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Abstract— While common-rail diesel fuel injection systems
utilizing solenoid-actuated injectors have drastically improved
the ability to lower emissions, noise, and fuel consumption, their
limited bandwidth does not allow for tightly spaced injections
or rate shaping. Piezoelectric injectors have that capability,
but introduce multiple control challenges that can compromise
their improved functionality. This paper summarizes the use
of estimation algorithms for cycle-to-cycle determination of an
injection flow profile capable of being used as feedback for a
closed-loop control algorithm. While the estimation equations
are complex and require a small time step, the authors propose
capturing important estimation feedback during the injection
period and delaying the integration of state variables across
the engine cycle to more efficiently utilize a real-time processor.
Also, a simplified model is developed to represent the dynamics
of simultaneously controlling the quantity of pulses as well as
the realized dwell time in between pulses. The model accounts
for the coupling between the two, and a control law is developed
and refined to provide an overdamped response of both the
pulse quantities and realized dwell time, in order to prevent
pulse bleeding. Transient response of the controller is shown
in simulation and validated with experimental data with good
correlation.

I. INTRODUCTION

Major advances in diesel combustion have come from
the addition of common-rail, solenoid-actuated fuel injection
systems. Independent control of injection pressure, timing,
quantity and the number of pulses in a cycle has led to
significant reductions in emissions such as nitrogen-oxides
and particulate matter, as well as decreased noise and fuel
consumption [1], [2].

Typically, electronic injectors meter fuel into the combus-
tion chamber through the motion of an injector needle, which
covers and uncovers the injector nozzles to start and stop
flow. Solenoid actuators are generally not directly connected
to the needle, but instead control a hydraulic circuit which
redirects high pressure fuel across a portion of the needle
to move it vertically. This technique does not allow tight
spacing between pulses and therefore limits the number of
injections per cycle.

Piezoelectric stack actuators have a much higher band-
width and when used in an injector can create sufficient
force to directly move the needle. This improvement not
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only allows for the injection of chains of tightly spaced
pulses, but also speeds needle opening [3], creating better
air entrainment, spray development, and injection velocity
[4].

While piezoelectric injectors have the ability to create
these multiple pulse profiles, robust implementation in such
a highly dynamic environment is challenging. Small changes
in operating conditions, such as rail pressure, the commanded
dwell time, and the size of previous pulses can cause a
tightly spaced, multiple pulse profile to bleed into a single
pulse, effectively canceling the benefits of the high powered
actuator [5]. Without knowledge of when pulses will bleed
together and when they will separate, an engine control
module (ECM) would have difficulty reliably reproducing
complex profiles in a constantly changing environment.

One solution is utilizing closed-loop control to constantly
correct injector input signals to produce desired pulse trains.
However, utilizing fuel flow sensors on a production engine
is currently impractical and cost prohibitive. A more feasible
solution is to create a dynamic observer which can accurately
estimate a fuel profile, even complex, multiple pulse profiles.
With an on-board estimate of injection rate shape, control
strategies can be implemented to correct for variations in
fueling due to environmental factors and optimize the capa-
bility of the piezoelectric actuated injector.

Previous work has shown effective model-based estimation
of injection profiles [5] based on a physical simulation
model of a particular style of piezoelectric fuel injector [6].
While this estimation strategy was validated off-line, closed-
loop control will require fast computation of model states
to achieve cycle-to-cycle control of injection. This paper
summarizes the implementation of this previously developed
estimation strategy in a real-time environment for cycle-to-
cycle computation of flow rate. Also, a candidate controller
is designed and tested to allow for cycle-to-cycle tracking of
pulse quantity and realized dwell for a multiple pulse profile.

II. EXPERIMENTAL HARDWARE

This piezoelectric injector measurement and control rig at
Purdue allows for accurate control of the injector driver as
well as simultaneous high speed measurement and logging
of critical signals through a dSPACE system. The simulated
injection environment can be run at various speeds, but for
the experiments shown here the measurements are taken at a
500 RPM cam speed (1000 RPM crank). The complete setup
can be seen in Fig. 1. Subsystems of the rig are described
below.
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Fig. 1. Injector Measurement and Control Experimental Setup

A. Injector

The injector used in this analysis is a prototype direct
acting piezoelectric diesel fuel injector. A schematic repre-
sentation of this injector’s basic operating principle can be
seen in Fig. 2.

When a TTL (Transistor-Transistor-Logic) signal is sent
to the piezo stack driver the piezo stack is charged. This
causes expansion of the piezo stack which pushes downward
on the top and bottom link. The stair-like “ledge” is sized for
hydraulic amplification of needle lift by displacing fluid in
the needle lower volume. When this volume is pressurized,
the needle is forced upward pushing fluid out of the needle
upper volume through the check valve orifice into the injector
body. The orifice is sized to control oscillation of a rapidly
opening needle. When the stack is discharged, the process
is reversed to close the needle. However, now a rapidly
decreasing pressure in the needle upper volume can cause the
check valve to open, allowing fluid to flow in faster which
quickly closes the needle.

B. Flow Measurement - Benefits and Limitations

To validate the estimation and control algorithms outlined
in the paper, injector flow must be measured. The fuel flow
measurement device used in this analysis is based on the
Bosch fuel rate indicator principle [7], also known as the
rate tube measurement principle (as referenced in Fig. 1).

The details of the rate tube principle are shown in Fig. 3.
The injector is secured in a fixture, which is connected to a
long coiled tube. The tube is regulated to a pressure similar to
that in a combustion chamber (approx. 70 bar). The coiled
tube is sufficiently long to delay reflected pressure waves
which bounce off the end of tube for a period of time which
will prevent interference with the current measurement. A
pressure sensor is placed at the tip of the injector. During
injection, the pressure at the injector nozzle is roughly
proportional to the injector flow rate. To accurately measure
the quantity of the flow, a mean flow sensor is placed
downstream in the low pressure segment of the system. This

Fig. 2. Injector Schematic Representation

Fig. 3. Rate Tube Flow Measurement Principle

flow sensor is not high enough bandwidth for cycle-to-cycle
measurements, and can take several cycles to converge to
the mean flow through the system. For this reason, a large
number of cycles are collected for a given operating point
to allow the flow to converge. The mean flow is averaged
over these cycles to approximate the quantity injected per
stroke. The flow rate shape taken from the pressure sensor
at the nozzle is averaged over those cycles and scaled such
that integral under the curve matches the measured flow per
stroke.

While this method has been shown to be a fairly reli-
able method of injection measurement, it does have some
drawbacks. Pressure fluctuations in the system can cause
unwanted noise. Also, because this takes multiple cycles
to take a measurement of average flow rate, cycle-to-cycle
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control strategies can only be validated before and after
convergence of the flow. Intermediate flow quantities cannot
be guaranteed, however, the shapes are accurate on a cycle-
to-cycle basis.

C. Processing and Data Acquisition

Real-time processing, A/D conversion, and the creation
of digital TTL signals is all done using a dSPACE system.
Anti-aliasing filters are used for the pressure measurement
in the rate tube system, as well as for an injector body
pressure sensor. Both pressure sensors are piezoelectric.
Critical devices utilized in the system are shown below in
Table I.

TABLE I
DATA COLLECTION SYSTEM SPECIFICATIONS

FUNCTION DEVICE
Processor DS1005

A/D Conversion DS2004
Digital I/O CP4002

Anti-Aliasing Filter KROHN-HITE 3364

The processor runs at a fundamental time step of 100 µs
and A/D signals are buffered at 100 kHz (reference Sect. IV
for more details). TTL signals are created directly using the
digital CP4002 board for high resolution signals. The cutoff
frequency of the anti-aliasing filter is set to 40 kHz.

III. DYNAMIC ESTIMATION STRUCTURE

While this rig may have flow rate measurement capability,
that will not be available when used in an actual engine.
Therefore, a dynamic estimation of flow rate shape can
be used to provide feedback to an on-line controller. The
estimator used in this analysis is based on the following
structure shown below in Fig. 4, described briefly below,
but in detail in [5].

Fig. 4. Graphical Layout of Feedback Estimator [5]

The estimator includes a set of 13 non-linear dynamic
equations, separated into sub-models. Each sub-model is
separated into groups of related equations, which are dy-
namically coupled with other sub-models. The sub-models
are the following:

• Actuator and Driver Sub-model
• Needle Lift Sub-model
• Fuel Flow Sub-model
The actuator and driver sub-model includes the dynamic

equations associated with the piezo stack and the driver
circuitry. The needle lift sub-model describes the internal
hydro-mechanical dynamics from stack displacement down
to needle lift. The fuel flow sub-model incorporates the
dynamics from fuel flowing in from the rail to fuel flowing
out of the injector.

The equations are grouped this way to allow the available
feedback (piezo stack voltage and injector body pressure)
to be applied to the relevant sub-model. This simplifies
the design and implementation of two dynamic full-order
estimators for each sub-model with feedback. Linearized
forms of the models are used for design of the estimator
dynamics, and the feedback is then applied to the original
non-linear equations [5].

IV. CYCLE-TO-CYCLE ESTIMATION

With a sufficient dynamic estimation strategy, the equa-
tions and feedback signals can be loaded onto the dSPACE
platform for real-time execution. Code is executed on a real-
time processor by syncing the model time step with a real
clock, and as long as all of the executions in one time step
of the code can be computed in that amount of time, then
real-time computation of states is possible.

The framework of fuel injection in a reciprocating engine
gives a useful advantage for this type of calculation. While
there are a significant number of estimator calculations that
require a small time step, making real-time processing more
difficult, a fuel injection event takes place on a time scale
generally less than 10 ms. For an engine running at 1000
RPM crank speed (500 RPM cam), there are 120 ms in a
cycle. Because there is a significant amount of time in a cycle
where the processor has few critical processes, that dead
time could be used to compute states for a short window
earlier in the cycle when injection occurred. As long as
A/D conversions can occur during injection at the desired
“effective” time step, then real inputs and measurements can
be used for estimation. While this is not real-time, it can be
used for cycle-to-cycle computation of states.

Fig. 5. Delayed Integration Technique for Cycle-to-Cycle Flow Rate
Estimation
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This computational strategy of “delaying” real-time inte-
gration is shown graphically below in Fig. 5. A/D conver-
sions of necessary measurements (TTL signal, stack voltage,
and body pressure) take place during a set window at the
beginning of a cycle (approx. 10 ms). These values are stored
in a temporary memory array for the duration of the cycle. A
fundamental time step of 100 µs was found to be adequate
for the real-time processor used here. Because the “effective”
time step is 10 µs, at the first computational period of 100
µs the processor pulls the measurements stored at 10 µs and
computes the states. This is repeated for each “effective” time
step interval for the entire stored window.

Because computations takes place every 10 “effective”
time steps, it takes 10 times longer than the event to calculate
the states for the whole window. For example, if data is
collected for the first 10 ms of an injection event, then
it will take 100 ms to calculate the states for that entire
window. For cycle-to-cycle control, the engine speed then
cannot exceed 1200 RPM crank speed (600 RPM cam).
Expanding the speed range can be done by increasing the
“effective” model time step (at the expense of accuracy),
reducing the real-time processor fundamental time step (may
require model simplification), tightening the data collection
window, allowing computations across multiple cycles, or
using a faster processor. Fig. 6 shows an example pulse for a
1000 RPM crank speed cycle and the output for the estimator.

Fig. 6. Example of Delayed Time Integration for an Injection Pulse

Note that the injection event takes place during a relatively
small portion of cycle (labeled “High Speed Data Capture
Window”). The available measurements for estimating the
flow rate (TTL signal, stack voltage, and body pressure) are
captured and stored during this period at 10 µs intervals.
Corresponding computations of estimator states are done at
the processor interval of 100 µs using data stored in an array.
This creates an estimated flow rate profile where the time
domain is scaled by 10. Rescaling the time axis gives the
estimate in the proper time domain and allows processing the
profile as needed. This can be repeated every cycle allowing
for cycle-to-cycle estimation of flow.

V. CYCLE-TO-CYCLE CONTROL

Once an estimated flow rate can be provided every cycle, a
control strategy can be developed using the estimated profile
as feedback. While there are a variety of control strategies

possible, a common requirement for a flow profile would be
specifying the following properties:
• Number of Pulses
• Quantity of Fueling in Each Pulse
• Realized Dwell Time in Between Pulses
Here realized dwell time refers to the actual dwell time

in between two pulses (as opposed to the commanded dwell
time in between TTL signals).

Previous work has shown that when pulses become tightly
spaced, there are multiple external factors that can cause
two separated pulses to bleed and become one. Variation in
commanded dwell time (CDT), the size of a previous pulse,
and the rail pressure can all cause two separated pulses to
bleed into one [5]. If the full potential for the piezoelectric
injector is to be utilized, creating tightly spaced, multiple
pulse profiles will require knowledge of these interactions in
order to make appropriate corrections.

This analysis will assume control is being done at a given
rail pressure. Starting with two pulses, it is known that
the quantity of the first pulse is directly impacted by the
commanded on time (COT) of the TTL signal sent to the
injector. It is also known that the realized dwell (RD) time
in between the pulses is directly effected by the CDT. These
variables can be seen graphically below in Fig. 7.

Fig. 7. Variables Used in Control of Multiple Pulse Profiles

A more subtle relationship between the first pulse and the
realized dwell also exists, and becomes very important when
pulses become tightly spaced. When the length of the COT of
the first pulse is increased, this causes the maximum height
of the injector needle to be higher, and subsequently take
longer to close. For a given commanded dwell time, varying
the size of the initial pulse can have a significant impact on
the realized dwell time. This effect is represented in the Fig.
8.

For every profile shown in Fig. 8, the CDT between
the pulses is the same, but the realized dwell time varies
considerably. The continually increasing peak needle lift
extends the delay between the first TTL pulse turning off and
the needle closing. Note that this effect saturates once pulses
are long enough that the peak needle lift is at its maximum.
At this point, the time for the needle to close stays fairly
constant regardless of how much longer the pulse stays on.
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Fig. 8. Variation of Needle Lifts with First Pulse On Time

Because of the saturation, this effect is only significant for
pulses which do not saturate the needle lift. However, any
control action which simultaneously changes the size of the
first pulse and the dwell time needs to account for this effect
to be robust.

A. Two Pulse Appproximation

The COT of the first pulse and the CDT between the first
and second pulses have a strong correlation to the first pulse
quantity and the realized dwell (RD) between the pulses.
However, this doesn’t necessarily extrapolate to a series
of pulses as there can be some effects that carry over to
subsequent pulses (e.g. the needle not completely shutting
prior to the onset of a subsequent pulse). To simplify the
control design, this analysis will assume these effects are
negligible and that series of multiple pulses can be separated
into pairs of two pulses, each dynamically decoupled. This
is a good assumption as along as a large enough dwell time
is realized between pulses such that the system is “at rest”
before the onset of the next pulse.

The quantity of pulse one is controlled by the first com-
manded on time. The second pulse quantity is controlled by
the second on time. The RD between the first and second
pulses depends on the COT for the first pulse and the CDT.
This continues for as many pulses as there are in the series.

B. Model

Utilizing the two pulse approximation, the relevant model-
ing relationships can be determined. At a given rail pressure,
the quantity Q of the first pulse is estimated well by a linear
relationship to the commanded on time (COT), shown below
in Eq. 1.

Q = α ·COT (1)

where α is the coefficient for a particular rail pressure.
The RD is directly related to the CDT and also the COT for
the first pulse for an unsaturated needle shown below in Eq.
2.

RD = β ·CDT −φ ·COT (2)

where β relates the CDT to the RD and φ approximates
the change in RD as a result of increasing the size of the
first pulse.

α is a constant which is unique (and proprietary) to a
particular injector for a given rail pressure. Experimental data
is used to determine a fit. For any given first pulse COT,
a certain change in CDT generally leads to an equivalent
change in RD, so for this model, β = 1. The relationship
between COT and RD is complex, as seen in Fig. 8, and
becomes constant once the injector needle saturates. Fig. 9
shows the effect of COT on RD at a constant CDT.

Fig. 9. Linear Approximation of RD with COT for an Unsaturated Needle

Fig. 9 shows how increasing COT eventually leads to nee-
dle saturation. Before saturation the effect is exponentially
decaying, and a linear approximation created for the purpose
of this control model is displayed. The slope of the linear
approximation yields φ = 0.45.

These equations are valid for any given cycle, but are not
dynamic. An instantaneous change in COT or CDT before
a cycle leads to an instantaneous change in the quantity
and realized dwell. This means that cycle-to-cycle dynamics
will be dictated by the addition of some control action. A
candidate controller could be the following modified discrete
integral controller shown below in Eq. 3.

u(k +1) = u(k)+P · e(k) (3)

where u is the control input, P is a gain, e(k) is the control
variable error, and k is the engine cycle. This is slightly
different than a standard discrete integral controller which
defines the current input based on a previous input and the
current error. Using the control inputs of COT and CDT,
discrete control laws can be created for both the pulse one
quantity and realized dwell based on the estimated error
shown below in Eq. 4 and 5.

COT (k +1) = COT (k)+P1(Qdes−Q(k)) (4)

CDT (k +1) = CDT (k)+P2(RDdes−RD(k)) (5)

where P1 is the gain for the first pulse quantity controller
and P2 is the gain for the realized dwell controller. Qdes and
RDdes are the desired first pulse quantity and realized dwell
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time, respectively. Q(k) and RD(k) are the estimates acquired
using the estimation strategy in Sect. III and [5]. Substituting
Eq. 1 and Eq. 2 into Eq. 4 and 5 yields the following coupled
discrete equations.

COT (k +1) = (1−P1α)COT (k)+P1Qdes (6)

CDT (k +1) = (1−P2β )CDT (k) (7)
+ P2 ·φCOT (k)+P2RDdes

Assigning x1 = COT, x2 = CDT, u1= Qdes, u2 = RDdes, a
state space representation of the dynamics is shown below
in Eq. 8.

[
x1(k +1)
x2(k +1)

]
=
[

(1−P1α) 0
P2φ (1−P2β )

][
x1(k)
x2(k)

]
+
[

P1 0
0 P2

][
u1(k)
u2(k)

]
(8)

Because Q and RD are the variables to be controlled and
can be estimated, they are defined as the outputs y1 and y2,
respectively, shown below.[

y1(k)
y2(k)

]
=
[

α 0
−φ β

][
x1(k)
x2(k)

]
(9)

Because of the state matrix being in lower triangular form,
the eigenvalues for this system are along the diagonal and
control gains are found with following equations.

P1 =
(1−ξ1)

α
(10)

P2 =
(1−ξ2)

β
(11)

where ξ1 and ξ2 are the desired eigenvalues for the closed-
loop system. Note from Eq. 8 and 9 that the response of x1
and y1 is not dependent on x2. This means that the quantity
is decoupled from the dynamics of the realized dwell.

C. Performance Requirements

For both pulse one quantity and realized dwell, an over-
damped, asymptotic transient response is desired. Overshoot
of realized dwell is undesirable since this could cause pulses
to bleed together when very small realized dwell times are
required. If the pulses bleed, there is no way to quantify the
realized dwell for values less than zero, and the detection
algorithm which determines each pulses quantity and dwell
time from the estimated flow profile cannot determine which
measured pulses correspond to which desired pulse. There-
fore, when the number of desired pulses does not equal the
number of measured pulses, the system overrides all of the
pulses dwell times farther and farther apart until the number
of measured pulses equals the number of desired pulses, then
the control action continues. If the realized dwell controller
again overshoots, the system may continue to switch back

and forth between the controller and the override diagnostic,
preventing convergence of the system.

D. Transient Response

Because |ξ | < 1 is required for stability in a discrete
system, and positive, real eigenvalues correspond to an
overdamped transient response, both poles were initially set
to 0.5. The response for both the pulse one quantity and
the realized dwell is shown below in Fig. 10 and 11. The
initial values and desired values were chosen to be far apart
to better see the response.

Fig. 10. Transient Response of Pulse One Quantity with Poles at 0.5

Fig. 11. Transient Response of Realized Dwell with Poles at 0.5

The pulse one quantity responded as expected with no
overshoot. Even though both eigenvalues are positive and
real, the realized dwell responded with fairly significant
overshoot. To try and eliminate this overshoot, the second
eigenvalue is slowed to 0.9. The first eigenvalue is left
unchanged and the pulse one quantity plot is identical to Fig.
10. The realized dwell response with the slower eigenvalue
is shown below in Fig. 12.

The response in Fig. 12 shows that even with a slower
pole, overshoot still occurs. To understand this overshoot
behavior, the state space formulation from Eq. 8 and 9 is
converted to a discrete transfer function matrix through the
conversion Y (z)

U(z) = C(zI−A)−1B+D.
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Fig. 12. Transient Response of Realized Dwell with Pole at 0.9

[
Y1(z)
Y2(z)

]
=

[
α·P1

(z−(1−α·P1))
0

φ ·P1(1−z)
(z−(1−α·P1))

β ·P2
(z−(1−β ·P2))

][
U1(z)
U2(z)

]
(12)

E. Control Law Reformulation

Looking at the transfer function for the realized dwell
(Y2), there is a zero at +1 relating the realized dwell to the
commanded on time, u1. This zero results in the observed
overshoot. A new control law to replace Eq. 5 is proposed
for the CDT state equation.

CDT (k +1) = CDT (k)+P2(RDdes−RD(k)) (13)

− φ ·P2

α
·Q(k)

The state space formulation with this new control law is
shown below in Eq. 14.

[
x1(k +1)
x2(k +1)

]
=
[

(1−P1α) 0
0 (1−P2β )

][
x1(k)
x2(k)

]
+
[

P1 0
0 P2

][
u1(k)
u2(k)

]
(14)

The convenient diagonal structure of this new formulation
is a result of the specifically chosen control law of Eq. 13.
The new transfer function matrix formulated from Eq. 14 is
shown below in Eq. 15.

[
Y1(z)
Y2(z)

]
=

[
α·P1

(z−(1−α·P1))
0

−φ ·P1
(z−(1−α·P1))

β ·P2
(z−(1−β ·P2))

][
U1(z)
U2(z)

]
(15)

The zero has been eliminated with the new control law,
however, it is necessary to check that the steady state error
will be zero for both the desired pulse one quantity and the
realized dwell, Qdes and RDdes, respectively. Utilizing the
final value theorem,

lim
k→∞

Y (k) = lim
z→1

[(1− z−1)Y (z)]

and assuming a step input of both Qdes and RDdes, the

following final values for Q and RD were found using the
transfer functions from Eq. 15.

Q(∞) = Qdes

RD(∞) =− φ

α
·Qdes +RDdes

This implies that the steady-state error for realized dwell
will not go to zero.

F. Final Control Law

While the pulse one quantity, Q, approaches the desired
value, the realized dwell, RD, does not. This will require a
reformulation of the control law to ensure zero steady-state
error. A final control law for the CDT and the realized dwell
is proposed.

CDT (k +1) = CDT (k)+P2(RDdes−RD(k))

+
φ ·P2

α
(Qdes−Q(k)) (16)

This results in the corresponding state space formulation

[
x1(k +1)
x2(k +1)

]
=
[

(1−P1α) 0
0 (1−P2β )

][
x1(k)
x2(k)

]
+
[

P1 0
φ ·P2

α
P2

][
u1(k)
u2(k)

]
(17)

and the transfer function matrix[
Y1(z)
Y2(z)

]
=[

α·P1
(z−(1−α·P1))

0
−φ ·P1

(z−(1−α·P1))
+ φ ·P2·β

(z−(1−β ·P2))
β ·P2

(z−(1−β ·P2))

][
U1(z)
U2(z)

]
(18)

This “extended” control law also eliminates the zero effect
like the previous control law. Next, the final value theorem
is again utilized to check the steady-state error of both Q
and RD.

Q(∞) = Qdes

RD(∞) = RDdes

This control law yields a system with real, positive eigen-
values, zero steady-state error, and no problematic zeros. The
transient response of both pulse one quantity and realized
dwell with the extended control law is shown below in Fig.
13 and 14 with eigenvalues at 0.9.

As desired, both transient responses show overdamped,
asymptotic behavior reducing the likelihood of pulses-to-
pulse bleeding and instability as described in Sect. V-C.

VI. CONCLUSIONS AND FUTURE WORK
A. CONCLUSIONS

This paper summarizes the utilization of a piezoelectric
fuel injector flow rate estimation strategy for cycle-to-cycle

971



Fig. 13. Transient Response of Realized Dwell with Extended Controller

Fig. 14. Transient Response of Pulse One Quantity with Extended
Controller

computation. High speed data acquisition captures and stores
important estimation variables such as the stack voltage and
body pressure during the injection period, and computation
of state variables is delayed to more efficiently utilize the
processor over the entire cycle. With this cycle-to-cycle
estimation of flow being available as feedback, a preliminary
controller was developed for control of quantities and real-
ized dwell times for tightly spaced, multiple pulse profiles.
A simplified “two pulse approximation” model is developed
and coupled with a modified discrete integral controller,
and with some reformulation, is shown to have no steady-
state error and the required overdamped, asymptotic behavior
to prevent pulse bleed during control action. Simulation
and experimental data validates the control scheme for two
pulses.

B. FUTURE WORK

Future work will involve analytical determine of the
constants β , φ , and α as opposed to the empirical approxi-
mations used in this paper. Also, the control laws developed
will be expanded to operate across varying rail pressures.
The controller will also be validated for longer and more
complex multiple pulse profiles.
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