
Using Rewards to Change a Person’s Behavior:

A Double-Integrator Output-Feedback Dynamic Control Approach

R. Vanderwater and D.E. Davison

Abstract— Using a nonlinear discrete-time model that cap-
tures how rewards affect a person’s attitudes and behavior,
we consider in this paper how to find a reward sequence that
drives behavior to (or beyond) some desired level. We develop an
output-feedback controller by re-arranging the plant equations
so that the plant and controller form a linear feedback loop
with a “disturbance” that captures all nonlinear effects. We
then argue that the “disturbance” signal is rate limited, and
propose a controller that contains two discrete-time integrators,
a zero, and a saturator. Some simulation and analysis results
are included to show that the control scheme is effective.

I. INTRODUCTION

In this paper we deal with a novel application of control

theory in the field of psychology. The basic setup, indicated

in Figure 1, involves one person offering a reward sequence

to a second person, with acceptance of the reward by the

second person contingent on him or her carrying out some

specific behavior. The use of rewards to influence behavior in

such a manner is very common in the workplace, in politics,

and in daily life.

To make the discussion concrete, assume that the person

offering the reward is a mother and the person to whom the

reward is being offered is her carnivorous child. Let’s also

say that the parent is trying to induce the child to eat his

vegetables at supper, and that the reward being offered is

measured in dollars. In terms of timing, we imagine that in

the evening of every day (with the day number denoted by

k, k ≥ 0), the parent offers a reward (R[k], R[k] ≥ 0) to the

child which he will receive if, during supper on the next

day, he does indeed eat his vegetables. Over night, the child

ponders the reward offer and, on day k+1, he wakes up with

a certain attitude towards eating his vegetables (Aout [k+ 1])
and a certain attitude towards the offered reward (Arew[k+1]).
At supper on day k+1, the child either (a) eats his vegetables

and accepts the associated reward (B[k+ 1] ≥ 0), or (b) he

does not eat his vegetables, and he is not allowed to take

the reward (B[k+ 1]< 0). As explained below, the behavior

B[k + 1] can lead to a change in attitude, ∆Aout [k+ 1]. At

some point after supper, the mother then offers a new reward

(R[k+ 1]) to her child that deals with eating vegetables on

day k+2, and the cycle repeats. Putting this all together, in

control jargon, the parent is the controller, the child is the

plant, R[·] is the control signal, and B[·] is the plant output.

The goal, from the parent’s perspective, is to control B[·].
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Fig. 1. The basic setup in which a parent offers a reward sequence, R[k]
(with R[k] ≥ 0), to a child to induce a certain behavior.

In this work we emphasize the dynamical nature of

the child’s decision making. The importance of dynamical

modeling is perhaps taken for granted by control engineers,

but the vast majority of psychology researchers think in

terms of “cause and effect” or “independent and depen-

dent variable” paradigms, both which exclude important

dynamical phenomena such as instability, limit cycles, and

convergence. Important exceptions include work in system

dynamics theory [1][2], where dynamic modeling of social

and industrial situations is the focus, and perceptual control

theory [3], where a dynamic control model of cognitive

dynamics is the focus. Our work, which deals both with

modeling and control, fits nicely within these two fields.

This paper continues our earlier work [4], where a

discrete-time nonlinear dynamic model of decision making

is developed. The underlying psychology and the (slightly

simplified) model from [4] are concisely reviewed below;

see [5] for a description of the model that is even more

detailed than that in [4]. Two feedback control schemes

were also proposed in [4], but they assume that the child’s

full cognitive state is measurable by the parent—hardly a

realistic assumption. The main contribution of this paper

is to develop an output-feedback controller, which requires

measurement of only B[k], to drive B[·] to (or above) a

desired value, Bd > 0. Our controller is developed based on

a linear approximation (not classic Jacobian linearization) of

the plant, and we argue that good steady-state performance

requires the use of two integrators. Some analysis, simulation

results, and practical considerations are included.

II. SYSTEM MODEL

A. Relevant Psychology and Model Development

Many introductory psychology textbooks (e.g., [6]) offer

a thorough and very readable overview of the academic

branches, modeling approach, and culture of the psychology

research community. The model used here depends on the

following three well-established psychological theories that

relate behavior and attitude:
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1) The Theory of Planned Behavior: The theory of

planned behavior [6][7][8] is a popular model of how people

make reasoned decisions about carrying out, or not carrying

out, some behavior. The essence of the theory is that behavior

is a function of various beliefs and values, grouped together

here (for simplicity) under the name of attitudes. In our

setup, we are concerned with the child’s behavior, B[k], and

the only two attitudes in question are Aout [k] (the child’s

present attitude towards the behavior, or more precisely an

expected outcome of the behavior, that the mother is trying to

induce) and Arew[k] (the child’s present attitude towards the

reward that is being offered). All of B[k], Aout [k], and Arew[k]
can be positive or negative, and the magnitude indicates

the strength of the behavior or attitude. Equation (1) below

shows how ∆Aout [·] (discussed below) drives Aout [k], while

(2) models how Arew[k] is formed from R[k−1] (where r1 ∈
[0,1) determines the mental processing time constant and

µ1 > 0 reflects the value that the child places on one dollar).

Equation (3) shows how B[k] is generated by summing the

two attitudes. Note that B[k], Aout [k], and Arew[k] all have the

same units, called “attitude units” here.

2) Cognitive Dissonance Theory: Cognitive dissonance

theory [6][9][10] is possibly the most studied, and certainly

one of the best known, theories in psychology. The theory

has two main components: first, if a person’s behavior is

inconsistent with one of his attitudes, then a tension called

dissonance pressure arises in the person, and, second, due

to the discomfort of dissonance pressure, a person will take

measures (typically changing his behavior and/or his attitude)

to reduce the pressure. As an example, if on day k the

child’s attitude towards eating vegetables is negative (i.e.,

Aout [k]< 0) but the child accepts his mother’s reward to eat

his vegetables (i.e., B[k]> 0), he will experience dissonance

pressure because he has just chosen to do something that he

does not like doing; on the other hand, if the child declines

the reward and does not eat his vegetables, he will experience

dissonance pressure, not from any inconsistency between

B[k] (which is negative) and Aout [k] (which is also negative),

but because he is declining a reward that he values positively.

To keep the model reasonably simple, we make the following

assumption about dissonance pressure reduction:

Assumption 1: The child reduces dissonance pressure through

only one way, namely, changing his attitude towards the

behavior, Aout [k].

Consistent with standard practice [10], the raw

dissonance pressure, denoted PCD
raw[k], is computed as

Mincon[k]/(Mincon[k]+Mcon[k]), where Mincon[k] is a measure

of the total inconsistency between behavior and attitudes,

and where Mcon[k] is a measure of the total consistency

between behavior and attitudes; see (4)–(9). The first “case”

in (9) captures this relationship, while the second “case” in

(9), to avoid division by zero, handles the special situation

where B[k] = 0. The sgn(B[k]) term is included in (9) so that

PCD
raw[k] drives the attitude change ∆ACD

out [k] (discussed below)

in a direction that always reduces dissonance pressure. We

Block B

cognitive dissonance
overjustification

Block A

theory of planned behavior

R[k]

Arew[k]

Aout [k]

B[k] B[k]

∆Aout [k]

Fig. 2. The overall psychological system (dotted box), decomposed into
Blocks A and B. The system input is R[k] and the system output is B[k].
This figure is adapted from [4, Figure 1].

model the mental processing of dissonance pressure in (10),

where PCD[k] is the experienced dissonance pressure and

r2 ∈ [0,1) indicates the processing time constant. Finally,

the change in attitude resulting from dissonance pressure

reduction, ∆ACD
out [k], is computed as in (11), where K1 > 0 is

a parameter reflecting how much attitude change is induced

for each unit of experienced dissonance pressure. The term

∆ACD
out [k] is one of two terms that affect ∆Aout [k], as in (15).

3) Overjustification Theory: Overjustification theory [11]

deals with the special case where a reward is offered to a

person to do something that the person already enjoys doing.

In our case, this means overjustification theory applies only

when Aout [k] > 0. The theory states that such rewards are

counter-productive in that they reduce the intrinsic desire of

the person towards that behavior. That is, if the mother offers

a reward to the child when Aout [k] is already positive, then

the child will feel pressure (perhaps unconsciously) to reduce

Aout [·]. Our model captures this counter-intuitive, but thor-

oughly experimentally-verified, phenomenon in (12)–(15).

In these equations, POJ
raw[k] denotes the raw overjustification

pressure, POJ[k] denotes the experienced overjustification

pressure (with mental processing time constant r3 ∈ [0,1)),
∆AOJ

out [k] denotes the attitude change that results from the

experienced overjustification pressure, and K2 > 0 is a pa-

rameter reflecting how much attitude change occurs per unit

of pressure. Note that, to be consistent with the underlying

psychology, (14) is arranged so that overjustification pressure

can never force Aout [·] to be negative. Finally, the term

∆AOJ
out [k] contributes to ∆Aout [k] through (15).

B. Mathematical Model and Parameter Values

The equations of the overall model are collected below,

while the block diagram in Figure 2 shows how the various

signals are connected.

Theory of Planned Behavior (Block A):

Aout [k] = Aout [k− 1]+∆Aout[k− 1], (1)

Arew[k] = r1Arew[k− 1]+ µ1(1− r1)R[k− 1], (2)

1862



B[k] = Aout [k]+Arew[k]. (3)

Cognitive Dissonance Effects (Block B):

M1
incon[k] =

{

|Arew[k]B[k]| if Arew[k]> 0,B[k]< 0

0 otherwise,
(4)

M2
incon[k] =

{

|Aout [k]B[k]| if Aout [k]< 0,B[k]> 0

0 otherwise,
(5)

M1
con[k] =

{

|Arew[k]B[k]| if Arew[k]> 0,B[k]> 0

0 otherwise,
(6)

M2
con[k] =

{

|Aout [k]B[k]| if Aout [k]< 0,B[k]< 0

0 otherwise,
(7)

Mincon[k] =
2

∑
i=1

Mi
incon[k], Mcon[k] =

2

∑
i=1

Mi
con[k], (8)

PCD
raw[k] =











































sgn(B[k]) Mincon[k]
Mincon[k]+Mcon[k]

if Aout [k]< 0,

Arew[k]> 0,
and B[k] 6= 0,

|Aout [k]|
|Aout [k]|+|Arew [k]|

if Aout [k]< 0,

Arew[k]> 0,
and B[k] = 0,

0 otherwise,

(9)

PCD[k] = r2PCD[k− 1]+ (1− r2)P
CD
raw[k], (10)

∆ACD
out [k] = K1PCD[k]. (11)

Overjustification Effects (Block B):

POJ
raw[k] =







Aout [k]Arew[k] if Aout [k]>0,B[k]>0,
and Arew[k]>0;

0 otherwise,

(12)

POJ [k] = r3POJ[k− 1]+ (1− r3)P
OJ
raw[k], (13)

∆AOJ
out [k] =























−K2POJ [k] if POJ[k]> 0

and K2POJ[k]≤ Aout [k];
−Aout [k] if POJ[k]> 0

and K2POJ[k]> Aout [k];
0 otherwise.

(14)

Output of Block B:

∆Aout [k] = ∆ACD
out [k]+∆AOJ

out [k]. (15)

III. CONTROLLER DESIGN

Although the plant equations (1)–(15) are fairly compli-

cated and nonlinear, a key observation is that the system

can be manipulated so that it fits within the classic linear

time-invariant control framework with all nonlinear terms

accounted for by a “disturbance.” Figure 3 shows the system

after such a manipulation, with the controller, yet to be

designed, denoted C[z] and the following transfer functions

for the plant and disturbance filter:

P[z] =
µ1(1− r1)

z− r1
, F[z] =

1

z− 1
. (16)

The plant transfer function follows from (2) and the distur-

bance filter transfer function follows from (1).

Our approach is to design the controller C[z] to satisfy

three criteria: (i) closed-loop stability of the loop in Figure 3;

(ii) perfect steady-state tracking of the reference Bd (assumed

C[z] P[z]

F [z]

∆Aout [k]

R[k]Bd e[k] Arew[k]

Aout [k]

+ B[k]

−

Fig. 3. Classic linear control feedback loop with plant P[z], controller C[z],
and disturbance filter F[z].

to be a constant); and (iii) rejection of the “disturbance”

Aout [k]. The first two criteria are standard and accommodated

using a linear controller with a single integrator:

C[z] =
Kc

z− 1
. (17)

Classic tools can be used to find suitable values for Kc

to guarantee stability of the feedback loop in Figure 3.

However, simulations reveal that, with the “disturbance”

Aout [k] included, the closed-loop system can be unstable.

Consequently, further consideration of the nature of the “dis-

turbance” is necessary. A starting point is to recognize that,

according to (15), both cognitive dissonance pressure and

overjustification pressure contribute to the signal ∆Aout [·].

Focus first on the contribution of cognitive dissonance

effects to ∆Aout [·]. By the form of the expressions in (9),

PCD
raw[·] is bounded above by 0.5 (see [5]). Moreover, the

low-pass filter (10) is BIBO stable, so therefore the output

of the filter, PCD[·], is also bounded. It follows from (11)

that ∆ACD
out [·] is bounded. Hence, the contribution of cognitive

dissonance to ∆Aout [·] is necessarily bounded. Next con-

sider the overjustification pressure contribution to ∆Aout [·].
If raw overjustification pressure exists at times k ≥ k̃, then,

according to (12), necessarily Aout [k], B[k], and Arew[k] are

all positive for k ≥ k̃, which implies Mincon[k] = 0 for k ≥ k̃,

which in turn implies PCD
raw[k] = 0 for k ≥ k̃ and, by (10),

PCD[k] decays to zero exponentially for k ≥ k̃. Moreover, due

to the signs in (12)–(14), ∆AOJ
out [k]≤ 0 for k ≥ k̃, which has the

effect of decreasing the positive signal Aout [·] according to

(1). Putting together these two results, we deduce that Aout [·],
for k ≥ k̃, is bounded from above. By the structure of (14),

it follows that |∆AOJ
out [·]|, for k ≥ k̃, is also bounded above

(in fact, it has the same bound as that of Aout [·]). Hence, by

(15), ∆Aout [·], for k ≥ k̃, is bounded.

Using the above discussion and recognizing that F[z] in

Figure 3 is an integrator, we have better understanding of

the nature of the “disturbance” Aout [·]: whether cognitive

dissonance pressure or overjustification pressure is active,

Aout [·] climbs or falls no sharper than a ramp. Moreover,

we expect that, if the controller parameters are tuned such

that the poles of the linear feedback loop in Figure 3 are

well damped to minimize oscillations, Aout [·] looks very

much like a ramp (when cognitive dissonance pressure

dominates) or a constant (when overjustification pressure
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dominates). With this motivation, we use classical-control

thinking to hypothesize that including two integrators in the

controller should result in excellent accommodation of the

“disturbance” Aout [·]. The simplest two-integrator controller

that can stabilize P[z] is

C[z] =
Kc(z− a)

(z− 1)2
, (18)

where a ∈ (0,1) and Kc > 0 are controller parameters to be

tuned. The Jury test [12] can be used to determine the values

of a and Kc, as a function of µ1 and r1, that lead to closed-

loop stability. The general result is complicated, but under the

simplifying assumption r1 = 0, the formula for the stabilizing

a and Kc values is [5]

0.5 < a < 1, 0 < Kc < min

{

4

µ1(1+ 3a)
,

2a− 1

µ1a2

}

. (19)

In the time domain, the control signal for the controller in

(18), R[k], is computed as follows (where e[k] := Bd −B[k]):

R[k] = Kce[k− 1]−Kcae[k− 2]+ 2R[k− 1]−R[k−2]. (20)

One final consideration is needed: the controller (20)

could, in principle, result in R[k]< 0 at some k. However, the

psychology undergirding our model applies only for R[k]≥ 0,

so the control signal needs to be saturated. We choose

the following form of saturation, which has the advantage

of “stopping” the double integration within the controller

whenever R[k] saturates (i.e., an anti-windup mechanism):

R[k] = max{0,Kce[k− 1]−Kcae[k− 2]+

2R[k− 1]−R[k− 2]}. (21)

IV. SIMULATIONS AND ANALYSIS

We now study the performance of the double-integrator

anti-windup controller (21) when it is connected to the

plant (1)–(15). The thin curves in Figure 4 show a typical

simulation output, with values for the plant parameters,

controller parameters, initial conditions, and Bd indicated

in the figure caption. Note that the child’s attitude and

behavior start off highly negative (Aout [0] = B[0] = −40),

but the controller drives B[k]→ Bd as k → ∞, demonstrating

that the control strategy successfully induces the child to

eat his vegetables (in fact, at day 3, when B[k] becomes

positive). The simulation output also shows that a non-zero

daily reward is required in steady-state to maintain B[k] at

Bd , a situation that is doubly undesirable: first, it means the

parent, in order to have her child eat vegetables at the desired

level, must continue to offer rewards to the child ad infinitum,

and, second, the continual use of rewards drives Aout [·] (the

child’s intrinsic desire to eat vegetables) to zero through

overjustification pressure. Note, however, that any control

scheme that tracks Bd in steady-state will necessarily exhibit

the same steady-state characteristics because there are only

two mechanisms that drive B[·] greater than zero, namely

the external reward R[·] and the internal attitude Aout [·], and

the maximum value that can be achieved by Aout [·] is K1/2

(see [5]), which is not enough (using the particular parameter

values in this simulation) for B[·] to reach Bd .
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Fig. 4. Closed-loop simulation for the controllers (21) [thin curves] and
(22) [thick curves] with the plant parameters K1 = 30 attitude units, K2 = 0.1
(attitude units)−1 , r1 = 0, r2 = 0.5, r3 = 0.5, µ1 = 1 attitude units per dollar,
the controller parameters Kc = 0.4 dollars per attitude units, a= 0.95, initial
conditions Aout [0] =−40 attitude units, Arew[0] = 0 attitude units, PCD[0] =
0, POJ [0] = 0 (attitude units)2 , and the desired behavior Bd = 20 attitude
units. The thick dashed curve indicates the desired behavior, Bd . The “A,”
“B,” and “C” notation is explained in the text.

Figure 4 also shows, using thick lines, how the system

behaves when the open-loop step-signal control law

R[k] =
Bd

µ1
, ∀k ≥ 0, (22)

is used. This control law is much simpler than the feedback

control law (21), and it provides the exact steady-state reward

needed to keep B[k] at Bd . However, as the figure shows, the

controller (22) is totally ineffective, with B[k] tending to −∞

as k → ∞. The problem with (22) is that the reward value

is small enough that the child initially declines it, and the

resulting cognitive dissonance pressure forces Aout [·] down,

worsening the child’s attitude towards eating vegetables; this

effect worsens at every time step, as the child repeatedly

declines the reward. In [5] we further pursue open-loop (and

mixed open-loop and closed-loop) design approaches, and

show how to make them more effective.

Mathematical analysis of the performance of controller

(21) is challenging due to the nonlinearities of the plant,

especially the switching that occurs when B[·] changes sign.

Figure 5, in which the system is simulated six times with

all parameters as listed in the caption of Figure 4, except

for Bd which takes on different values, clearly demonstrates

nonlinear characteristics.

Despite the complexity of the system, it is possible to

carry out some analysis to support our conjecture that the

controller (21) works well for any initial conditions as long

as Kc and a are tuned so that the linear feedback system in

Figure 3 is well damped. To this end, focus on the situation of

most practical interest where the child starts with a negative

attitude towards eating his vegetables and has no history

of being offered rewards for such a task, i.e., the initial
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Fig. 5. Simulation output of the closed-loop system with controller (21).
All settings are identical to those listed in the caption of Figure 4, except
for Bd , which is set as indicated in the plots. The nonlinear nature of the
system is evident.

conditions are

Aout [0] = A0 < 0,Arew[0] = 0,PCD[0] = 0,POJ[0] = 0. (23)

Under such initial conditions, the controller ideally drives

the state trajectory through three stages with switching times

denoted k̂ and k:

Stage A: for 0 ≤ k ≤ k̂− 1, Aout [k]< 0 and B[k]≤ 0

Stage B: for k̂ ≤ k ≤ k− 1, Aout [k]< 0 and B[k]> 0

Stage C: for k ≥ k, Aout [k]≥ 0 and B[k]> 0.

These stages are indicated on the plots in Figure 4. Implicit

in Stage C is the desire for good tracking: either B[k]→ Bd

as k → ∞, or B[k] remains above Bd for sufficiently large k.

A. Analysis of Stage A

In Stage A, the controller ramps up the reward to try to

pull B[·] positive—a substantial amount of reward is needed

since cognitive dissonance pressure (which exists throughout

Stage A) is pulling Aout [·] down, which, in turn, is trying

to pull B[·] down. Simulations indicate that controller (21)

always is able to pull the state out of Stage A into Stage B. It

is also possible to prove that this occurs, at least if Bd is large

enough, and under the simplifying assumption r1 = r2 = 0:

Lemma 1: Consider the controller (21) with zero initial

conditions and parameters a ∈ (0,1) and Kc > 0, and the

plant with the initial conditions (23) and r1 = r2 = 0. If

Bd > K1/(2µ1Kc) then the state will necessarily be driven

from Stage A to Stage B.

Sketch of proof (see [5] for details): The proof has three

parts. First, it is established that, due to the integrators in

the controller, R[k] is an increasing function of k while in

Stage A (i.e., for 0 ≤ k ≤ k̂−1). This result, in turn, as well

as the fact that |PCD[·]| is bounded above by 0.5, implies that

B[k] cannot be a non-increasing function of k for all k ≥ 0,

i.e., there exists some T ∗ ≥ 0 such that B[T ∗+ 1]> B[T ∗].

Second, it is argued that, while in Stage A, B[k] is an

increasing function of k for all k ≥ T ∗. The proof again relies

on the fact that |PCD[·]| is bounded above by 0.5, and on the

technical condition Bd > K1/(2µ1Kc).
Finally, since B[k] is an increasing function of k while

in Stage A (with k ≥ T ∗), either B[·] eventually becomes

positive (i.e., k̂ is finite) or it converges (i.e., k̂ = ∞).

However, once again using the fact that |PCD[·]| is bounded

above by 0.5, and using the result that R[k] is an increasing

function of k throughout Stage A, it is shown that, if B[·]
does converge, it must converge to Bd , which is positive.

So, in either case, B[·] eventually becomes positive, which

means the state necessarily leaves Stage A at some finite

time k̂. Lastly, we argue that Aout [k] < 0 for all 0 ≤ k ≤ k̂,

so, once leaving Stage A, the state must enter Stage B rather

than Stage C. �

The condition on Bd in Lemma 1 is technical; simulations

show that the result holds even if the condition is violated.

Interestingly, the lemma is true even if Kc and a are tuned

so that the linear feedback system in Figure 3 is unstable

(although still subject to a ∈ (0,1) and Kc > 0); such poorly-

tuned controllers can lead to other problems, however, in

Stage B and/or Stage C.

B. Analysis of Stages B and C

In Stage B, B[·] is positive, i.e., as of day k̂, the child ac-

cepts the daily reward to eat his vegetables on the following

day. The underlying psychology also switches from Stage A

so that dissonance pressure now pulls Aout [·] up, which,

in turn, boosts B[·] further. Consequently, the reward being

offered by the mother can be substantially decreased, a trend

that controller (21) exhibits, as demonstrated in Figure 4.

Simulations reveal that, once in Stage B, the state does not

return to Stage A unless the controller is poorly tuned (in the

sense that the closed-loop poles of the linear feedback system

in Figure 3 have low damping or are unstable). Even if the

state does return to Stage A, the integrators seem to always

(possibly after multiple oscillations) pull it back to Stage B,

but analysis of multiple switches becomes intractable. In

cases where the state, once having left Stage A, stays in

Stage B or switches from Stage B to Stage C, several results

can be rigorously established:

Lemma 2: Consider the controller (21) with zero initial

conditions and parameters a ∈ (0,1) and Kc > 0, and the

plant with the initial conditions (23) and r1 = r2 = 0. Assume

Bd > K1/2 and that the system enters Stage B at k = k̂. If

the state does not return back to Stage A, then:

(a) Aout [k]→ 0 as k → ∞.

(b) If the system enters Stage C at some k = k > k̂, then it

remains in Stage C for all k ≥ k.

(c) For all ε > 0, there does not exist a k̃ such that B[k] ≥
Bd + ε for all k ≥ k̃.

(d) For all ε > 0, there does not exist a k̃ such that B[k] ≤
Bd − ε for all k ≥ k̃.

Sketch of proof (see [5] for details): The proof has five parts.

First, result (b) follows immediately from (3) and the facts
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Fig. 6. Simulation output of the closed-loop system with controller (24).
The sensor gain is Ks = 40, and all other settings are identical to those listed
in the caption of Figure 4.

that Arew[k] ≥ for k ≥ k (due to the saturator in (21)) and

Aout [k] ≥ 0 for k ≥ k (since overjustification pressure can

never drive Aout [·] negative; see (14)).

Second, result (d) of the lemma follows, using a contra-

diction argument, because of the integrators in the controller

(21). Specifically, suppose that for some ε > 0, there is a k̃

such that, for all k ≥ k̃, B[k] ≤ Bd − ε. Then the controller

equation, (21), implies there exists an N ≥ k̃ such that R[N]
is large enough to force B[N + 1] to be greater than Bd − ε,

contradicting the original supposition. This proves (d).

Third, we argue that if the state remains in Stage B without

switching to Stage C, then necessarily PCD[k]→ 0 as k → ∞.

This, in turn, implies that either R[k] → ∞ or Aout [k] → 0

as k → ∞, and we show that the former is impossible,

so necessarily Aout [k] → 0 as k → ∞. This partly proves

result (a).

Fourth, it is established that, if the state enters Stage C at

k, then R[·] does not converge to zero as k →∞. This result is

used with a tedious argument involving the overjustification

equations (12)–(15) to establish that Aout [k] → 0 as k → ∞.

This completes the proof of result (a).

Finally, result (c) can be proved, like result (d), using

contradiction and the fact that the controller contains two

integrators. In particular, suppose that for some ε > 0, there

is a k̃ such that, for all k ≥ k̃, B[k] ≥ Bd + ε. Equation (21)

then implies that R[·] will, for some N ≥ k̃, saturate at zero

and remain at zero for all k ≥ N. But this contradicts the

earlier-proven fact that R[·] does not converge to zero as

k → ∞. This proves result (c). �

Lemma 2 implies that B[·] either converges to Bd or it

oscillates around Bd without converging. Based on simula-

tion investigations, we conjecture that the former (desirable)

trend occurs whenever the controller parameters are tuned

so that the linear feedback system in Figure 3 is stable and

well damped; for all other Kc and a values, we conjecture,

consistent with simulations, that B[·] oscillates around Bd

without converging.

V. PRACTICAL MATTERS AND SUMMARY

We emphasize that (21) is easy to implement in practice:

it requires measurement of only B[·], in contrast to the more

complicated schemes in [4] that use state feedback. Prac-

tical quantitative measurement of psychological variables

falls within the field of psychometrics, and psychometrists

have developed well-tested methods to measure, specifically,

attitudes and behaviors [7][8]. Having said this, a typical

user of the controller (21) is unlikely to have the necessary

expertise, time, or resources to measure B[k] properly, which

motivates the question as to how robust the controller is

with respect to measurement errors. To help answer this

question, we simulated the closed-loop system with various

types of measurement errors. The most extreme type of error,

arguably, is when the user senses only if B[k] is above or

below Bd , i.e., the controller effectively becomes

R[k] = max{0,KcKssgn(e[k− 1])−KcaKssgn(e[k− 2])+

2R[k− 1]−R[k− 2]}, (24)

where Ks is the “sensor gain.” A typical simulation output

is shown in Figure 6. Note that the performance is similar

to that in Figure 4 other than the (expected) limit cycle that

the binary sensing introduces.

To summarize, in this paper we have considered the

dynamic control of a psychological problem that affects us

all. Interestingly, due to the complexity of internal cognitive

dynamics, the simplest output-feedback control scheme to

effectively control behavior appears to require two integra-

tors; simple proportional or single-integrator control will not

work. We are currently extending this work to incorporate the

influence of extra people (e.g., friends) on the person who is

being controlled, and we are considering how Assumption 1

can be relaxed by introducing a high-level decision process

to dictate the mechanism used to reduce dissonance pressure.
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