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Abstract— In this article we propose a robust linear output
feedback control scheme for the regulation and trajectory
tracking tasks of the load angle variable in a widely used,
nonlinear, single synchronous generator model. The proposed
linear feedback scheme is based on the use of a classical linear
feedback controller and a suitably extended high gain linear
observer; aiding the linear feedback controller, in two important
tasks: 1) accurate estimation of the input-output system model
nonlinearities, 2) accurate estimation of the unmeasured phase
variables associated with the load angle variable (shaft angular
speed deviation, and shaft angular acceleration). These two
key pieces of information are used in the proposed feedback
controller to a) cancel, as a lumped unstructured time-varying
term, the influence of the nonlinearities and b) devise a proper
linear output feedback based on the approximate estimates of
the phase variables. The robustness of the scheme is tested
against a three phase short circuit of significant duration.
The proposed, observer-based, feedback controller requires
knowledge of only two constant parameters of the model. The
closed loop responses are shown to be robust with respect to
reasonable deviations of these parameters from their nominal
values.

I. INTRODUCTION

Asymptotic estimation of external, unstructured, pertur-

bation inputs, with the aim of exactly, or approximately,

canceling their influences at the controller stage, has been

treated in the existing literature under several headings. The

outstanding work of professor C.D. Johnson in this respect,

under the name of Disturbance Accommodation Control

(DAC), dates from the nineteen seventies (see [11]). Ever

since, the theory and practical aspects of DAC theory have

been actively evolving, as evidenced by the survey paper by

Johnson [13]. The theory enjoys an interesting and useful ex-

tension to discrete-time systems, as demonstrated in the book

chapter [12]. In a recent article, by Parker and Johnson [17],

an application of DAC is made to the problem of decoupling

two nonlinearly coupled linear systems. An early application

of disturbance accommodation control in the area of Power

Systems is exemplified by the work of Mohadjer and Johnson

in [16], where the operation of an interconnected power

system is approached from the perspective of load frequency

control.

A closely related vein to DAC is represented by the

sustained efforts of the late Professor Jingqing Han, sum-

marized in the posthumous paper, Han [9], and known as:

Active Disturbance Estimation and Rejection (ADER). The

numerous and original developments of Prof. Han, with

many laboratory and industrial applications, have not been
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translated into English and his seminal contributions remain

written in Chinese (see the references in [9]). Although

the main idea of observer-based disturbance estimation, and

subsequent cancelation via the control law, is similar to that

advocated in DAC, the emphasis in ADER lies, mainly,

on nonlinear observer based disturbance estimation, with

necessary developments related to: efficient time derivative

computation, practical relative degree computation and non-

linear PID control extensions. The work, and inspiration, of

Professor Han has found interesting developments and appli-

cations in the work of Professor Z. Gao and his colleagues

( see [7], [8], also, in the work by Sun and Gao [21] and in

the article by Sun [22]). In a recent article, a closely related

idea, proposed by Prof. M. Fliess and C. Join in [6], is at the

core of Intelligent PID Control(IPIDC). The mainstream of

the IPIDC developments makes use of the Algebraic Method

and it implies to resort to first order, or at most second

order, non-phenomenological plant models. The interesting

aspect of this method resides in using suitable algebraic

manipulations to locally deprive the system description of the

effects of nonlinear uncertain additive terms and, via further

special algebraic manipulations, to efficiently identify time-

varying control gains as piece-wise constant control input

gains (see [5]). An entirely algebraic approach for the control

of synchronous generator was presented in Fliess and Sira-

Ramı́rez, [19].

In this article, we advocate, within the context of the

angular deviation trajectory control for a single synchronous

generator model, the use of approximate, yet accurate,

state dependent disturbance estimation via linear Generalized

Proportional Integral (GPI) observers. GPI observers are

the dual counterpart of GPI controllers, developed by M.

Fliess et al. in [4]. A high gain GPI observer naturally

includes a, self-updating, lumped, time-polynomial model

of the nonlinear state-dependent perturbation; it estimates

it and delivers the time signal to the controller for on-

line cancelation while simultaneously estimating the phase

variables related to the measured output. The scheme is,

however, approximate since only a small as desired re-

construction error is guaranteed at the expense of high,

noise-sensitive, gains. The on-line approximate estimation

is suitably combined with linear, estimation-based, output

feedback control with the appropriate, on-line, disturbance

cancelation. The many similarities and the few differences

with the DAC and ADER techniques probably lie in 1) the

fact that we do not discriminate between exogenous (i.e.,

external) unstructured perturbation inputs and endogenous

(i.e., state-dependent) perturbation inputs in the nonlinear

input-output model. These perturbations are all lumped into
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a simplifying time-varying signal that needs to be linearly

estimated. Notice that plant nonlinearities generate time

functions that are exogenous to any observer and, hence,

algebraic loops are naturally avoided 2) We emphasize the

natural possibilities of differentially flat systems in the use

of linear disturbance estimation and linear output feedback

control with disturbance cancelation (For the concept of

flatness see Fliess et al. [3]) and the book [20].

This article is organized as follows: Section II presents an

introduction to linear control of nonlinear systems via (high-

gain) GPI observers and suitable linear controllers feeding

back the phase variables related to the output function. The

single synchronous generator model in the form a swing

equation, is described in Section III. Here, we formulate

the reference trajectory tracking problem under a number of

information restrictions about the system. In this section we

propose the linear observer-linear controller output feedback

control scheme for lowering the deviation angle of the

generator. Section IV is devoted to present some simulations

regarding the closed loop performance of the proposed linear

feedback control scheme. In that section we carry out a

robustness test regarding the response to a three phase short

circuit. We also carry an evaluation of the performance of the

control scheme under significant variations of the two control

gain parameters required for an exact cancelation of the gain.

The last section presents the conclusions and suggestions for

further work.

II. LINEAR GPI OBSERVER-BASED CONTROL OF

NONLINEAR SYSTEMS

Consider the following perturbed nonlinear single-input

single input-output, smooth, nonlinear system,

y(n) = ψ(t,y, ẏ, ...,y(n−1))+φ(t,y)u+ ζ (t) (1)

The unperturbed system, (ζ (t) ≡ 0) is evidently flat, as

all variables in the system are expressible as differential

functions of the flat output y. We assume that the exogenous

perturbation ζ (t) is uniformly absolutely bounded, i.e., it

an L∞ scalar function. Similarly, we assume that for all

bounded solutions, y(t), of (1), obtained by means of suit-

able control input u, the additive, endogenous, perturbation

input, ψ(t,y(t), ẏ(t), ...,y(n−1)(t)), viewed as a time signal is

uniformly absolutely bounded. We also assume that the non-

linear gain function φ(t,y(t)) is L∞ and uniformly bounded

away from zero, i.e., there exists a strictly positive constant

µ such that

inf
t
|φ(t,y(t))| ≥ µ (2)

for all smooth, bounded solutions, y(t), of (1) obtained with

a suitable control input u. Although the results below can

be extended when the input gain function φ depends on the

time derivatives of y, we let, motivated by the synchronous

generator case study to be presented, φ to be an explicit

function of time and of the measured flat output y. This is

equivalent to saying the φ(t,y(t)) is perfectly known.

We have the following formulation of the problem:

Given a desired flat output reference trajectory, y∗(t),
devise a linear output feedback controller for system (1)

so that regardless of the endogenous perturbation signal

ψ(t,y(t), ẏ(t), ...,y(n−1)(t)) and of the exogenous perturba-

tion input ζ (t), the flat output y tracks the desired reference

signal y∗(t) even if in an approximate fashion. This approx-

imate character specifically means that the tracking error,

e(t) = y− y∗(t), and its first, n, time derivatives, globally

asymptotically exponentially converge towards a small as

desired neighborhood of the origin in the reference trajectory

tracking error phase space.

The solution to the problem is achieved in an entirely

linear fashion if one conceptually considers the nonlinear

model (1) as the following linear perturbed system

y(n) = v+ ξ (t) (3)

where v = φ(t,y)u, and ξ (t) = ψ(t,y(t), ẏ(t), ...,y(n−1)(t))+
ζ (t).

Consider the following preliminary result:

Proposition 1: The unknown perturbation vector of time

signals, ξ (t), in the simplified tracking error dynamics (3),

is observable in the sense of Diop and Fliess (see [2])).

Proof The proof of this fact is immediate after writing (3)

as

ξ (t) = y(n)− v = y(n)−φ(t,y)u (4)

i.e., ξ (t) can be written in terms of the output vector y, a

finite number of its time derivatives and the control input u.

Hence, ξ (t) is observable.

Remark 2: This means, in particular, that if ξ (t) is be-

stowed with an exact linear model; an exact asymptotic

estimation of ξ (t) is possible via a linear observer. If, on the

other hand, the linear model is only approximately locally

valid, then the estimation obtained via a linear observer is

asymptotically convergent towards an equally approximately

locally valid estimate.

We assume that the perturbation input ξ (t) may be locally

modeled as a p − 1-th degree time polynomial z1 plus a

residual term, r(t), i.e.,

ξ (t) = z1 + r(t) = a0 + a1t + · · ·+ ap−1t p−1 + r(t), for all t

(5)

The time polynomial model, z1, (also called: a Taylor poly-

nomial) is invariant with respect to time shifts and it defines a

family of p−1 degree Taylor polynomials with arbitrary real

coefficients. We incorporate z1 as an internal model of the

additive perturbation input (see [11]). The perturbation model

z1 will acquire a self updating character when incorporated

as part of a linear asymptotic observer whose estimation

error is forced to converge to a small vicinity of zero. As

a consequence of this, we may safely assume that the self-

updating residual function, r(t), and its time derivatives, say

r(p)(t), are uniformly absolutely bounded. To precisely state

this, let us denote by y j an estimate of y( j−1) for j = 1, ...,n.

We have the following general result:
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Theorem 3: The GPI observer-based dynamical feedback

controller:

u =
1

φ(t,y)

[
[y∗(t)](n)−

n−1

∑
j=0

(
κ j[y j − (y∗(t))( j)]

)
− ξ̂ (t)

]

(6)

ξ̂ (t) = z1

ẏ1 = y2 +λp+n−1(y− y1)

ẏ2 = y3 +λp+n−2(y− y1)

...

ẏn = v+ z1 +λp(y− y1)

ż1 = z2 +λp−1(y− y1)

...

żp−1 = zp +λ1(y− y1)

żp = λ0(y− y1) (7)

asymptotically exponentially drives the tracking error phase

variables, e
(k)
y = y(k) − [y∗(t)](k), k = 0,1, ..,n− 1 to an ar-

bitrary small neighborhood of the origin, of the tracking

error phase space, which can be made as small as desired

from the appropriate choice of the controller gain parameters

{κ0, ...,κn−1}. Moreover, the estimation errors: ẽ(i) = y(i)−yi,

i = 0, ...,n− 1 and the perturbation estimation error: zm −
ξ m−1(t), m = 1, ..., p asymptotically exponentially converge

towards a small as desired neighborhood of the origin of the

reconstruction error space which can be made as small as

desired from the appropriate choice of the controller gain

parameters {λ0, ...,λp+n−1}.

Proof The proof is based on the fact that the estimation

error ẽ satisfies the perturbed linear differential equation

ẽ(p+n)+λp+n−1e(p+n−1)+ · · ·+λ0ẽ = r(p)(t) (8)

Since r(p)(t) is assumed to be uniformly absolutely bounded

then there exists coefficients λk such that ẽ converges to a

small vicinity of zero, provided the roots of the associated

characteristic polynomial in the complex variable s:

sp+n +λp+n−1sp+n−1 + · · ·+λ1s+λ0 (9)

are all located deep into the left half of the complex plane.

The further away from the imaginary axis, of the complex

plane, are these roots located, the smaller the neighborhood

of the origin, in the estimation error phase space, where

the estimation error ẽ will remain ultimately bounded (see

Kailath [14]). Clearly, if ẽ and its time derivatives converge

to a neighborhood of the origin, then z j − ξ ( j), j = 1,2, ...,

also converge towards a small vicinity of zero.

The tracking error ey = y− y∗(t) evolves according to the

following linear perturbed dynamics

e
(n)
y +κn−1e

(n−1)
y + · · ·+κ0ey = ξ (t)− ξ̂(t) (10)

Choosing the controller coefficients {κ0, · · · ,κn−1}, so that

the associated characteristic polynomial

sn +κn−1sn−1 + · · ·+κ0 (11)

exhibits its roots sufficiently far from the imaginary axis

in the left half portion of the complex plane, the tracking

error, and its various time derivatives, are guaranteed to

converge asymptotically exponentially towards a vicinity of

the tracking error phase space. Note that, according to the

observer expected performance, the right hand side of (10) is

represented by a uniformly absolutely bounded signal already

evolving on a small vicinity of the origin. For this reason the

roots of (11) may be located closer to the imaginary axis than

those of (9). A rather detailed proof of this theorem may be

found in the article by Luviano et al. [15]

Remark 4: The proposed GPI observer (7) is a high gain

observer which is prone to exhibiting the “peaking” phenom-

ena at the initial time. We use a suitable “clutch” to smooth

out these transient peaking responses in all observer variables

that need to be used by the controller. This is accomplished

by means of a factor function smoothly interpolating between

an initial value of zero and a final value of unity. We denote

this clutching function as s f (t) ∈ [0,1] and define it in the

following (non-unique) way

s f (t) =

{
1 for t > ε

sinq
(

πt
2ε

)
for t ≤ ε

(12)

where q is a suitably large positive even integer.

III. LINEARLY CONTROLLING THE SINGLE

SYNCHRONOUS GENERATOR MODEL

A. The single synchronous generator model

Consider the swing equation of a synchronous generator,

connected to an infinite bus, with a series capacitor connected

with the help of a thyristor bridge (See Hingorani [10]),

ẋ1 = x2

ẋ2 = Pm − b1x2 − b2x3 sin(x1)

ẋ3 = b3(−x3 + x∗3(t)+ u+ ζ (t)) (13)

x1 is the load angle, considered to be the measured output.

The variable, x2, is the deviation from nominal, synchronous,

speed at the shaft, while x3 stands for the admittance of

the system. The control input, u, is usually interpreted as

a quantity related to the fire angle of the switch. ζ (t) is an

unknown, external, perturbation input. The static equilibrium

point of the system, which may be parameterized in terms

of the equilibrium position for the angular deviation, x1, is

given by,

x1 = x1, x2 = 0, x3 = x∗3(t) =
Pm

b2 sin(x1)
(14)

We assume that the system parameters, b2, and, b3, are

known. The constant quantities Pm, b1 and the time varying

quantity, x∗3(t), are assumed to be completely unknown.

B. Problem formulation

It is desired to have the load angular deviation, y =
x1, track a given reference trajectory, y∗(t) = x∗1(t), which

remains bounded away from zero, independently of the

unknown system parameters and in spite of possible external

system disturbances (such as short circuits in the three
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phase line, setting, momentarily, the mechanical power, Pm,

to zero), and other unknown, or un-modeled, perturbation

inputs comprised in ζ (t).

C. Main results

The unperturbed system in (13) is flat, with flat output

given by the load angle deviation y = x1. Indeed, all system

variables are differentially parameterizable in terms of the

load angle and its time derivatives. We have:

x1 = y

x2 = ẏ

x3 =
Pm − b1ẏ− ÿ

b2 sin(y)

u = −
b1ÿ+ y(3)

b3b2 sin(y)
−

Pm − b1ẏ− ÿ

b3b2 sin2(y)
ẏcos(y)

+
Pm − b1ẏ− ÿ

b2 sin(y)
− x∗3(t) (15)

The perturbed input-output dynamics, devoid of any zero

dynamics, is readily obtained with the help the control input

differential parametrization (15). One obtains the following

simplified, perturbed, system dynamics, including ζ (t), as:

y(3) =− [b3b2 sin(y)]u+ ξ (t) (16)

where ξ (t) is given by

ξ (t) = −b1ÿ+ b3 (Pm − b1ẏ− ÿ)

(
1−

ẏcos(y)

b3 sin(y)

)

−b3b2 sin(y)(x∗3(t)+ ζ (t)) (17)

We consider ξ (t) as an unknown but uniformly absolutely

bounded disturbance input that needs to be on-line estimated

by means of an observer and, subsequently, canceled from

the simplified system dynamics via feedback in order to reg-

ulate the load angle variable y towards the desired reference

trajectory y∗(t). It is assumed that the gain parameters b2

and b3 are known.

The problem is then reduced to the trajectory tracking

problem defined on the perturbed third order, predominantly,

linear system (16) with measurable state dependent input

gain and unknown, but uniformly bounded, disturbance

input. We propose the following estimated state feedback

controller with a smoothed (i.e., “clutched” ) disturbance

cancelation term, z1s(t) = s f (t)z1(t), and smoothed estimated

phase variables y js = s f (t)y j(t), j = 1,2,3 with s f (t) as in

equation (12) with a suitable ε value.

u = −
1

b3b2 sin(y)

[
(y∗(t))(3)− k2(y3s − ÿ∗(t))

−k1(y2s − ẏ∗(t))− k0(y− y∗(t))− z1s]

The corresponding variables, y3, y2 and z1, are generated by

the following linear GPI observer:

ẏ1 = y2 +λ5(y− y1)

ẏ2 = y3 +λ4(y− y1)

ẏ3 = −(b3b2 sin(y))u+ z1 +λ3(y− y1)

ż1 = z2 +λ2(y− y1)

ż2 = z3 +λ1(y− y1)

ż3 = λ0(y− y1) (18)

where y1 is the redundant estimate of the output y, y2 is

the shaft velocity estimate and y3 is the shaft acceleration

estimate. The variable z1 estimates the perturbation input

ξ (t) by means of a local, self updating, polynomial model of

third order, taken as an internal model of the state dependent

additive perturbation affecting the input-output dynamics

(16).

The clutched observer variables z1s, y2s and y3s are defined

by

θs = s f (t)θ , s f (t) =

{
sin8( πt

2ε ) for t ≤ ε
1 for t > ε

(19)

with θs being either z1s, y2s or y3s

The reconstruction error system is obtained by subtracting

the observer model from the perturbed simplified linear

system model. We have, letting ẽ = e1 = y− y1, e2 = ẏ− y2,

etc.

ė1 = e2 −λ5e1, ė2 = e3 −λ4e1, ė3 = ξ (t)− z1−λ3e1

ż1 = z2 +λ2(y− y1)

ż2 = z3 +λ1(y− y1)

ż3 = λ0(y− y1) (20)

The reconstruction error, ẽ = e1 = y− y1, is seen to satisfy

the following linear, perturbed, dynamics

ẽ(6)+λ5ẽ(5)+λ4ẽ(4)+ · · ·+λ1
˙̃e+λ0ẽ = ξ (3)(t) (21)

Choosing the gains {λ5, · · · ,λ0} so that the roots of the

characteristic polynomial,

po(s) = s6 +λ5s5 +λ4s4 + · · ·+λ1s+λ0, (22)

are located deep into the left half of the complex plane, it

follows from the bounded input, bounded output stability

theory that the trajectories of the reconstruction error ẽ and

those of its time derivatives ẽ( j), j = 1,2, ... are uniformly

ultimately bounded by a disk, centered at the origin in the

reconstruction error phase space, whose radius can be made

arbitrarily small as the roots of po(s) are pushed further to

the left of the complex plane.

The closed loop tracking error dynamics satisfies

e
(3)
y +κ2e

(2)
y +κ1ėy +κ0ey = ξ (t)− z1s (23)

The difference, ξ (t)− z1s, being arbitrarily small after some

time, produces a reference trajectory tracking error, ey =
y− y∗(t), that also asymptotically exponentially converges

towards a small vicinity of the origin of the tracking error

phase space.
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The characteristic polynomial of the predominant linear

component of the closed loop system may be set to have

poles placed in the left half of the complex plane at moderate

locations

pc(s) = s3 +κ2s2 +κ1s+κ0 (24)

IV. SIMULATION RESULTS

A. A desired rest-to-rest maneuver

It is desired to smoothly lower the load angle, y1 = x1,

from an equilibrium value of y = 1 [rad] towards a smaller

value, say, y = 0.6 [rad] in a reasonable amount of time, say,

T = 5 [s], starting at t = 5 [s] of an equilibrium operation

characterized by (see Bazanella et al. [1] and Pai [18])

x1 = 1, x2 = 0, x3 = 0.8912

We used the following parameter values for the system

b1 = 1, b2 = 21.3360, b3 = 20

We set the external perturbation input, ζ (t), as the time

signal,

ζ (t) = 0.005e(sin2(3t)cos(3t)) cos(0.3t)

The observer parameters were set in accordance with the

following desired characteristic polynomial po(s) for the,

predominantly, linear reconstruction error dynamics. We set

po(s) = (s2 + 2ζoωnos+ω2
no)

3, with

ζo = 1, ωno = 20

The controller gains κ2,κ1,κ0 were set so that the fol-

lowing closed loop characteristic polynomial, pc(s), was

enforced on the tracking error dynamics,

pc(s) = (s2 + 2ζcωncs+ω2
nc)(s+ pc)

with

pc = 3, ωnc = 3, ζc = 1

The trajectory for the load angle, y∗(t), was set to be

y∗(t) = x1,initial +(ρ(t, t1, t2))(x1,final − x1,initial)

with ρ(t, t1, t2) being a smooth Bèzier polynomial achieving

a smooth rest-to-rest trajectory for the nominal load angle

y∗(t) from the initial equilibrium value y∗(t1) = x1,initial = 1

[rad] towards the final desired equilibrium value y∗(t2) =
x1,final = 0.6 [rad]. We set t1 = 5.0 [s], t2 = 10.0 [s]; ε = 3.0

The interpolating polynomial ρ(t, t1, t2), is of the form:

ρ(t) = τ8
[
r1 − r2τ + r3τ2 − r4τ3 + r5τ4

−r6τ5 + r7τ6 − r8τ7 + r9τ8
]

with,

τ =
t − t1

t2 − t1

The choice,

r1 = 12870, r2 = 91520, r3 = 288288

r4 = 524160, r5 = 600600, r6 = 443520

r7 = 205920, r8 = 54912, r9 = 6435
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Fig. 1. Performance of GPI observer based linear controller for load angle
rest-to-rest trajectory tracking in a perturbed synchronous generator.

renders a time polynomial which is guaranteed to have

enough derivatives being zero, both, at the beginning and

at the end of the desired rest to rest maneuver.

Figure 1 depicts the closed loop performance of the pro-

posed GPI observer based linear output feedback controller

for the forced evolution of the synchronous generator load

angle trajectory following a desired rest to rest maneuver.

B. Robustness with respect to controller gain mismatches

We simulated the behavior of the closed loop system when

the gain parameters product, b3b2, is not precisely known and

the controller is implemented with an estimated (guessed)

value of this product, denoted by b̂2b3, and set to be b̂2b3 =
κb2b3. We determined that κ is a positive factor ranging

in the interval [0.95,∞]. However, if we allow independent

estimates of the parameters in the form b̂2 = κb2b2 and

b̂3 = κb3b3, we found that a larger robustness interval of

mismatches is allowed by satisfying the empirical relation

κb2κb3 ≥ 0.95. The assessment was made in terms of the

proposed rest to rest maneuver and possible simulations look

about the same.

C. Robustness with respect to sudden power failures

We simulated an un-modeled sudden three phase short

circuit occurring at time t = 2 [s]. The power failure lasts

for t = 0.2 [s]. Figure 3 depicts the performance of the GPI

observer based controller in the rapid transient occurring

during the recovery of the prevailing equilibrium conditions.
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Fig. 2. Performance of GPI observer based controller under a sudden loss
of power at t=2 [sec] during 0.2 [sec].

V. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

In this article, we have explored, within the context of the

angular deviation trajectory control for a nonlinear single

synchronous generator model, the use of approximate, yet

accurate, state-dependent disturbance estimation, and simul-

taneous state estimation, via linear Generalized Proportional

Integral (GPI) observers aided by a linear output feedback

controller. The overall scheme is, however, approximate

since only small as desired reconstruction and reference

trajectory tracking errors are guaranteed, at the expense of

high, noise-sensitive, observer-controller gains. Simulations

were provided where the robustness of the proposed control

method is assessed with respect to external perturbations and

crucial control gain parameters. We also experimented with

a significant temporary short circuit condition in order to

assess the recovery features of the proposed controller.

B. Future Works

GPI observer-based linear control of nonlinear systems

is naturally fit for differentially flat systems provided the

flat output is measurable. The approach may be extended to

discrete systems, to multi-variable continuous, or discrete,

systems and even to nonlinear systems exhibiting known

input, or output, time delays. The fundamental restriction

of unavailable flat outputs remains to be fully explored.

In this respect, the minimum-phase restriction seems to be

natural. These topics, and other related limitations, need to

be explored in the future and we propose them as topics for

further development.
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