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Abstract— This paper proposes the addition of dynamic
phase compensation to modulated-demodulated controllers used
for disturbance rejection/reference tracking and demonstrates
a novel application of repetitive control for pulsed jet injection.
In cases where a plant has rapidly varying phase near the
frequency or frequencies to be controlled, conventional static
phase compensation may be inadequate due to the propensity to
create peaking in the sensitivity function. Dynamic phase com-
pensation improves the disturbance rejection characteristics
of modulated-demodulated controllers by inverting the plant
phase over some frequency band in the “baseband” coordinates.
Both static and dynamic phase compensation controllers are
compared on an experimental apparatus that is used to study
pulsed jet injection. The controllers are used to track a square
wave in the temporal velocity profile of a pulsed jet of air
using active forcing. In this application pulsing the jet improves
the mixing and spread of the jet which are useful for energy
generation and aerospace applications.

I. INTRODUCTION

The ability to reject periodic disturbances or track periodic

references is a common requirement in many engineering

systems. As such, there has been extensive research on repet-

itive control documented in the literature over a wide range

of applications such as industrial machinery [1], computer

disk drives [2], [3] and helicopter blade control [4], [5]. The

many different types of repetitive controllers are united in

their basis, directly or indirectly, on Francis and Wonham’s

Internal Model Principle (IMP) [6] which requires a model

of the disturbance or reference to be included in the feedback

loop for perfect rejection or tracking. The most common type

of repetitive controller is based on a time delay placed in the

feedback loop. A basic time delay controller has the form

Ctd(s) =
e−Ls

1− e−Ls

which uses a delay of period L. The controller places

infinitely many poles on the imaginary axis at intervals equal

to the period of the delay. Therefore, according to the IMP,

perfect rejection or tracking of periodic signals at frequency

1/L and all its harmonics is possible. These controllers offer

quick execution speed at a large number of frequencies but

are restricted to controlling the harmonics of the fundamental

time delay.

Another type of repetitive controller is based directly on

the IMP by using an oscillator in the feedback loop. The
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controller has the form

Cimp(s) =
ks

s2 + ω2
n

which places marginally stable poles at ±jωn. Multiple

modes are controlled by placing copies of Cimp with differ-

ent resonant frequencies in parallel. This controller provides

selective placement of the poles but becomes difficult to

stabilize as more modes are required due to coupling between

neighboring modes.

An alternative implementation of the IMP controller is

modulated-demodulated control, sometimes referred to as

adaptive feedforward control or adaptive feedforward cancel-

lation [7], [8]. This approach shifts the spectrum of “high”

frequency oscillations down to a baseband which includes

DC, operates at the baseband, then shifts the baseband spec-

trum back to high frequency. Essentially, the plant output at

the frequency to be controlled is estimated, then manipulated

to form an input based on known plant dynamics which will

cancel the estimated output or track a reference signal. These

controllers offer the benefit of using low bandwidth compen-

sators to control high frequency oscillations. The modulated-

demodulated controller is based indirectly on the IMP as

shown in [9], where Bodson et al. proves an equivalence

between a simple modulated-demodulated controller and an

IMP controller.

Most modulated-demodulated control studies to date have

focused on disturbance rejection as in [10] and [11] where

a modulated-demodulated controller is used for vibration

damping in flexible structures. Their analysis shows an LTI

transfer function for this controller can be derived from two

different perspectives, either the high frequency control band

or the low frequency baseband. The control band analysis

provides information on performance while the baseband

analysis provides insight into the controller design.

The present paper expands upon the insight gained from

the baseband analysis of [10] and presents an improved

method of phase compensation for modulated-demodulated

control. Replacing conventional static phase compensation

with dynamic phase compensation improves disturbance re-

jection nearby the specified rejection or tracking frequency.

Additionally, static phase and dynamic phase modulated-

demodulated controllers are used to demonstrate a novel

application of repetitive control for pulsed jet injection.

Actively pulsing a jet can influence important aspects of

the flowfield such as the spread and mixing of the jet into

its surroundings. It is hypothesized these parameters will

be maximized with the formation of strong, well-spaced
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vortex rings at the jet exit in response to periodic square

wave forcing. Challenges are presented in forming square

waves due to non-linear dynamics identified in our actuation

system. Repetitive control is necessary to shape the jet’s

measured temporal velocity waveform to track, as closely

as possible, a square wave.

II. EXPERIMENTAL SETUP

A. Actuation System

The modulated-demodulated controllers developed in this

study are implemented using the experimental setup for

pulsed jet injection presented in Figure 1. The jet fluid is

provided by a compressed air source which is regulated

to maintain an average jet velocity of 8 ms−1 measured

using a hotwire anemometer placed at the exit of a con-

tracting nozzle. The regulated air supply is injected into a

plexiglass plenum, or mixing chamber, beneath the nozzle.

Active forcing is applied using a lightweight piston located

approximately 14cm beneath the hotwire at the bottom of

the sealed plenum. The piston is rigidly connected to an

electromechanical shaker, which moves the piston axially in

line with the jet using a large voice coil. The controllers are

digitally implemented using Matlab’s XPC Target applica-

tion. The sampling rate is 25kHz. Anti-alias filtering of the

hotwire signal is accomplished using an 8 pole Chebyshev

filter with a 10kHz corner frequency.
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Fig. 1. Pulsed jet injection experimental setup using a piston to actively
control the temporal velocity waveform of a jet at the nozzle exit.

B. System Identification

The piston actuation system was identified from 10Hz to

5kHz using a band-limited white noise input whose intensity

is adjusted so the RMS velocity perturbation is 0.2 ms−1.

As shown in Figure 2, the frequency response rolls off after

a plenum mode near 2kHz, beyond which the jet velocity is

nearly impossible to perturb. Due to the discontinuity in the

waveform, the Fourier series coefficients of a square wave

decay at a slow rate as a function of frequency. Thus, given

the limited actuation bandwidth, only a truncated version of

an ideal square wave can be formed using a limited number

of harmonics of the fundamental forcing frequency. It is

important to use as many harmonics as possible to minimize

deviations from the ideal square wave velocity profile.

In addition to the roll-off, another important aspect of the

frequency response is a large amount of phase delay over

the frequency band of interest. The phase delay is a result

of the transport lag caused by the physical distance between

the actuator and sensor (piston and hotwire). Such a large

phase delay makes high-gain, wideband control impossible

across the entire usable bandwidth of the actuator. Thus,

instead of using a wideband approach, our control problem

will be broken down into multiple narrow-band control

problems using modulated-demodulated control, with each

frequency band positioned around the fundamental frequency

and harmonics of the periodic reference waveform.
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Fig. 2. Actuation system frequency response. Significant transport lag
makes high gain, wide bandwidth control impossible to achieve.

III. CONTROLLER ARCHITECTURE

The controller uses feedback from a hotwire anemometer

placed at the jet exit. A parallel set of individual control loops

is used, each designed to operate in the neighborhood of a

single frequency with the overall goal of tracking a desired

periodic waveform. Due to the periodic nature of forcing, the

operating frequencies are positioned at a fundamental forcing

frequency, denoted ωf , and all harmonics that fall within

the actuation system’s bandwidth. Thus, the ideal waveform

will match the Fourier series approximation of the desired

waveform truncated at the actuation system bandwidth. In

practice, the Fourier series of the reference square wave are

adjusted to compensate for the anti-aliasing filter lag.

A. Control at a Single Frequency

A diagram of the controller for regulation in a neighbor-

hood of a single frequency, denoted ωn, is shown in Figure 3.

The output of the plant, P (s), is split into two branches,

an in-phase branch and a quadrature branch which are de-

modulated down to baseband by 2 cos(ωnt) and 2 sin(ωnt).
Each branch then passes through identical low pass filters,

HLP (s) with corner frequency ωc. The response of y in a

neighborhood of ωn is captured by the near DC terms y1
and y2, i.e.
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Fig. 3. Dynamic phase compensation modulated and demodulated controller for control at a single frequency

y(t) = y1(t) cos(ωnt) + y2(t) sin(ωnt)

The corner frequency of HLP (s) is limited as ωc < ωf to

eliminate interaction between controllers at adjacent harmon-

ics.

The reference signals, represented by constants C1 and C2,

are compared with y1 and y2 to produce error signals which

are integrated for zero steady-state tracking error. References

C1 and C2 represent the real and imaginary part of the

Fourier series coefficient of a periodic reference waveform

at frequency ωn, i.e. the desired plant output has the form

y(t) = C1 cos(ωnt) + C2 sin(ωnt).

The integrated error signal passes into a phase compensa-

tion stage using either static or dynamic compensation which

inverts the plant phase phase at, or around, ωn. The phase-

compensated signals are then modulated back to the control

band by multiplication with cos(ωnt) and sin(ωnt). At this

point, the split signals are summed and scaled by K to form

the control effort u.

Phase compensation in modulated-demodulated control is

needed for improved stability margin and to reduce the sen-

sitivity function of the closed-loop system nearby ωn. Using

conventional static phase compensation, the compensators

Hd(s) and Hx(s) in Figure 3 are set constant values denoted

R and I , respectively, to perform a constant unity gain phase

rotation defined by the rotation matrix

Q =

[

R I
−I R

]

.

The angle of rotation is defined to be 6 Q = − 6 P (jωn).
The rotation is given unity gain to isolate adjustment of the

controller’s phase from adjustment of the controller’s gain

using the gain parameter K. Thus, given a plant frequency

response P (ωn) = Rp + jIp, R and I are defined to be

R =
Rp

√

R2
p + I2p

and I =
Ip

√

R2
p + I2p

Alternatively, dynamic phase compensation uses frequency

varying Hd(s) and Hx(s) to dynamically invert the phase

of P (s) in a neighborhood around ωn. It will be shown

dynamic phase compensation increases the gain and phase

margin and reduces peaking in the sensitivity function of

the closed-loop system when the plant has rapidly changing

phase. Dynamic expressions for Hd(s) and Hx(s) will be

developed in Section IV.

B. Controller Advantages

A modulated-demodulated controller has been chosen over

other repetitive controller architectures primarily because

of the decoupling provided between adjacent narrowband

control loops. It is possible to target specific frequencies,

even those which are not harmonics of the fundamental, for

disturbance rejection or reference tracking. It could be useful

to track a desired waveform and cancel periodic disturbances

at unrelated frequencies. Additionally, independent command

of each loop gain provides control over of the convergence

rate at frequency. The convergence rate of the controller can

be shown to approximately be

e−
1

2
δnt

where δn denotes the bandwidth of the closed-loop system

at frequency ωn. It is advantageous to adjust the bandwidth

of the individual control loops by specifying loop gains

inversely proportional to the plant magnitude to avoid exces-

sively different convergence rates. This is important in the

pulsed jet application where the magnitude of the frequency

response varies by almost two orders of magnitude within

our actuation bandwidth.

When digitally implemented, the sampling rate of the

modulated-demodulated controller does not have to be an in-

teger multiple of the control frequency. This is an advantage

over time delay controllers, which require an integer number

of samples in the time delay to generate a sequence with a

period exactly corresponding to the fundamental frequency

of the disturbance or reference.

IV. CONTROLLER ANALYSIS

As in [10], it is beneficial to analyze the modulated-

demodulated controller presented in the previous section

from two different perspectives. The first method derives an

exact LTI transfer function for the controller from y to u.

The second looks at the system from the perspective of the

baseband, dividing the system into a two input, two output

3055



(TITO) baseband controller, from [y1 y2]
T

to [u1 u2]
T

and

a TITO compensated plant, from [u1 u2]
T

to [y1 y2]
T

.

A. Control Band Analysis

The fact the controller can be represented as an LTI system

is not straightforward. Using Laplace transforms with an

arbitrary phase given to the modulating and demodulating

signals, cos(ωnt+ γ) and sin(ωnt+ γ), it can be shown the

transfer function for control at a single frequency is given

by

C(s) =

K

[

HLP (s− jωn)(Hd(s− jωn)− jHx(s− jωn))

s− jωn

+
HLP (s+ jωn)(Hd(s+ jωn) + jHx(s+ jωn))

s+ jωn

]

which is independent of γ and, thus, is time invariant. Using

integrators in the baseband has produced the required poles at

±jωn for perfect steady state tracking of periodic references

as dictated by the internal model principle. The poles of

HLP (s) have also been shifted to ±jωn, creating a bandpass

filter positioned around ωn with corner frequencies at ωn ±

ωc. It is worth noting that without decoupling (HLP (s)=1)

and phase compensation (Hd(s) = 1 and Hx(s) = 0),

the modulated and demodulated controller is equivalent to

the Internal Model Principle controller Cimp(s), which was

shown in [9].

It is simple to analyze the stability characteristics of this

closed-loop system, Ln(s) = Cn(s)P (s), using Nyquist

criterion. However, to gain a better understanding of the

phase characteristics of the system and to derive the dynamic

expressions for Hd(s) and Hx(s) it is beneficial to study the

controller from the baseband perspective.

B. Baseband Analysis

The motivation for development of dynamic phase com-

pensation is best illustrated by baseband analysis of the

controller. A compensated plant, Gn(s), is defined as the

TITO system from [u1 u2]
T

to [y1 y2]
T

. This is a linear,

time-periodic system that can be approximated by an LTI

system for frequencies sufficiently close to DC.

The 2×2 system of transfer functions for the compensated

plant is given by

Gn(s) =

[

Yd(s) Yx(s)
−Yx(s) Yd(s)

]

where

Yd(s) = K
1

2
[P (s− jωn)(Hd(s) + jHx(s))

+P (s+ jωn)(Hd(s)− jHx(s))]HLP (s)

Yx(s) = K
j

2
[−P (s− jωn)(Hd(s) + jHx(s))

+P (s+ jωn)(Hd(s)− jHx(s))]HLP (s)

Using static phase compensation (Hd(s) = R and

Hx(s) = I), Yx(0) = 0 provided Q exactly inverts the plant

phase at ωn. Additionally, Yd(0) = 1 provided both K and

Q exactly invert the magnitude and phase of the plant at ωn,

therefore,

Gn(0) = I2.

The two branches of the baseband are decoupled at DC. This

effectively isolates control of the in-phase and quadrature

terms of the demodulated signal. In general, only at s = 0
will Gn(s) be diagonal even with 6 Q = − 6 P (jωn). It

is likely any physical plant will have changing phase in

the neighborhood of ωn and, therefore, the controller will

not exactly invert the plant phase except at ωn. This has

the potential to significantly degrade the performance of the

controller, causing peaking in the sensitivity function close

to the control frequency.

The use of dynamical compensation instead of static

compensation provides the flexibility to diagonalize Gn(s)
over a narrow band instead of at s = 0 only. The benefit

of Gn(s) diagonalization, which is equivalent to inversion

of the plant phase in a neighborhood around ωn, is greatest

when the plant has rapidly varying phase around ωn. It can

be shown the diagonal and off-diagonal compensators take

the form

Hd(s) =
P (s− jωn) + P (s+ jωn)

2P (s− jωn)P (s+ jωn)

Hx(s) = j
P (s− jωn)− P (s+ jωn)

2P (s− jωn)P (s+ jωn)

C. Implementation

In order to implement dynamic phase compensation in

our controller, a model fit of the diagonal and off-diagonal

compensators must be made using the identified plant data.

The models are designed to capture large magnitude and

phase changes in the empirical compensators over the widest

frequency range possible while retaining accuracy and sta-

bility. For example, Figure 4 displays the empirical and fitted

phase compensators used for control at 100Hz. The diagonal

and off-diagonal empirical compensators have been fit up to

a frequency of 40Hz using a 4th order state-space model.

The location of the two modes in each compensator have

been well captured for both Hd(s) and Hx(s).

D. Single Frequency Example

The improvement provided by dynamic phase compensa-

tion over static phase compensation is most clearly illustrated

by comparing the stability margins and sensitivity character-

istics of each system for control at 100Hz. The Nyquist plot

of the static and dynamic phase compensation controller loop

gains measured empirically using a gain of 50 is shown in

Figure 5. The static phase locus moves closer to encircling

-1 than the dynamic phase locus. This has a significant

impact on the phase margin of the controller which is 21.6o

for static phase compensation but 60.0o for dynamic phase

compensation.

The phase margin improvement provided by dynamic

phase compensation works to reduce peaking in the sensi-

tivity function of the closed-loop system. Figure 6 shows

3056



10
0

10
1

M
ag

n
it

u
d

e 
(V

/V
)

10
0

10
1

-200

-100

0

100

200

Frequency (Hz)

P
h

as
e 

(d
eg

)
10

0

10
1

M
ag

n
it

u
d

e 
(V

/V
)

10 10

-200

-100

0

100

200

0 1

P
h

as
e 

(d
eg

)

a)

b)

Fig. 4. Dynamic phase compensators for plant phase inversion in a
neighborhood around the control frequency. Solid line - empirical, dashed
line - model fit. a) Hd(s), b) Hx(s).
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Fig. 5. Nyquist plot comparison of static phase compensation (solid) to
dynamic phase compensation (dashed) for control at 100Hz with K = 50.

the sensitivity function of the static and dynamic phase

compensation systems with K = 50. The peak of 3.46 at

92.5Hz is reduced to 1.94 at 81.3Hz and the bandwidth

of the system is increased from 10.1Hz to 16.5Hz when

dynamic phase compensation is used in place of static phase

compensation. Such an improvement is possible due to the

rapidly changing plant phase near ωn, which decreases by

45.4o, from −86.1o to −131.5o, between 92.5Hz and the

control frequency at 100Hz.

V. MULTI-FREQUENCY EXPERIMENTAL STUDY

It is fairly commonplace to track or reject sinusoidal

references or disturbances at one or two frequencies but for

our application the task must be accomplished with a high

number of frequencies in order to form a periodic square

wave. In the following experiments we use a 20 frequency

modulated-demodulated controller with dynamic phase com-
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Fig. 6. Sensitivity function comparison of static phase compensation (solid)
to dynamic phase compensation (dashed) for control at 100Hz with K = 50.

pensation implemented on frequencies [100, 200, 300, 400]

Hz. A fundamental frequency of 100Hz is chosen so all 20

frequencies fall within the actuation system bandwidth.

A. Harmonic Rejection

The response of the jet to single or dual tone forcing

demonstrates the difficulty open-loop or conventional closed-

loop control has in shaping a square wave velocity profile. A

single tone input at any frequency produces a jet response at

the input frequency as well as a large number of its harmon-

ics. For example, Figure 7a shows perturbations at 200Hz and

higher frequencies in response to a single 100Hz input. These

harmonics, unaccounted for in open-loop forcing, produce

large asymmetries and ringing in the jet’s temporal waveform

if uncontrolled. The spectrum of the response to the same

amplitude input at 100Hz in Figure 7b, this time applied

with the closed-loop controller on-line, shows a complete

reduction in the harmonic production at nearly all frequencies

under control. At each frequency of control the spectrum has

been reduced beneath the broadband noise.

Figure 7c shows the spectrum of the response of the

system to dual tone inputs at 300Hz and 400Hz with the loop

open. Harmonics of each tone appear in the jet response as

well as a subharmonic at a frequency equal to the difference

between the input tones, 100Hz. A production of subharmon-

ics in this manner is similar to intermodulation distortion.

Like the 100Hz single tone case, Figure 7d shows closed-

loop forcing of these dual tones eliminates the harmonics as

well as the subharmonics.

B. Square Wave Tracking

The reference signal used for square wave forcing is built

using the Fourier series coefficients of the square wave. The

ideal waveform has a frequency defined by the fundamental

forcing frequency but has a variable duty cycle α, the ratio

of the temporal pulse width, τ to the waveform period, T ,

α = τ
T

. The duty cycle is varied to pinpoint the forcing

conditions which optimize important characteristics of the

jet such as penetration or spread. The desired Fourier series

coefficients are tracked to produce waveforms such as those

shown in Figure 8 with α = 20% and α = 40%. The
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Fig. 7. Suppression of harmonic distortion in response to a 100 Hz single
tone input (a) open-loop, b) closed-loop) and elimination of intermodulation
distortion in response to a 300Hz and 400Hz dual tone input (c) open-loop,
d) closed-loop).

measured waveforms in the thin solid line are compared to

the ideal square wave in the dashed line and the truncated

Fourier series in the thick solid line. In all cases the measured

waveforms match the ideal truncated waveform very well.

The small deviations that occur are due to noise which falls

outside the narrow band regions around each harmonic and,

therefore, is uncompensated.

VI. CONCLUSION

This paper has detailed a useful improvement upon con-

ventional phase compensation of modulated-demodulated

control and demonstrated an experimental implementation of

such a controller for the application of pulsed jet injection

via temporal velocity waveform tracking. The use of dynamic

phase compensation instead of constant or static phase com-

pensation has reduced peaking in the sensitivity function and

increased the bandwidth of systems for control of plants with

varying phase near the disturbance or tracking frequency. It

was also shown this controller can be used to simultaneously

control a large number of frequencies to track a periodic

square wave. The well defined square waves formed in the

jet’s velocity profile presented in this paper have the potential

to significantly improve the spread and mixing of jets used

in a variety of aerospace applications.
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