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Abstract—Controlling induction motors have been given a 
great deal of interest. Generally, the control issue has been 
dealt with, neglecting the saturation effect of the magnetic 
characteristic and ignoring the presence of the AC/DC/AC 
converter. The originality of the present work is twofold: (i) the 
magnetic saturation effect is accounted for in the control design 
model; (ii) the induction motor is considered together with its 
AC/DC/AC converter. The control objectives for the 
association ‘converter-machine’ are: (i) forcing the motor 
speed to track a varying reference signal and optimizing the 
rotor flux reference, (ii) regulating the DC Link voltage, (iii) 
assuring a satisfactory power factor correction (PFC) with 
respect to the power supply net. A nonlinear multi-loop 
controller is designed using the backstepping technique and 
formally analyzed using Lyapunov stability and averaging 
theory. In addition to closed-loop stability, it is proved that all 
control objectives (motor speed tracking, DC link voltage 
regulation and unitary power factor) are asymptotically 
achieved, up to unavoidable, but small, harmonic errors 
(ripples).  

I. INTRODUCTION 

HEN three-phase induction motors are involved, speed 
variation is performed through (three-phase) DC/AC 
inverters due to their high capability of performing 

flexible voltage and frequency variation. The inverters are 
generally powered by an AC supply net through (a 
transformer and) an AC/DC rectifier. The connection line 
between the rectifier and the inverter is called DC link. The 
control problem at hand is to design a controller ensuring a 
wide speed range regulation for the system including the 
AC/DC rectifier, the DC/AC inverter and the induction 
motor. The point is that such a system behaves (vis-à-vis to 
the AC supply grid) as a nonlinear load causing generation 
of undesirable current harmonics that reduce the rectifier 
efficiency, induce voltage distortion in the AC supply line 
and cause electromagnetic compatibility issues. To 
overcome this drawback, the control objective must consider 
not only the motor speed regulation but also the current 
harmonics rejection. The last feature is referred to as the 
power factor correction (PFC) [8] 

Previous works on induction machine speed control 
simplified the control problem by: (i) ignoring the dynamics 
of the AC/DC rectifier (focusing thus only on the set 
‘DC/AC inverter - Motor’); (ii) neglecting the saturation 
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effects in the motor magnetic circuit. The simplified control 
problem has been dealt with, using several control strategies 
ranging from simple techniques, e.g. field-oriented control 
[3], to more sophisticated nonlinear approaches, e.g. direct 
torque control [6]. Neglecting the AC/DC rectifier was 
coped with, supposing the DC link voltage to be perfectly 
regulated and considering the PFC requirement not to be an 
issue. Of course, this assumption is not necessarily satisfied. 
On the other hand, neglecting the magnetic saturation effects 
makes it impossible to consider state-dependent flux 
references. Specifically, the reference flux (in previous 
control solutions) is taken constant equal to its nominal 
value, [3], [6]. Obviously, the machine efficiency is then 
maximal only when it operates in the neighborhood of its 
nominal point. If the operation point is below the nominal 
value (small loads), the useless energy stored in stator 
inductances reduces the machine efficiency. On the other 
hand, if the operation point is above the nominal value, the 
(overloaded) machine operates in the saturation zone of its 
magnetic characteristic and the control performances are not 
ensured because the control model based upon is no longer 
representative of the machine. To overcome the above 
shortcomings in speed control, the flux reference must be 
dependent on both the speed reference and torque-load. But 
this requirement is only achievable if the nonlinear nature of 
the magnetic characteristic is accounted for in the model.  
In the present work, a new control strategy is developed for 
the whole system including the ‘AC/DC rectifier’ and the 
association ‘DC/AC inverter-induction motor’. The new 
strategy involves a nonlinear multi-loop controller obtained 
using a model that accounts for the saturation effect of the 
motor magnetic circuit [7]. It is designed using the 
Lyapunov and backstepping design techniques, bearing in 
mind three main control objectives, namely motor speed 
tracking of varying reference trajectories, rotor flux 
optimization and unitary power factor. Flux optimality 
consists in minimizing the absorbed stator current that is 
necessary to produce a given motor torque. It is formally 
proved that all control objectives are achieved with a good 
accuracy.  

II.  MODELING THE ‘AC/DC/AC CONVERTER-INDUCTION 

MOTOR’ ASSOCIATION 

The controlled system, illustrated by Fig 1, includes an 
AC/DC boost rectifier and a combination ‘inverter-induction 
motor’. The inverter is a DC/AC converter operating, like 
the AC/DC rectifier, according to the known Pulse Wide 
Modulation (PWM) principle.  
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A.  AC/DC rectifier modeling  

The power supply net is connected to an H-bridge 
converter which consists of four IGBT’s with anti-parallel 
diodes for bidirectional power flow mode. This is expected 
to accomplish two main tasks: (i) providing a constant DC 
link voltage; (ii) providing an almost unitary power factor. 
Recall here the average model of (AC / DC) rectifier 
developed in [9]: 

1211 /)( Lxuvx e  , Cixux s 2/)( 112    (1a) 

where: 

eix 1 , dcvx 2 , su 1  (1b) 

are respectively the average values of  ei , dcv  and s , over 

cutting periods. The switch position s  is a function taking 
values in the discrete set { 1,1 }. Specifically: 
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Fig.1. AC/DC/AC drive circuit with a three-level inverter 

B. Inverter-Motor modeling  

In [7], a new model was developed and experimentally 
validated for the considered induction motor. Its originality 
lies in the fact that it takes into account the saturation effect 
of the machine magnetic characteristics (fig 2). It is defined 
by the following state space representation: 

Lsrsr TiipfJ  )(    (3a) 

  srrss vapaiai 332   (3b) 

  srrss vapaiai 332   (3c) 

  rrseqsr pLia  1
  (3d) 

  rrseqsr pLia  1
  (3e) 

  is a varying parameter that depends on the machine 
magnetic state (see Fig 2). In [7], this dependence was given 
a polynomial approximation, i.e.: 

m
rmrr qqq  ...)( 10  (3f) 

The involved coefficients have been experimentally 
identified in [7] using Fig 3. r denotes the amplitude of 

the (instantaneous) rotor flux, denoted r . Consequently: 

22
  rrr   (3g) 

where   rr ,  denote the rotor flux  -components. 

( si , si ) are the -components of the stator current,   

represents the motor speed, rs RR ,  denote the stator and 

rotor resistances,  LT  represents the load torque, J is the 

combined rotor and load inertia, p  is the number of pole 

pairs,  seqL  is the equivalent inductance (of both stator and 

rotor leakages) as this is seen from the stator, 

rRa 1 , 1
3 )(  seqLa , )(32 rs RRaa   (4a)  

The numerical values of the model parameters are those of 
[7] where the model is experimentally validated using an 
induction motor of 7.5 KW power. 
In (3a-e),  ss vv ,  denote the stator voltage components in 

αβ-coordinates (Park’s transformation of the three-phase 
stator voltages). The inverter is featured by the fact that the 
stator α- and β-voltages can be controlled independently. To 
this end, these voltages are expressed in function of the 
corresponding control action  

3uvv dcs  , 2uvv dcs   (4b) 

where ),( 32 uu  represent the average α- and β-axes of the 

three-phase duty ratio system ),,( 321 sss . The latter are 

obtained from (1c) replacing there ( S , 'S ) by ( iS , '
iS ) 

( 3,2,1i ). Now, let us introduce the state variables: 

3x ,   six 4 ,   six 5 , rx 6  , rx 7  (4c) 

Using the power conservation principle, one gets: 
 5342 xuxuis   (5) 

Substituting (4a-c) and (5) in (3a-f), the state space 
equations obtained up to now are put together to get a state 
space model of the whole system including the AC/DC/AC 
converters combined with the induction motor. For 
convenience, the whole averaged model is rewritten here for 
future reference: 

1211 /)( Lxuvx e   (6a) 

Cixux s 2/)( 112    (6b) 

LTxxxxpfxxJ  )( 475633  (6c) 

2237336424 xuaxpxaxxax  
 (6d) 

2337633525 xuaxxpxaxax  
 (6e) 

736416 xpxxLxax seq  
 (6f) 

637517 xpxxLxax seq  
 (6g) 

)( 2
7

2
6 xxr   (6h) 

m
rmrr qqq  ...)( 10   (6j) 

III. CONTROLLER DESIGN 

A. Control objectives 

Two operational control objectives are looked for: 
(i) Speed regulation with optimization of the rotor flux norm 

reference: the machine speed   must track a varying 
reference ref  as closely as possible while the rotor flux 

norm reference must be online adjusted so that the stator 
current consumption is minimized by acting on. 

(ii) PFC requirement: the rectifier input current ei  must be 

sinusoidal and in phase with the AC supply voltage ev . 
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As three control inputs are at hand (namely 1u , 2u  and 3u ) 

two additional control objectives will be pursued: 
(iii) Controlling the continuous voltage dcv , making it track 

a given reference signal dcrefv . This reference is generally 

set to a constant value equal to the nominal voltage 
entering the inverter. 
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Fig.2. Characteristic (  , r ): directly computed points (++) and 

polynomial interpolation (solid). Unities: )( 2H , r (Wb) 

B. AC/DC rectifier control design 

1) Controlling rectifier input current to meet PFC  
 The PFC objective means that the average input current 
rectifier must be sinusoidal and in phase with the AC supply 
voltage. This amounts to enforce the current 1x  to track a 

reference signal *
1x  of the form: 

evkx *
1  (7) 

At this point k  is any real parameter that is allowed to be 
time-varying. Introduce the current tracking error:   

*
111 xxz    (8) 

In view of (6a), the above error undergoes the following 
equation: 

*
11211 /)( xLxuvz e    (9) 

To get a stabilizing control law for this first-order system, 

consider the quadratic Lyapunov function 2
11 5.0 zV  . It can 

be easily checked that the time-derivative 1V  is a negative 

definite function of 1z  if the control input is chosen to be: 

  2
*
111111 /)/( xxLvzcLu e   (10) 

where 01 c  is a design parameter. The properties of 
such a control law are summarized in the following 
proposition. 
Proposition 1. Consider the system, next called current (or 
inner) loop, composed of the current equation (6a) and the 
control law (10) where 01 c  is arbitrarily chosen by the 

user. If the reference evkx *
1  and its first time derivative 

are available, then one has the following properties: 
a) The current loop satisfies the equation 111 zcz    

which is globally exponentially stable i.e. 1z  

exponentially vanishes, whatever the initial conditions.   
b) If in addition k  converges (to a finite value), then the 

PFC requirement is asymptotically fulfilled i.e. the 
(average) input current 1x  tends (exponentially fast) to 

its reference evk  as t   � 

2)  DC link voltage regulation  
The aim is now to design a tuning law for the ratio k in (7) 

so that the rectifier output voltage dcvx 2  is steered to a 

given reference value dcrefv . As mentioned above, dcrefv  is 

generally (but not mandatory) chosen to be the constant 
nominal inverter input voltage amplitude (i.e. the nominal 
stator voltage). 

a) Relationship between k  and 2x   

The first step in designing such a loop is to establish the 
relation between the ratio k  (control input) and the output 

voltage 2x . This is the subject of the following proposition. 

Proposition 2. Consider the power rectifier described by 
(6a-b) together with the control law (10). Under the same 
assumptions as in Proposition 1, one has the following 
properties: 

1) The output voltage 2x  varies, in response to the tuning 

ratio k , according to the equation: 

CxuxuxCvzvkx ee 2/)(2/)( 534221
2

2   (11) 

2) The squared voltage ( 2
2xy  ) varies, in response to the 

tuning ratio k , according to the equation: 

),(// 1
2 txCvzCvky ee   (12) 

with 
Cxuxuxtx /)(),( 53422   (13) 

b) Squared DC-link voltage regulation. 

The ratio k  appears as a control signal in the system defined 

by (12). As said before, the reference signal 2
dcref

def

ref vy   

(of the squared DC-link voltage dcvx 2 ) is chosen to be 

constant and is given the nominal inverter input voltage 
value. Then, it follows from (12) that the tracking error 

refyyz 2  undergoes the following equation:  

CtkECkEz e /)2cos(/ 22
2   

         refe ytxCtEz  ),(/)cos(2 1    (15) 

where we have used the fact that )cos(..2 tEv ee   and 

))2cos(1(22 tEv ee  . To get a stabilizing control law for 

the system (15), consider the following Lyapunov function: 
2
22 5.0 zV   (16) 

It is easily checked that the time-derivative 2V  can be made 

negative definite in the state 2z  by letting: 

 )cos(2)2cos( 1
22 tzEtEkEk ee   

                                        refyCtxzcC  ),(22   (17) 

where 02 c  is a design parameter. Bearing in mind the 

fact that the first derivative of the control ratio k  must be 
available (Proposition 1), one suggests, as a tuning law for 
such a ratio, the following filtered version of the above 
solution: 

  2
22 /),( EtxzcCdkdk  2/ EydC ref  (18) 
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At this point, the regulator parameters  2,cd  are any 

positive real constants. The way these parameters should be 
chosen will be made clear later (see Theorem 1). For now, 
let us describe the two control loops we have designed. 
Proposition 3. Consider the control system consisting of the 
AC/DC rectifier described by (6a-b) together with the 
control laws (10) and (18). Using Proposition 1 (Part 1), it 
follows that the resulting closed-loop undergoes, in the 

),,( 21 kzz -coordinates, the following equation where 

refyyz 2 , CEb /2
0  ; and ECdb /1  : 

),(1
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0

  (19) 

C. Motor speed and rotor flux norm regulation 

a) Optimal flux reference generation 

A key feature of the model (6a-j) is that it accounts for the 
the saturation feature of the motor magnetic characteristic. 
This feature makes possible the generation of optimal flux 
references. Presently, optimality is intended in the sense of 
minimizing the stator current necessary to produce a given 
load torque. In [1], it was shown that the optimal flux 
reference ref  is a function of the stator current. This 

function was also given a polynomial representation of the 
form: 

n
snsssref IhIhIhhI  ...)( 2

210  (20) 

with 
2

5
2

4
2 xxI s   (21) 

b)  Speed and flux controller design and analysis 

A regulator will now be designed to make the rotor speed 
and flux norm follow their references ref  and 

)( sref I  . The signal ref  is any bounded and derivable 

function of time and its two first derivatives are available 
and bounded. These properties can always be achieved by 
filtering the reference through a second-order linear filter. 
The regulator design is performed in two steps using the 
backstepping technique [5]. First, introduce the tracking 
errors: 

33 xz ref   (22) 

)( 2
7

2
6

2
ref4 xxz   (23) 

Step 1. It follows from (6c) and (6f-g) that the errors 3z  and 

4z  undergo the following differential equations: 

JfxTJxxxxpz JLref //)( 3/47563    (24) 

)(22 57461refref4 xxxxaz   )(2 4
2
ref zLseq   (25) 

In (24)-(25), the quantities Jxxxxp /)( 4756   and 

)(2 57461 xxxxa   stand up as virtual control signals. If these 

were the actual control signals, the error system (24)-(25) 
could be globally asymptotically stabilized letting 

14756 /)(  Jxxxxp  and 157461 )(2  xxxxa  with: 

JzfJTzc refLref

def

/)(/ 3331    (26) 

)(22 4
2
refrefref441 zLzc seq

def

    (27) 

where 3c  and 4c  are any positive design parameters. As the 

quantities Jxxxxp /)( 4756   and )(2 57461 xxxxa   are not 

the actual control signals, they cannot be let equal to 1  and 

1 , respectively. Nevertheless, the expressions of  1  and 

1  are retained as first stabilizing functions. Introduce the 

errors:  

Jxxxxpz /)( 475615    (30) 

)(2 5746116 xxxxaz   (31) 

Then, using the notations (26) to (31), the dynamics of 3z  

and 4z , can be rewritten as follows: 

5333 zzcz   (32) 

6444 zzcz   (33) 

Similarly, the time-derivative of 3V  can be expressed, in 

function of the new errors, as follows: 

6453
2
44

2
333 zzzzzczcV   (34) 

Step 2. The second design step consists in choosing the 
actual control signals, 2u  and 3u , so that the system with 

states ( 6543 z ,z ,z ,z ) be asymptotically stable. It follows 

from (30): 
Jxxxxxxxxpz /)( 4747565615     (35) 

Using (6c-g) and (26), (35) gives: 

Juxuxxpaz /)( 36272325    (36) 

with 

Jxxxxxp

JxfJfTJxxxap

JxxxxaLJfp

JTzzcc

L

seq

Lref

/)(

//)(/)(

/))(/(

/)(

46573
2

2
3

222
7

2
633

2

47562

53332











 

 (37) 

Similarly, it follows from (31) that 6z  undergoes the 

following differential equation: 
)(2 57574646116 xxxxxxxxaz    (38) 

Using  (6c-g) and (27), it follows from (38): 
)(2 372623126 uxuxxaaz   (39) 

with 

2
rseqrefrefseqref

srefrefseq

aLL

IazzcLc





)(242

)(22))(2(

1
2

22
164442







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))((2)(2 756421654731 xxxxaLaxxxxpaa seq    (40) 

where the derivative of    is obtained from (6i): 


















 7

7
6

6 x
x

x
x

d

d

dt

d

d

d

rrr

r

r

   (41) 

The derivatives ref  and ref  are obtained using (20) and 

(21). To analyze the error system, composed of equations 
(32-33), (36) and (39), let us consider the following 
augmented Lyapunov function candidate: 

)(5.0 2
6

2
534 zzVV   (42) 

Using (34), (36) and (39), its time-derivative along the 
trajectory of the state vector ( 3z , 4z , 5z , 6z ) is: 

 JuxuxxpazzzczcV /)( 362723235
2
44

2
334  

 )(2 2637321246 uxuxaxazz     (43) 

Adding 2
66

2
66

2
55

2
55 zczczczc   to the right side of 

(43) and rearranging terms, yield: 

)/)(( 36272355235

2
66

2
55

2
44

2
334

Juxuxxpazczz

zczczczcV









 )(2 263732166246 uxuxaxazczz     (44) 

where 5c  and 6c  are new arbitrary positive real design 

parameters. Equation (44) suggests that the control signals 

32 , uu   must set to zero the two quantities between curly 

brackets (on the right side of (44)).  Letting these quantities 
equal to zero and solving the resulting second-order linear 
equation system with respect to ( 32 , uu ), give the following 

control law:  
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
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zcz

zcz

u

u
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with: 
Jxxpa /2730  , 2713 2 xxa , 2612 2 xxa , 

Jxxpa /2631  ,       (46) 

Note that the determinant D of the matrix on the right side of 
(45) never vanishes in practice due to the machine remnant 

flux. JxxxapaD /)(2 2
7

2
6

2
2312130   . 

Substituting the control law (45) to ( 32 , uu ) on the right side 

of (44) yields: 2
66

2
55

2
44

2
334 zczczczcV               (47) 

As this is a negative definite function of the state vector 
( 3z , 4z , 5z , 6z ), the closed-loop system is globally 

asymptotically stable [4].  

The result thus established is more precisely formulated in 
the Theorem 1, where the following notations are used: 

 TkzzZ 211  ;  TzzzzZ 65432   TZZZ 21 (48a) 
1

2 2  ECb ; 2
3

 dEb ; 1 e  (48b) 
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ee   (48e) 
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1 00 IRbCg
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2 010 IRCEdh
TT    (48g) 

where 40   denotes the null vector of 4IR  
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Theorem 1 (main result). Consider the system including the 
AC/DC/AC power converters and the induction motor 
connected in tandem, as shown in Fig.1. For control design 
purpose, the system has been represented by its average 
model (6a-j). Consider the controller defined by the control 
laws (10), (18) and (45) where all design parameters, 
namely 654321 ,,,,, cccccc  and d are positive. Then, one has 

the following results:  
1) The resulting closed-loop system satisfies the state-space 

equation: 

refyhtZgtZfZAZ   ),(),( 2  (49) 

2) Let dcrefv  and ref  be either constant or periodic 

signals, with period eN  /  (for some positive integer N), 

and suppose that they are time derivable (up to second 
order for ref ) with bounded derivatives. Then, there 

exists a positive real * such that, if *0    then: 

a) The tracking error refyyz 2  and the tuning 

parameter k  are harmonic signals whose amplitudes 
are continuously depending on  . 

b) Furthermore, one has: 
(i) 0),(lim 2

0






tz ;   (ii)  Cbtk 04

0
/)0(),(lim 





(50) 

where )0( 4 denotes the mean value of the periodic 

time function ),0( 4 t      �   

IV. SIMULATION 

The simulated experimental set-up has the following 
characteristics: Supply network: 220V/50Hz , AC/DC/AC 
converters: 15mHL1  ; 1.5mFC  ; Induction motor 
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characteristics: nominal power . Controller design 
parameters: 1000c1  , 30c2  , 100c3  , 400c4  , 

500c5  , 0001c6  , 100d  . 

The load torque LT  is a step-like function set first to 0 

Nm, then, it steps to 10 Nm at t = 6s, to 20 Nm at t = 8s , to 
30 Nm at t = 10s, to 40 Nm at t = 12s, to 50 Nm at t = 14s 
and to -20 Nm at t = 16s.  

The controller performances are illustrated by Figs 5 to 8. 
Fig. 5 shows that the DC-link voltage dcvx 2  is well 

regulated and quickly settles down after each change in the 
speed reference or load torque. The resulting input current 

ei  is illustrated by Fig 8. It is seen that the current amplitude 

changes whenever the speed reference or the load torque 
vary. But the current frequency is sensitive to these changes. 
Specifically, the current remains (almost) all time in phase 
with the supply net voltage complying with the PFC 
requirement. Figs 6 and 7 show that the motor speed and the 
rotor flux norm do perfectly converge to their respective 
references. The tracking quality is quite satisfactory for both 
controlled variables ( r, ). 

V. CONCLUSION 

This paper has addressed the problem of controlling 
associations including an AC/DC rectifier, a DC/AC inverter 
and an induction motor. Unlike most previous works, the 
motor magnetic characteristic is let to be what it is i.e. a 
saturating curve. The system dynamics have been described 
by the averaged 7th order nonlinear state-space model (6a-j). 
It was formally established that the proposed controller 
achieves the objectives for which it was designed: (i) almost 
unitary power factor; (ii) tight DC-link voltage regulation; 
(iii) satisfactory rotor speed reference tracking and rotor flux 
norm regulation, over a wide range of load torque variation. 
In all operation conditions, the proposed SDOF controller 
leads to a smaller absorbed stator current, compared to that 
produced by a constant flux controller (see Fig 9). These 
results are confirmed by many simulations.  

REFERENCES 

[1] Elfadili A., Giri F., Ouadi H., Dugard L., and El Magri A. "Induction 
Machine Control in Presence of Magnetic Saturation. Speed 
Regulation with Optimized Flux Reference". European Control 
Conference, August 23-26, 2009, Budapest, Hungary. 

[2]  Sira.H and R. Silva. ’Control design techniques in power electronics 
devices’. Springer. (2006). 

[3] Heinemann G. and W. Leonhard 'Self-tuning field orientated control 
of an induction motor drive', Proceedings of international power 
electroniques conference April 2-6, 1990 Shinjuku Tokyo, Japan.  

[4] Khalil H. ‘Nonlinear systems’. Prentice Hall. (2003). 
[5] Krstic M., I. Kanellakopoulos, and P. Kokotovic. ‘Nonlinear and 

adaptive control design’. John Wilay & Sons, Inc, 1995. 
[6] Nuno M. Silva1, P. António Martins, S. Adriano. Carvalho, 'Torque 

and speed modes simulation of a DTC controlled induction motor' 
Proceedings of the 10th Mediterranean Conference on Control and 
Automation - MED2002 Lisbon, Portugal, July 9-12, (2002)Y. 
Yorozu, 

[7] Ouadi. H, F. Giri, and L. Dugard. “Modeling saturated induction 
motors”. IEEE Conference on Control Applications (CCA’04), Taipei, 
Taiwan. 2004 Vol.1, pp. 75 – 80. 

[8] Singh B., G. Bhuvaneswari, and V. Garg. ‘Improved Power Quality 
AC-DC Converter for Electric Multiple Units in Electric Traction’.  
Power India Conference, pp. 6, 2006. 

[9] Elfadili A., Giri F. El Magri A, Ouadi H., Dugard L., and A. 
Aboulouafa. "“Induction Motor Control through AC/DC/AC 
Converters Formal analysis of speed regulation performances and 
power factor correction” IFAC American Control Conference -- 
ACC2010 Baltimore, Maryland, USA  

0 5 10 15 20
0

200

400

600

Time (s)

D
C
- 
lin

k
 v
o
lt
a
g
e
 V

d
c

0 5 10 15 20
-2

-1

0

1

2

Time (s)

V
d
c
  
e
rr
o
r 
(V

)

 
Fig.5. DC-link voltage dcv  response Upper: reference and measured DC-

link voltage; lower: error control 
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the state-dependent optimized flux (SDOF) controller and the constant flux 
controller. 
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Fig.7. Rotor flux norm reference (Wb) (solid: state-dependent optimized 
flux, dotted: constant flux) 
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Fig.8. Unitary power factor checking in presence of a varying speed 
reference and load torque 
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Fig 9: Absorbed stator current (A) (solid: SDOF controller, dotted: constant 
flux controller). 
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