Transform, and it was 
decomposed into the instantaneous magnitude and frequency 
components. Then the Symbolic Filter block, which consists 
of determining the statistical pattern of the data in terms of a 
probability vector and assigning a measure value to it, 
follows. The details are shown in Figure 3. We use 
StateFlow toolbox of MATLAB to create a finite state 
machine. By normalizing the column sum with the total 
number of transitions, we obtain the state probability vector. 
Given constant (known) state probability vector of the 
nominal case, the angle block measures the angle between 
the nominal and current vectors. 

 
Figure 3. Generating a symbol sequence and computing the 
state probability vector of the corresponding signal. Probability 
vector is compared to the nominal case using an angle measure. 
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IV. FATIGUE CRACK TEST BED 

Fatigue damage is one of the most commonly encountered 
sources of structural degradation during both nominal and 
off-nominal operations of power plants. The experimental 
apparatus, shown in Figure 4, is a special-purpose uniaxial 
fatigue testing machine that operates on the hydraulic power 
supplied by a hydraulic pump device, which moves under 
load control at speeds up to 12.5 Hz. The test apparatus is 
also connected to three computers dedicated for the tasks of 
data acquisition and control. The test specimens are 
subjected to tensile-tensile cyclic loading by a hydraulic 
cylinder under the regulation of computer-controlled electro-
hydraulic servo-valves. The image data of the specimen 
surface from the optical microscope and the sensor data from 
the ultrasonic transducers are passed to the data analysis and 
damage estimation subsystem. The information from the 
optical microscope is analyzed to determine the fatigue 
crack length on the specimen surface. Data sets from the 
ultrasonic sensors are analyzed using the algorithm 
described in Section II for fatigue damage estimation even 
before the optical microscope detects a surface crack. 

 
Figure 4. Fatigue damage test apparatus  

The specimens used in the experimental apparatus were 
typical hourglass shaped flat plates that have a machined 
notch for stress concentration to guarantee crack propagation 
at the notch end. Specimens used in this study were made of 
7075-T6 aluminum alloy [15]. These specimens with local 
stress concentration regions were designed to break in a 
reasonably short period of time to enhance the speed of the 
experiments. The test specimens were subjected to 
sinusoidal loading under tension-tension mode (where the 
maximum and minimum loads are 89.3 MPa and 4.85 MPa) 
at a frequency of 12.5 Hz. The direct component (DC) offset 
is provided in the load cycling to ensure that the specimen 
was always under tension.  

The travelling optical microscope, shown as part of the 
test apparatus in Figure 4, provides direct measurements of 
the visible part of a crack. The growth of surface crack was 
monitored continuously by the microscope which took the 
images of the specimen surface at regular intervals. 

Furthermore, a piezoelectric transducer was used to inject 
ultrasonic waves in the specimen and an array of receiver 
transducers was placed on the other side of notch to measure 
the transmitted signal. The ultrasonic waves were generated 
as 10 MHz sine wave signals. The ultrasonic system was 
synchronized with the load cycling such that the waves are 
emitted during a very short portion at the peak of every load 
cycle where the stress is maximum. 

Since the ultrasonic frequency (10 MHz) is much higher 
than the load cycling frequency (12.5 Hz), data collection is 
performed for a very short interval in the time scale of load 
cycling. The slow time epochs were chosen to be 500 load 
cycles (i.e., 40 sec) apart. At each epoch, the ultrasonic data 
points were collected for 50 cycles (i.e., 4 sec), which 
produced a string of 60,000 data points (i.e. sampling rate of 
15 kilosamples/sec). These sets of time series data points 
collected at different slow time epochs were analyzed using 
Symbolic Encoding of analytic signals and an anomaly 
measure was calculated using the angle norm between state 
probability vectors of Finite State Automaton at these slow 
time epochs. 

V. TEST RESULTS 

Using the fatigue damage apparatus described in Section 
III, we have conducted 6 set of experiments. Each 
experiment consisted of sinusoidal load cycles till the crack 
starting at the notch site fully develops. Due to material 
characteristics and imperfections of each specimen, the 
experiments took different number of cycles to conclude. 
Each dataset had 60,000 ൈ ܰ data points, where ܰ 
corresponds to the number of slow time epochs. We want to 
discuss the results in terms of absolute number of working 
cycles and life usage. 

For the first experiment conducted, the six triplets of 
plates in Figure 5 show two-dimensional images of a 
specimen surface, ultrasonic data and histograms of 
probability distribution at six different time epochs, 
approximately 1, 11, 22, 33, 38 and 43 kilocycles, exhibiting 
gradual evolution of fatigue damage. Note that the ultrasonic 
data were partitioned directly without Hilbert Transform. In 
each triplet of plates from (a) to (f) in Figure 5, the top plate 
exhibits the surface image of the test specimen as seen by 
the optical microscope. As exhibited on the top plates, the 
crack originated and developed on the right side of the notch 
at the center. Histograms in the bottom plates of six plate 
triplets in Figure 5 show the evolution of the state 
probability vector corresponding to fatigue damage growth 
on the test specimen at different slow time epochs, 
signifying how the probability distribution gradually 
changes from uniform distribution (i.e., minimal 
information) to delta distribution (i.e., maximum 
information). The middle plates show the ultrasonic time 
series data collected at corresponding slow time epochs. As 
seen in Figure 5, the visual inspection of the ultrasonic data 
does not reveal much information during early stages of 
fatigue damage but the statistical changes are captured in the 
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corresponding histograms.  
The top plate in plate triplet (a) of Figure 5 shows the 

image at the nominal condition (~1 kilocycles) when the 
anomaly measure is taken to be zero, which is considered as 
the reference point with the available information on 
potential damage being minimal. This is reflected in the 
uniform distribution (i.e., maximum entropy) as seen from 
the histogram at the bottom plate of plate pair (a). Both the 
top plates in plate triplets (b) and (c) at ~11 and ~22 
kilocycles, respectively, do not yet have any indication of 
surface crack although the corresponding bottom plates do 
exhibit deviations from the uniform probability distribution. 
This is evidence that the analytic signals, based on ultrasonic 
sensor data, produce damage information during crack 
initiation, which is not available from the corresponding 
optical images. 

 

 
Figure 5. Pictorial view of the evolving fatigue crack damage, 
corresponding ultrasonic data and histograms of probability 
distribution 

For the second set of experiments, the time series data 
obtained from the ultrasonic sensors were analyzed using the 
Hilbert Transform. Figure 6 depicts the analytic signal 
obtained from the time series data and the partitioning of the 
signal using the maximum entropy principle where real-axis 
was partitioned into 3, imaginary-axis was partitioned into 4 
segments resulting in total 12 distinct symbols. 

The next figure shows the probability distribution of the 
data in each segment. The results are obtained using a 12-
state Finite State Automaton with depth ܦ ൌ 1. This 
represents the statistical properties of the data in a lower 
dimensional space. The damage characteristics are evaluated 

using changes in these histograms. The evolution of state 
probabilities is also given in Figure 7 where the signal 
statistics change drastically as damage progresses. 

 
Figure 6. Analytic signal and its partitioning 

 

 

 
Figure 7. The probability distributions corresponding to 
different conditions of crack formation and propagation. Also 
shown is the evolution of probabilities as damage progresses 

We assign a measure value for the change in the 
probabilities. The angle between the vectors is used in this 
paper. Figure 8 summarizes the results of all 6 datasets. It is 
seen that the algorithms described herein can capture the 
damage patterns very effectively. However, due to the 
disparities in the damage for each specimen the results 
cannot be compared easily in these graphs. Plotting the 
measure with respect to the life usage can give us a better 
understanding. Figure 9 compares the results on a normalized 
scale where the x-axis is the life usage of specimens. As 
seen in the figure, first 60% of the life (0.6) is the crack 
initiation stage. Here, there are only minor changes in the 
data statistics. After 60%, there is a rapid acceleration in 
measure corresponding to the crack formation stage. Around 
0.85, we observe a fully formed crack. 
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Figure 8. The measure shows the evolution of damage as a 
function of loading cycles 

 
Figure 9. Calculated damage measure versus the life span of 
specimens 

VI. SUMMARY AND CONCLUSIONS 

In this paper, we have demonstrated structural monitoring 
using Symbolic Encoding of analytic signals for fatigue 
damage detection in power plants. We have used 
MATLAB/Simulink blocks to implement the algorithms, 
which can be used to create a C code to be executed onboard 
a microprocessor. The outputs of the ultrasonic transducers 
are connected to a signal conditioning unit which prepares 
the sensor signal for the A/D converter. The PIC 
microcontroller is used to read the digitized sensor signal.  

Key contributions of this effort are: 
 A synergistic combination of physics of failures has been 
used in conjunction with advanced tools of signal processing 
utilizing a non-destructive ultrasonic method of damage 
sensing. 
 Textural features in the time-series data has been mapped 
into a symbol space for damage identification and the 
information on gradually evolving failure has been extracted 
as statistical patterns. 
 An experimental apparatus, which is designed to study the 
growth of fatigue damage in mechanical systems, has been 
used for algorithm validation. 

 It has been experimentally demonstrated that analytic 
signals, based on ultrasonic sensor data, produce damage 
information during crack initiation, which is not available 
from the corresponding optical images.  
 Statistical pattern changes in probability distributions of 
the observed time series data sequences at different slow-
time epochs have been identified to capture the gradual 
evolution of microstructural changes in poly-crystalline 
alloys. 
 A novel wireless data acquisition module has been 
developed with expansion capabilities for stand-alone 
wireless mesh networking to enable simultaneous 
monitoring of non-collocated components. 
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