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Abstract— In many practical applications the state variables
are defined on a compact set of the state space. For estimating
such variables constrained particle filters have been successfully
applied to nonlinear systems. For the saturated system the
measurement information can be used during the sampling
procedure to obtain particles that approximate the true state of
the system. This can be achieved by using a detection function,
which detects the saturation as it occurs. In this paper we pro-
pose the Saturated Particle Filter algorithm which incorporates
the measurements into the importance sampling procedure
through the detection function. The new filter is applied to the
Lindley-type stochastic process, where the stochastic process
depends on an exogenous parameter. This parameter changes
during the simulation. Furthermore, the system is corrupted
with high measurement noise. The simulations show that our
new filter achieves better performance than the standard
Constrained SIR filter, while it preserves low computational
complexity.

I. INTRODUCTION

Dynamic filters have been studied for decades in various

engineering problems which require extracting information

of interest from an uncertain or changing environment. Such

problems are in general modeled in a Stochastic Dynamical

System (SDS) framework. When a SDS has linear dynamics

and additive Gaussian noises it is well known that the optimal

solution, i.e., the estimator that minimizes the mean square

error, is given by the Kalman Filter (KF) [1]. In case of

nonlinear or/and non-Gaussian noises, in general an optimal

solution is unknown and one needs to rely on suboptimal

ones. Several versions of the KF that give suboptimal solu-

tion have been developed to address the nonlinear filtering

problem. These include, among others, the Extended KF

[1], the Unscented KF [1], [2], [3], the Gaussian Sum KF

[1], [4]. These are parametric filters, i.e., filters that solve

a finite dimensional estimation problem. Parametric filters

perform well when applied to a certain class of models, e.g.,

stochastic processes that can be accurately approximated by

a Gaussian process. However, they cannot be applied to more

general systems.

As an alternative to parametric methods, non-parametric

filters have been proposed as a tool to solve a general filtering

problem. Non-parametric filters aim to estimate a probability

density function (pdf), thus the problem becomes infinite

dimensional. The Particle Filter (PF) is one of the most

successful non-parametric filters that have been proposed in

the filtering community. The PF approximates a pdf of the

state of the system by a set of points which are obtained

by utilizing the Importance Sampling method [5], and then
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weighted according to the Bayes rule. However, the PF is

based on the Monte Carlo approximation, hence it might

require a large number of samples to achieve an accurate

estimate. This makes the algorithm computationally expen-

sive, and hence, limits its on-line applicability. The choice

of the importance sampling density is a crucial step towards

reducing the computational costs, and therefore making the

filter feasible for on-line applications.

In this paper we consider processes with saturation, i.e.,

processes for which at least one of the state variables is

defined on a compact set. The point that belongs to the

boundary of such a set is called the saturation point. These

processes are frequently met in the applied sciences, e.g., in

industrial [6], and in the theoretical research [7].

To solve the filtering problem for the continuous-state

process with saturation we propose in this paper a novel

method to design the importance density.

Design methods for the importance density have been

extensively studied [1], [5]. Recently the constrained PF have

been proposed [8], [9], [10], [11] which produce a state

estimate that does not violate the physical constraints of

the system. This is done by discarding unsuitable particles

[8], [10], or by projecting them on a constraint region [9],

[11]. In the design of our new Saturated Particle Filter

(Saturated PF), to ensure that the particles are within the

permissible region, we use the latter, i.e., the projection

approach. We further improve the constrained PF of [9]

by introducing a novel sampling method, which effectively

detects the saturation moment, and forces the particles to

rapidly jump to that part of the state space which is close to

the saturation point.

The paper is organized as follows: Section II defines

the mathematical framework of the Saturated Stochastic

Dynamical System which is the basic object of consideration

within this paper. Furthermore, the estimation problem is

formulated. In Section III the standard solution to the estima-

tion problem is given. The novel Saturated Particle Filter is

derived in Section IV. In Section V the new filter is compared

with the filter from Section III. Section VI concludes the

paper.

II. SATURATED STOCHASTIC DYNAMICAL

SYSTEM

The goal of this section is to present a mathematical frame-

work which we use to model saturated processes. We first

give a general definition of the systems under consideration.

Definition 1 (Stochastic Dynamical System):

Assume that for every k ≥ 1, wk and vk are mutually
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independent random variables, fk is a (possibly nonlinear)

function that describes the state evolution, hk is a

(possibly nonlinear) function that establishes the observation

model, and p0 is a pdf of the initial state x0. The

Stochastic Dynamical System (SDS) is defined as a

couple {(xk, yk)}
+∞

k=0 of discrete-time stochastic processes

{xk}
+∞

k=1, and {yk}
+∞

k=1 that evolve according to:

xk+1 = fk (xk, wk) , (1)

yk = hk (xk, vk) , (2)

x0 ∼ p0 (·) . (3)

The stochastic process defined by (1)–(3) is a Hidden

Markov Model, i.e., given the present state of the system,

neither the present observation nor the future state of the

system depend on the past states. This property, known as

the Markov property [12], allows the estimation of the state

of the system recursively, as it is shown in the following

sections. To define saturated processes we need the following

definition:

Definition 2 (Saturated Random Variable): A random

variable ξ is saturated if there exists a bounded set A such

that the probability of ξ belonging to A is equal to one, i.e.,

P (ξ ∈ A) = 1.

Definition 3 (Saturated Stochastic Dynamical System):

Let {(xk, yk)}
+∞

k=0 be a SDS defined by (1)–(3). We call the

couple {(xk, yk)}
+∞

k=0 the Saturated Stochastic Dynamical

Systems (SSDS) if for each k ≥ 1, given the state xk−1, the

state xk at time k, is a saturated random variable.

For simplicity, throughout this paper we assume that

{xk}
+∞

k=1, and {yk}
+∞

k=1 are one-dimensional real-valued pro-

cesses1. Furthermore, we assume that the process {xk}
+∞

k=1

is non-negative. In this paper we consider the SSDSs such

that for each k ≥ 1 the upper bound2 of the variable xk is

dependent only on the past state xk−1. More precisely, we

consider SSDSs such that the following condition is fulfilled:

Condition 1 (Saturation Condition): There exist a func-

tion C : R+ → R+ and a function f̃k : R+ × R → R+

such that for each k ≥ 1 (1) takes the form:

xk+1 = min
(

f̃k (xk, wk) , C (xk)
)

. (4)

The bounds {C (xk)}
+∞

k=0 of such SSDS form a (possibly

unbounded) stochastic process. Possible realization of the

stochastic processes {xk}
+∞

k=1 and {C (xk)}
+∞

k=0 is illustrated

in Figure 1.

We are interested in continuous state space, therefore it is

reasonable to assume that for every time step k the random

variable f̃k (xk, wk) has a continuous pdf. This, however,

does not hold for the variables xk. Indeed, from (4) it follows

that each variable xk+1 has a singularity at the point C (xk).

1For the higher dimensional processes the general idea remains the same,
but the mathematical derivations become more involved.

2Definition 3 allows the bounds for the process {xk}
+∞

k=1 to vary over
the time-steps k ≥ 1.

x

k

Fig. 1. Trajectories of the saturated process {xk}
+∞

k=1 (small filled circles)

and its bounds {C (xk)}
+∞

k=0 (large empty circles). When the unsaturated

variable f̃k (xk, wk) (empty squares) exceeds the saturation bound C (xk)
(horizontal dotted lines) it is projected on the appropriate bound (vertical

dotted lines). In such cases the realizations of processes {xk}
+∞

k=1 and

{C (xk)}
+∞

k=0 are overlapping (small circles within large circles).

This means that the pdf of xk+1 is continuous up to the point

C (xk) in which the positive probability mass is focused.

Therefore, the conditional density of the variable xk+1 given

the previous state xk is given by:

P (xk+1 = x|xk) = P

(

f̃k (xk, wk) = x|xk

)

1[0,C(xk)) (x) (5a)

+

∫ +∞

C(xk)

P

(

f̃k (xk, wk) = z|xk

)

dzδC(xk) (x) , (5b)

where 1[0,C(xk)) is an indicator function on the interval

[0, C (xk)), and δC(xk) is a Dirac delta centered at the

point C (xk). The pdf of such a variable is illustrated on

Figure 2.

state

P
(5a)

C (xk)

(5b)

Fig. 2. The pdf of the saturated variable xk+1 given the past state xk .
The pdf is composed of a continuous part (5a) and a singular mass (5b)
concentrated at the saturation point C (xk).

Having the SSDS defined in such a way, we are interested

in estimating the actual state xk of the system from the

available measurements yk. The next section describes a

standard estimation method which is applicable to a wide

range of the SDSs, including the SSDSs.
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III. SIR PARTICLE FILTER

The Markovian character of the SSDS makes it possible,

for estimation purposes, to employ recursive algorithms

utilizing Bayes theorem. Since the SSDS is, in general, a

nonlinear and non-Gaussian system, it is suggested to use

the PF in order to get accurate estimates [5].

Every time a measurement yk is obtained, the PF combines

it with the previous estimate and returns the estimate of the

pdf of the current state of the system P (xk = x|yk). This is

achieved in two steps:

1) Prediction: the estimate of the pdf of the most recent

state of the system P (xk−1 = x|yk−1) is propagated

through the state-transition model (1) one step ahead.

As a result the predicted density P (xk = x|yk−1) is

obtained.

2) Update: the predicted density is compared with the

measurement yk, and then transformed according to

the Bayes rule. The final output of the estimation is

the updated density P (xk = x|yk).

The PF is a Monte Carlo-type algorithm which represents

the estimated pdf by the set of N pairs
{(

xi
k, ω

i
k

)}N

i=1
of particles (xi

k) and associated weights (ωi
k). These pairs

approximate the true pdf by the formula:

P (xk = x|yk) ≈
N
∑

i=1

ωi
kδ0

(

x− xi
k

)

. (6)

The set of particles and weights is obtained in the follow-

ing manner:

1) At time step k − 1 the pdf P (xk−1 = x|yk−1) is

represented by the set
{(

xi
k−1, ω

i
k−1

)}N

i=1
,

2) when the measurement yk becomes available new

particles xi
k are drawn from the importance density

function (idf) Q
(

·|xi
k−1, yk

)

,

3) the weights ωi
k−1 are updated through the formula:

ω̃i
k = ωi

k−1

P
(

hk (xk, vk) = yk|xk = xi
k

)

P

(

xk = xi
k
|xi

k−1

)

Q

(

xi
k
|xi

k−1, yk

) ,

(7)

4) the weights ωi
k are obtained by normalizing ω̃i

k:

ωi
k =

ω̃i
k

∑N

j=1 ω̃
j
k

. (8)

The problem of such a recursive algorithm is the particle

degeneracy: after several iterations the whole probability

mass is focused on a few particles, whereas all the remaining

particles have negligible weights. When this phenomenon

occurs, the estimation accuracy degrades. To overcome this

problem, a resampling procedure is used. The idea is as

follows: at each iteration the degeneracy measure, called

effective sample size [5], is computed:

Neff =
1

∑N

i=1

(

ωi
k

)2 . (9)

When Neff drops below a specified threshold NT ∈ [1, N ],
particles are resampled using a specific algorithm.

There are many variations of PFs [5], which employ vari-

ous importance densities and resampling algorithms. To solve

the estimation problem for the saturated process we used the

Constrained Sampling Importance Resampling (Constrained

SIR) filter, i.e., the SIR filter [5] modified by the projection

algorithm from [9]. In the SIR algorithm the importance

density is chosen to be the transition density:

Q
(

x|xi
k−1, yk

)

:= P
(

xk = x|xk−1 = xi
k−1

)

, (10)

and the resampling is performed as described in Algorithm 1.

Algorithm 1 SIR Resampling

Require: {(xi, wi)}Ni=1

Ensure: {(xi
new, w

i
new)}

N
i=1

for i = 1, 2, . . . , N do

Compute cumulative sum of weights: wi
c =

∑i

j=1 w
j
k

end for

Draw u1 from the uniform distribution U(0, 1
N
)

for i = 1, 2, . . . , N do

Find x+i, the first sample for which wi
c ≥ ui.

Replace particle i: xi
new = x+i, wi

new = 1
N

ui+1 = ui +
1
N

end for

In the SIR framework, because of (10), the weight update

(7) is simplified to:

ω̃i
k = ωi

k−1P
(

hk (xk, vk) = yk|xk = xi
k

)

. (11)

However, with such a choice of the importance density,

the most recent information yk is not used during the particle

drawing. This information can be of crucial importance in

case of saturated processes, thus its loss is undesirable.

Therefore, in the next section we derive a new PF that

uses the importance density which accounts for the latest

measurement yk. The resampling procedure for the new filter

is performed by Algorithm 1.

IV. SATURATED PARTICLE FILTER

In this section we propose a new Saturated PF that is

designed for the saturated processes. We begin with the

following definition:

Definition 4 (Detection function): The function α : R →
R is called a detection function if the following conditions

are fulfilled:

1) there exists c ∈ R such that α(c) = 0,

2) α is non-decreasing

The purpose of the detection function, as it is shown in

what follows, is to quickly detect that the saturation occurred

by comparing the measurements with the state constraints.

This information is used to force the particles to move to the

appropriate region.

Let us consider the SSDS defined by (1)–(4). Furthermore,

let
{(

xi
k, ω

i
k

)}N

i=1
be the approximation of the updated den-

sity of that process at time step k. For each i ∈ {1, ..., N},
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given the previous particle xi
k, the probability that the particle

xi
k+1 will be saturated3 follows by (5b):

P
(

xi
k+1 = C

(

xi
k

))

=

∫ +∞

C(xi

k)
P

(

f̃k (xk, wk) = z|xi
k

)

dz.

(12)

For the ease of notation the right-hand side of (12) is denoted

as qi, i.e.,

qi =

∫ +∞

C(xi

k)
P

(

f̃k (xk, wk) = z|xi
k

)

dz. (13)

Since the probability qi depends only on the previous state

xi
k, we call it the predicted probability of saturation.

Let α be a given detection function satisfying Definition 4.

Furthermore, assume that the measurement yk+1 becomes

available. Then, for each i ∈ {1, ..., N} we define qαi :

qαi := min
(

max
[

qi + α
(

yk+1 − C
(

xi
k

))

, 0
]

, 1
)

(14)

The so defined qαi depends on both the last state xi
k, and the

latest measurement yk+1. Therefore, we call it the updated

probability of saturation.

Using qαi defined in (14), and the detection function α,

we define the importance density Qα of the new PF by:

Qα
(

x|xi
k, yk+1

)

:= qαi δC(xi

k)
(x) (15a)

+
1− qαi
1− qi

P

(

f̃k (xk, wk) = x|xi
k

)

1[0,C(xi

k))
(x) . (15b)

It can be easily seen that Qα defines a probability mea-

sure4. The importance density of the Constrained SIR filter

is a special case of Qα with α ≡ 0.

Given the particle xi
k, a new particle xi

k+1 is drawn

from the importance density Qα. According to (15a) the

particle xi
k+1 is saturated with the probability qαi , and with

probability 1 − qαi it is drawn from (15b). The associated

weights ωi
k+1 are computed using (7). If xi

k+1 saturates, i.e.,

xi
k+1 = C

(

xi
k

)

, then, by the definitions of qi, and qαi , the

weight ωi
k+1 follows the formula:

ωi
k+1 ∝ ωi

k

qi

qαi
P
(

hk+1 (xk+1, vk+1) = yk+1|x
i
k+1

)

, (16)

if xi
k+1 does not saturate, the weight ωi

k+1 is updated by:

ωi
k+1 ∝ ωi

k

1− qi

1− qαi
P
(

hk+1 (xk+1, vk+1) = yk+1|x
i
k+1

)

.

(17)

The new PF is summarized in Algorithm 2.

The proposed Saturated PF combines the previous states

xi
ks with the most recent measurement yk+1 to compute the

updated probability of saturation qαi . For large values of qαi
the algorithm forces the particles to be close to the saturation

3The particle xi
k+1 is saturated means that xi

k+1 is projected on

C
(

xi
k

)

which is equivalent to the projection method described in [9].
Indeed, it makes no difference whether the ‘bad’ particles drawn from an
unconstrained continuous distribution are projected on the saturation point,
or each particle is set to saturation point with the probability of saturation.
The resulting sets of particles are equivalent in the statistical sense.

4Qα is positive, and it integrates to one.

Algorithm 2 Saturated PF with detection function α

Require:
{(

xi
k, ω

i
k

)}N

i=1

Ensure:
{(

xi
k+1, ω

i
k+1

)}N

i=1
for i = 1, 2, . . . , N do

Compute the probability qi according to (13)

Compute the probability qαi according to (14)

Draw u ∼ U (0, 1)
if u ≤ qαi then

Particle xi
k+1 saturates:

xi
k+1 := C

(

xi
k

)

ωi
k+1 ∝ ωi

k

qi

qαi
P
(

hk+1 (xk+1, vk+1) = yk+1|x
i
k+1

)

else
Particle xi

k+1 does not saturate:

x
i
k+1 ∼

1− qαi
1− qi

P

(

f̃k (xk, wk) = •|xi
k

)

1[0,C(xi

k
)) (•)

ω
i
k+1 ∝ ω

i
k

1− qi

1− qαi
P

(

hk+1 (xk+1, vk+1) = yk+1|x
i
k+1

)

end if

end for

region5, whereas for small values of qαi the particles are

set further from the saturation region. Figure 3 presents

the difference between the Unconstrained SIR sampling, the

Constrained SIR sampling and the Saturated PF sampling for

a large value of qαi .

The accuracy of the estimation depends on the detection

function, which must be chosen appropriately to the SSDS

under consideration.

V. APPLICATION

In this section we apply the Saturated PF to a system

which depends on an external parameter θ, and allows

relatively large measurement noises. We show that with the

proper choice of the detection function α, the Saturated

PF outperforms the Constrained SIR filter in tracking rapid

changes in the dynamics of the system.

The process used to compare the Saturated PF and the

Constrained SIR filter to the SSDS given by:

xk+1 = min (xk + wk, C (xk)) , (18)

yk = xk + vk, (19)

where wk is an exponential random variable with param-

eter θ · C (xk), i.e., with the expected value Ewk =
(θ · C (xk))

−1
. The variable vk is a zero-mean Gaussian

variable with the standard deviation σv.

The state model (18) is nonlinear and non-Gaussian,

whereas the observation model (19) is both linear, and

conditionally Gaussian. The stochastic process (18) is a

Lindley-type process, i.e., it is a modification of the cele-

brated Lindley’s recursion, one of the most studied stochastic

5The value of saturation C(x) is a random variable dependent on x, where
x is approximated by

{(

xi, ωi
)}

. Therefore, by the saturation region we

understand the set
{

C
(

xi
)}

.
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Fig. 3. Distribution of particles obtained by the Unconstrained SIR (top),
Constrained SIR (middle) and the Saturated PF (bottom). Some of the
particles obtained by the Unconstrained SIR violate the physical constraints
on the system (saturation region), other are located far from the actual
measurement. The Constrained SIR projects the unphysical particles onto
the saturation region, but does not move the remaining particles. The
Saturated PF projects the bad particles on the saturation region and forces
the remaining particles to concentrate close to saturation region.

processes in applied probability [7], [13]. These type of

processes are extensively used in queueing theory [13], [14].

The boundary function C(·) is defined by:

C (x) :=

{

x+ 4 if x < 15,
0.7x+ 8.5 otherwise.

(20)

To illustrate the capabilities of the proposed filter, starting

from the initial state of the system x0 = 7, we simulated the

evolution of the system (18)–(19) for 100 time steps. During

the first 50 steps, parameter θ is set to 1, during the second

50 steps it is set to 1
30 . This models a rapid change in the

conditions external to the system.

To simulate a noisy-measurement environment (19), the

standard deviation σv of the variable vk is set to σv = 3.

Figures 4 and 5 present two independent simulation runs

of the system (18)–(19) and two filtered signals (Constrained

SIR and Saturated PF). Both Constrained SIR and Saturated

PF use the state model (18) with parameter θ = 1 for the

whole time of the simulation. The initial state p0 for both

filters is equal to p0(·) = N (·; 7, 1) (the pdf of the Gaussian

variable with the mean and the standard deviation equal to 7
and 1, respectively). The number of particles is set to N =
100, and the resampling threshold is set to NT = 50. Figure

4 presents the Saturated PF with the antisymmetric detection

function α1, whereas Figure 5 presents the Saturated PF that

uses the asymmetric detection function α2.

The Saturated PF from Figure 4 uses an detection function

α1 defined as:

α1 (x) :=

{

log (x+ 1) if x > 0,
− log (−x+ 1) otherwise.

(21)

Function α1 is antisymmetric in zero, which means that the

probability of saturation qαi is increased or decreased propor-

tionally to the distance between the measurement yk+1 and

the saturation bound C
(

xi
k

)

. If the distance |yk+1 − C
(

xi
k

)

|
is greater than (≈) 1.7 then, depending on the sign of the

difference, the probability of saturation qαi is equal to zero

or to one.

The Saturated PF from Figure 5 uses an detection function

α2 defined as:

α2 (x) :=







log (x+ 1) if x > 0,
− log (−x+ 1) if x > − 1

2 ,

−3 log (−x+ 1) + 2 log
(

3
2

)

otherwise.
(22)

Function α2 is not antisymmetric as was α1. In this case,

when the measurement yk+1 is smaller than C
(

xi
k

)

− 1
2 ,

the probability of saturation qαi decreases much faster with

the distance |yk+1 − C
(

xi
k

)

| and reaches zero when

yk+1 < C
(

xi
k

)

− 0.83. When the measurement yk+1 is

greater than C
(

xi
k

)

− 1
2 the probability of saturation qαi is

adjusted identically as it was for the function α1.

The estimated signals from Figures 4 and 5 are computed

as the average of ten independent filter runs. In each of the

parallel runs, for both Constrained SIR and Saturated PF,

the estimated value of the state is computed by taking a

weighted mean of the particles, i.e., x̂k =
∑N

i=1 ω
i
kx

i
k. This

corresponds to the Minimum Mean Square Error (MMSE)

estimator [1].

0 20 40 60 80 100
0
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Constrained SIR

true state

Saturated PF

measurements

time step

st
a
te

Fig. 4. Constrained SIR and Saturated PF applied to system (18)–(19).
The thick solid line is the true value of the state, the circles denote the
measurements of the system, the thin solid line represents the MMSE
estimate of the state obtained by the Saturated PF with detection function
α1, and the thin dashed line denotes the MMSE estimate obtained by the
Constrained SIR filter.
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Fig. 5. Constrained SIR and Saturated PF applied to system (18)–(19).
The thick solid line is the true value of the state, the circles denote the
measurements of the system, the thin solid line represents the MMSE
estimate of the state obtained by the Saturated PF with detection function
α2, and the thin dashed line denotes the MMSE estimate obtained by the
Constrained SIR filter.

The results presented in Figures 4 and 5 show that both the

Saturated PF and the Constrained SIR filter perform similarly

during the phase when their state model corresponds with

the true state process (θ = 1). When the external parameter

changes (θ = 1
30 ) the Saturated PF is able to track the true

state, whereas the Constrained SIR filter fails to do so. The

difference in detection functions, α1 and α2 does not result

in a qualitative change of filtered signal.

VI. CONCLUSIONS

In this paper we proposed a novel filtering method which

makes an effective use of the measurements when sampling

particles within the particle filter framework. The Saturated

PF is designed for a class of SSDSs. The filter makes use of a

detection function to detect the saturation of the process. As

demonstrated by simulations of the noisy-measurement sys-

tem, the Saturated PF outperforms the standard PF method

in terms of accuracy of tracking the signal that exhibit

rapid changes in the dynamics. While better performance is

achieved, the computational complexity of the new filter is

comparable to the complexity of the Constrained SIR filter.

In general, the accuracy of the estimation depends on the

appropriate choice of the detection function. This issue will

be addressed in our further research.
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