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Abstract— State estimation using wireless sensor networks
(WSNs) is an important technique in many commercial and
military applications, in which a group of (nonidentical) sensors
take noisy observations of system state and send back to a
fusion center for state estimation through wireless broadcasting.
In order to minimize the estimated state error covariance at a
terminal stage at the fusion center, a partial broadcasting policy
should tell which sensors to broadcast at each stage. The limited
battery allows each sensor to broadcast only a few number of
times. The limited wireless communication bandwidth allows
only a few number of sensors to broadcast in the same
time. Due to the aforementioned two couplings, the optimal
partial broadcasting policy is not clear in general. Despite
the abundant applications of partial broadcasting policies,
theoretical analysis is rare. In this paper, we consider the scalar
state estimation and provide a first study on the properties of
optimal partial broadcasting policies. When there is no packet
drop, a good-sensor-late-broadcast (GSLB) rule is shown to
perform optimally. When there is a positive probability for
packet drop, theoretical analysis suggests that the GSLB rule
also has good performance.

Index Terms— Wireless sensor network, partial broadcasting,
Kalman filtering.

I. INTRODUCTION

State estimation using wireless sensor networks (WSNs)
has become an important technique in many commercial
and military applications. Usually a group of (nonidentical)
sensors take noisy observations of the system state and send
back to a fusion center through wireless broadcasting. The
fusion center combines all the information from the sensors
and outputs a state estimation. Due to the limited battery
at each sensor and the limited wireless communication
bandwidth, usually only part of the sensors broadcast at a
time. The policy that tells which sensor to broadcast at each
time is called a partial broadcasting policy. The optimal
partial broadcasting policy, which minimizes the estimated
state error covariance at a terminal stage, is of interest.

There are at least three difficulties to find the optimal
partial broadcasting policy. First, the limited battery capacity
makes the decision making at different stages correlated. The
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more a sensor broadcasts during early stages of the lifetime,
the less it can broadcast in the remaining stages. Thus a
sensor needs to choose when to report its observation to the
fusion center. Second, the limited communication bandwidth
makes the decision making at different sensors correlated.
Accurate sensors may have small batteries, while inaccurate
sensors may have large batteries. The fusion center needs to
command which sensors to broadcast at each stage. Third,
the random packet drop not only degrades the amount of
information that a sensor shares with the fusion center, but
also makes the sequence of estimated state error covariance
a stochastic sequence. This substantially complicates the
theoretical analysis as will be discussed in section IV.

Due to the aforementioned difficulties, despite the abun-
dant applications of partial broadcasting policies, theoretical
analysis is rare. In this paper, we consider the finite-horizon
discrete-time state estimation of a linear time-invariant scalar
system and provide a first study on the properties of optimal
partial broadcasting policies. When there is no packet drop, a
good-sensor-late-broadcast (GSLB) rule is shown to perform
optimally, which means sensors with large observation noise
should not broadcast later than sensors with small obser-
vation noise. An algorithm is then presented to calculate
the optimal policy. When there is a positive probability for
packet drop, theoretical analysis also suggests that the GSLB
rule has good performance.

The rest of the paper is organized as follows. A brief
literature review is presented in section II. The problem is
mathematically formulated in section III. The main results
are shown in section IV, where subsection IV-A discusses
the case of no packet drop and subsection IV-B discusses
the case of packet drop. We briefly conclude in section V.

II. LITERATURE REVIEW

Broadcasting policy optimization is related to the sensor
selection problem, where a central node selects a group
of sensors to perform certain tasks. The sensor selection
problem in general is equivalent to the Knapsack problem
which is known to be NP-complete [1]. Many heuristics
have been developed to solve this problem approximately
such as selecting the most informative sensors [2], where
the amount of information is quantified by entropy, distance
measurement, or expected posterior distribution. Xiao et al.
[3] developed an incremental selection heuristic to provide
enough detection probability. Xu et al. [4] discussed different
heuristics for prediction and wake-up mechanisms.

In order to consider the uncertainty in estimation and
tracking, the sensor selection problem has been formulated as
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a partially observable Markov decision process (MDP) [5],
[6] or a hierarchical MDP [7]. However, the large state space
usually forbids an optimal solution. Approximate solutions
were obtained instead.

Some researchers focus on linear Gaussian state-space
models. Alriksson et al. [8] used experiments to show that
a distributed approach where communication only takes
place between neighbors performed almost as well as the
centralized Kalman filter. Shi et al. [9], [10] provided a
systematic analysis of the tradeoff between the estimation
quality and the communication and computation capacity of
each node. Each sensor was configured as a local multi-hop
tree at a centralized center. Joshi and Boyd [11] used convex
optimization to approximately solve the sensor measurement
selection problem. Ambrosino et al. [12] considered more de-
tails of the channel constraint. Sinopoli et al. [13] considered
the effect of i.i.d. packet drop on state estimation, and studied
the statistical convergence properties of the estimation error
covariance. They showed that there exists a critical value for
the arrival rate of the observations, beyond which a transition
to an unbounded state error covariance occurs. Huang and
Dey [14] and Xie and Xie [15] considered the effect of packet
drop, the dynamics of which follows a Markov chain.

Savage and La Scala [16] considered the optimal schedul-
ing of scalar Gauss-Markov systems with a terminal cost
function. A single sensor is used to measure and track
multiple targets. The overall measurement budget is limited.
The question is when to measure which system at each stage
so that the total estimated state error variance of all systems
at a terminal stage is minimized. A simple index policy was
shown to perform optimally in most cases. Although both
their paper and this paper consider scalar Gauss-Markov
system with terminal cost, the difference is clear. First, they
used a single sensor to measure and track multiple targets.
But in this paper we consider state estimation of a single
system through multiple sensors. As a result, the objective
functions are different. They minimized the total estimated
state error variance of multiple systems at a terminal stage.
While we minimize the expectation of the estimated state
error variance of a single system at a terminal stage. Second,
a limited total measure budget is considered in [16]. There
is not any constraint on communication because a single
sensor is used. However, in this paper the constraints are
caused by the limited communication power of each sensor
and the limited wireless communication bandwidth among
the sensors. Third, data packet drops are considered in this
paper as a natural consequence of wireless communications
among sensors, but is not considered in [16].

Li et al. [17] considered the partial broadcasting of WSNs
and developed a good-estimates-first-broadcast policy in or-
der to minimize the one-step estimated state error covariance.
This paper is different from their study because we consider
the estimated state error variance at a finite terminal stage,
but they consider a one-stage problem.

Open-loop schedules are considered in this paper, which
are easy to implement and do not require much computing
capabilities from each sensors. More generally, sensors could

be scheduled in a closed-loop way, say based on the differ-
ence between the state estimate at the fusion center and the
state estimate that could be obtained using full (or partial)
sensor information. Feedback policies of this type have been
examined in the literature on event-based sampling, say
[18] and [19]. Imer and Basar [20] also considered a joint
encoder (at the sensor) and decoder (at the fusion center)
design problem for Gauss-Markov systems with average cost
criteria. These feedback policies are useful when sensors
have some computing capabilities.

III. PROBLEM FORMULATION

Consider a discrete-time linear time-invariant scalar sys-
tem
Tkl = ATk + Wk, (D

where |a| > 1; xy, is the system state at stage k with initial
value xo ~ N(0,II) which has Gaussian distribution; wy, ~
N(0, g) is the Gaussian disturbance; E[wkwjr] = qOrj, ¢ >
0; 0 is the Kronecker delta function, i.e., dp; = 1, k = j and
0r; =0, k # j. A WSN of M synchronized sensors is used
to monitor the state of the system. Each sensor ¢ can take an
observation of the system state at each stage,
y) = o+ vy, 2)
where ¢ > 0; y,?)
Gaussian observation noise; E[vg)v;l)] = 1§60, 1 >
0. We assume xg,wy, and v; are mutually uncorrelated.
Without loss of generality, assume that 0 < r() < (2 <
- < M) At each time, some sensors are selected to
broadcast their local observations y,(;) back to the fusion
center. Let I), = (I(1),...,I(M))" € BM denote such
a selection, where I;(¢) = 1 means sensor i is selected
for broadcasting at time k; and [;(i) = O means that
sensor ¢ is not selected for broadcasting at time k. Let
I, = (Ii,...,I;) denote the selection of sensors from
time 1 to k. Then a partial broadcasting policy can be
represented by Iy, where N is the length of the finite-
horizon of interest. The message broadcasted by a sensor
will reach the fusion center with probability 0 < A < 1.
Let b, € B represent whether the message broadcasted
by the sensors at time k can reach the fusion center, and
define by = (b1,...,by). Then the set of sensors whose
observations reach the fusion center at time k is s(Ix ® by),
where Ik © bk = (Ik(l)bk(].), ey Ik(M)bk(M))T and
s(I) = {i|I(i) = 1}. Recall that the optimal estimate &}, for
system in Eq. (1) given y,(j), i € s(I ®by) and the previous
optimal estimate Zp_; in Eq. (2) is computed recursively
from a Kalman filter through the following equations [21]

is the observation; v\ ~ N(0,r() is the

Tpp—1 = a1,
Pyp—1 = d’Pe1+q,
-1 _ p-1 2 ()y—1
Py Prje—1 ¢ Zies(fk-@bk)(r )™
Ki = Pucl..,rO)7 )i € sl ©by),
Ty = £k|k71+Kk'([---7y/(€l)7~-~]T_Cik\kfl)a

Z’ S S(Ik: @ bk:)7
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where the recursion starts from g = 0 and Py = Ilp. If
s(Ix®by) = @, then no observation reaches the fusion center
at time k, and from [13]

Ty = a1,
P, = a®Py1+q.
In order to simplify the notation, define functions
h(z) = a*z+q,
§'(@) = (1/z+R)7",
g'(x) = g'oh(z),

where Rr = ¢, (r®)=1, and for functions fi, fo :
St — S4, fi1o fa(z) = f1(f2(x)). Then it is obvious that

Py = g" O (Py_y).

Further define functions

diw) = @/l +ad),
flz) = :ri+ Ry,
@) = Fod)

Then it can be verified that P, ! = f1xOb(p1)).

Given a broadcasting policy I, the objective function is
the expected estimated state error variance at time NV, i.e.,
Eby [Pn(In,bn)]. There are two types of constraints. The
limited battery at each sensor allows to broadcast only a lim-
ited number of times within the N stages, i.e., Z,ivzl I:.(3) <
C;, i = 1,...,M. The limited communication bandwidth
allows only a limited number of sensors to broadcast in
the same time, ie., I/, < B, k = 1,...,N. Now,
the partial broadcasting policy optimization problem can be
mathematically formulated as follows.

HIliIl Eyy [Pn(In,by)], 3)

N
st. Y L) <Cii=1,...,M,
k=1

', <Bk=1,...,N. 4)

IV. MAIN RESULTS
A. No packet drop

We start the discussion from this simple case and show

that a simple rule performs optimally. First, we introduce
this simple rule, which is called good-sensor-late-broadcast
(GSLB) rule.
The Good-Sensors-Last-Broadcast (GSLB) Rule: Accurate
sensors should broadcast later, i.e., if sensor ¢ broadcasts at
stage k, then a sensor j s.t. r(@ < r(9) should not broadcast
at stage k+1,..., N.

In this subsection, we will show that when A = 1, the
GSLB rule performs optimally, which is summarized into
the following theorem.

Theorem 1: When A = 1, if a policy Iy violates the
GSLB rule, there exists another policy I, that satisfies
the GSLB rule and is no-worse than Iy, ie., Pn(Iyy) <
Pn(In).

We will prove Theorem 1 through three steps. First, we
will show that more broadcastings are always better (Lemma
2). Then the implication is that sensor ¢ should broadcast
exactly C; times by stage IV, assuming NV is sufficiently large
such that this is possible. Second, sensors should broadcast as
late as possible (Lemma 3). An implication is that exactly B
sensors should broadcast in the last several stages, assuming
B < M. Third, exchanging an early broadcasting of a good
sensor with a late broadcasting of a bad sensor is always
beneficial (Lemma 4). This then implies that bad sensors
should not broadcast later than good sensors. We now follow
the three steps to prove Theorem 1.

Lemma 1: fIT¢i(z) > fl(z), x > 0, I(i) = 0, ¢, is the
vector with only the ¢-th component being 1 and the rest
being 0.

Proof: We have

f]"rei (x) = d(z)+ Rite;, =d(z)+ Rr + R,,
= fl(z)+Re, > f(x),

where the last inequality is due to the fact that R., > 0. ®
Lemma 1 means that P, ' (I +e¢;) > Py ' (I), if I,(i) =
0. In order to show that adding one more broadcasting of
sensor i at time k is also beneficial to Py, we need the
following properties.
Property 1: If x1 > x5 > 0, d(x1) > d(z2).
Proof: Note that

d a?
e (d(z)) = (Gwt a2 > 0.

Thus d(x) is monotonically strictly increasing w.r.t. . H

Property 2: I z1 > 29 > 0, f1(x1) > f¥(x2), VI € BM.

Proof: By definition, f!(z) = d(z) + R;. From

Property 1, we know that d(x) is monotonically increasing
w.r.t. x. Thus ff(z) is monotonically increasing w.r.t . This
completes the proof. |
Combining Lemma 1 and Property 2, we can see that
Pyt(Ix + e;) > Py'(I1), which implies Py (I + e;) <
Px(Ix). Then we have

Lemma 2: PN(Ik + 61‘) < PN(Ik), x>0, I(Z) = 0.
Lemma 2 implies that sensor ¢ should broadcast exactly C;
times by time N. The first step towards proving Theorem 1
is completed.

We have

Property 3: d(x) +a > d(z+a), z >0, a > 0.

Proof: By definition, we have
T+«

qx + a? « q(z +a) +a?’ )

After some deduction, the right-hand-side (RHS) of Eq. (5)
equals to

dz)+a—dz+a)=

aq?z? + a(q(qa + a?) + ga*)z + aa®(ga + a® — 1)
(gz + a®)(q(z + o) + a?)
Note that @ > 1. Thus ca?(qa+a?—1) > 0. So, Eq. (6)> 0.
This completes the proof. |
Lemma 3: fl2%¢i o fhi(z) > fl2 o fhitei(z), > 0,
1) = Ib(i) = 0.

. (6)
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we have

d(f" (z)) + Ri, + Re,,
d(fIl ({,E) + Rei) + RIz'

Proof: By definition,
Frteo f @)
fIQ o f11+€z' (:l?)

Then we have

f12+€i ° fll (37) _ fI2 o f11+€i (.’17)
= d(f"(x)) + Re, — d(f"(x) + Re;) 2 0,

)

where the last inequality follows from Property 3. |
Postponing the broadcasting is always beneficial to Py. The
second step towards proving Theorem 1 is completed.
For the third step of the proof of Theorem 1, we have
Property 4: d(z+a)+ 08 > d(z+08)+a, a < 8,z > 0.
Proof: By definition, we have

(dz+a)+ ) — (dz+ )+ a)
_ (Ha + g) _ (W
- \glz+a)+a? q(x + B) + a?
After some deduction, we have the RHS of Eq. (8) equals to

(8 — a)(@*(@ + a)(z + B) + ga®(2z + a + B) + a' — da®)
(¢(z + ) + a?)(q(z + B) + a?)

+ a)(S)

9
Because a > 1, a* — a? > 0. Thus Eq. (9)> 0. ]
Lemma 4 f12+ei ° fI1+€j (Z‘) > f12+€j of11+ei (LII), >
0, 1< j, Il(Z) = Il(j) = 12(7,) = IQ(]) =0.
Proof: By definition, we have

flatei o phite (z) d(d(z) + Ry, + Re;) + R, + Re,
f12+ej o fI1+€i (x)

Note that R., > R.,. Then following Property 4, we have
f12+€i ° f11+€j (:L’) _ fferej o f11+€z' (SC) > 0.

|
Lemma 4 implies that exchanging an early broadcasting of
a good sensor with a late broadcasting of a bad sensor is
always beneficial. We can now prove Theorem 1.

Proof: (of Theorem 1) If a policy Iy violates the GSLB
rule, we can first add broadcasting of sensor ¢ if it has
not broadcasted C; times by time IN. Second, we postpone
the broadcasting of all the sensors as late as possible,
while keeping the relative order among the broadcastings
not changed. Third, starting from the earliest broadcasting
of sensor 1, if any other sensor broadcasts later, exchange
the two broadcastings. Repeat the exchange operation for
sensors 2, ..., M. When completed, we obtain a policy Iy,
which satisfies the GSLB rule. Lemmas 2-4 ensure that the
above three steps of modification of Iy does not increase
Pn, ie., Py(Iy) < Py(In). This completes the proof. MW

It is not difficult to show that following the three-step
of modifications in the proof of Theorem 1, the resultant
policy is the optimal policy I},. This leads to Algorithm
1 that constructs the optimal policy. Note that Algorithm 1
executes exactly min{ N B, Zf\il C;} times, which is very
fast and can be easily implemented in practice.

d(d(z) + Ry, + Re,) + Ry, + R,

Algorithm 1 Construct the Optimal Policy When A = 1.
Initialization: n =0,k = N,Iy = 0.
Iterative allocation:
for i =1to M do
for j =1to C; do
I(i) =0,n=(n mod B) + 1.

if n = B then
k=k—1.
if £ < 1 then
Stop and output I.
end if
end if
end for
end for
Output Iy.

B. Packet drop

When packet dropping happens with positive probability,
ie., A < 1, the message sent by a sensor may not reach
the fusion center. Then the estimated state error variance is
a random variable, which complicates the analysis. In order
to show similar results as in subsection IV-A, we need to
take a sample path view, i.e., to compare the performance
of different policies on each (pair) of sample paths. This
technique will be further explained in the following analysis.

We still follow three steps to show the benefit of the GSLB
rule when A\ < 1. First, more broadcastings are beneficial.

Lemma 5: Ey[fUHe)0b(z)] > Ey[f19%x)], = > 0,
I(7) = 0.

Proof: Note that

Eb[f(IJrei)@b(z)] @ Z f(IJrei)@b(x)’

beBM

@ Z fIGb(IC).

beBM

Ey[f1®*(x)]

Note that (I +¢;) ©b=1® b+ ¢; ®b. Then from Lemma
1, we have

JUFEIb () > (IO (g), if b(i) =1,

f(1+6’7)®b(.%‘) - fIGb(LI:)7 if b(Z)

Since Pr{b(i) = 1} = A > 0, we then have
SO frete) s S ),

beBM beBM

Then we have Ej[fU+¢)00 ()] > B[ (z))]. [
However, since E[P; '] # 1/E[P;], Lemma 5 only shows
E[P; (I + e;)] > E[P; " (I)], but not

E[Pk(lk + ei)] < E[Pk(fk)] (10)

Fortunately, Eq. (10) also holds.
Lemma 6: Ey[gUte)%%(2)] < Eyl¢'®(z)], = > 0,
I(i)=0.
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Proof: Note that
g eI (a) (fUFeO2(1/2)) 7Y
9" () (f10 (1))~
Lemma 5 shows that fU+¢)®(1/z) > fI©b(1/z), where
the inequality is strict if b(¢) = 1. Then we have
gt (z) < g'(a). (11)

Since Pr{b(i) = 1} = A > 0, we have E,[g{/T¢)®b(z)] <
Eplg"® ()] n
Lemma 6 implies that the additional broadcasting of a sensor
at time k reduces F[Py]. It turns out that E[Py] is also
reduced, but we need some additional analysis to show this.
Property 5: If 1 > x5 > 0, g’ (21) > g (x2), VI.
Proof: Note that

g'(@) = (f1(1/z)7",

9" (x2) (f1(1/z2) "
Property 2 shows that f(1/x1) < f(1/z2). Thus we have
9" (@1) > g' (x2). [
Theorem 2: Ey,[g'N® o ... o glkniObkar o

g(Ik"rei)@bk (x)] < Epy [gINQbN o ...
gie@ ()], x > 0, I (i) = 0.

Proof:  Eq. (11) shows that g(Ixte)®bk(z) <
g'=O (), where the inequality is strict if by (i) = 1. Then
following Property 5, we have

° glk+1®bk+1 o

gIN(DbN G--0 glk+1®bk+l o g(lk“’ez)@bi (l‘)

< gINQbN 0---0 gfk+1®bk+1 o gIkak (I)

Because Pr{bi(i) = 1} = A > 0, we then have
EbN[PN(Ik‘i’ei,bN)] <EbN[PN(IkabN)]- | |
Comparing the above analysis with the first step towards
proving Theorem 1, we can see that the analysis is compli-
cated by the fact that Py is a random variable when A < 1.
Now, one may wish to follow similar analysis to show that
postponing a broadcasting is always beneficial, i.e.,

g(lk+1+€1)®bk+1 o gIkak (l')

< gl o gUFedObe (o) iy by (12)

Unfortunately, Eq. (12) does not hold if bg(i) = 1 and
br+1(7) = 0. The reason is in this sample path, if sensor
i broadcasts at time k, the message will reach the fusion
center. But if sensor i broadcasts at time k + 1, the packet
will drop. Fortunately, we are still able to show that

Theorem 3: Fy, [gINGbN o o g(Ik+1+ei)®bk+1 o
gIkak ()] < By, [ngGbN o ° glk+1®bk+1 o
gUrtedObe ()] 2 > 0, I1,(i) = Ir41(i) = 0.

Proof: We will need a different technique to show this.

The idea is to construct a different sample path b’y. The only
difference between by and b’y are that b) (i) = bry1(i),
bj41 (i) = by (7). Note that

g(Ik+1+ei)®b;c+1 o gIk@b;c (Z)

= (fUstedObh o fIkOV (1 /5))
gIk+1®bk+1 o g(quLei)@bk, (.f)

— (f1k+1@bk+1 o f(Ik‘f‘ei)@bk(l/x))_l.

Y

Case 1: b (i) = 1. We have

(Tp41 + €;) © by y
(In+e)0b, =

Iiv1 © brt1 + e,
I, © by, + e;.
Then from Lemma 3, we have

f(Ik+1 +ei)Obl iy o fIk@b;C (1/x)
> fle10bie o pUnFe)Ob (] /o),

Case 2: bi(7) = 0. We have

(Ip41 +€) Obyy =
(Ip+e)Oby =

Ti41 © by,

Then we have
f(Ik+l+ei)®b;e+l o fI’“@b;C(l/l‘)
fIk+1®bk+1 o f(1k+e'5)®bk(1/x)~

Combing the above two cases, we have
f(Ik+1+ei)®b;c+1 o fIk@b;“(]./fE)

> flinOben of(lk+6i)®bk(1/z)_

Combining the above equations together, we then have

’ /
gl e0 oM o gIvOM, (1) < glhn@hies o gliteoh (g),

Note that for every by, such a b’N can be constructed
as above. And all such b’y’s are not repeated. Since
Pr{by(i) = 1} = A > 0, combining with Property 5, we
have Eb’N [gINQbN 0---0 g(Ik+1+ei)®bk+1 ° gIkak (z)] <
. [gINQbN 0.0 gfk+1®bk+1 o g(1k+€i)®bk (z)]. n
For the third step towards showing the good performance
of the GSLB rule, we need to show that exchanging an early
broadcasting of a good sensor with a late broadcasting of a
bad sensor is beneficial. One may wish to follow the above
technique to show this. Unfortunately, this does not work.
To be specific, let Iy denote the policy, in which sensor
i broadcasts at time k and sensor j broadcasts at k + 1,
i < j. Let T’y be the policy constructed in the above way,
in which sensor ¢ broadcasts at time k£ + 1 and sensor j
broadcasts at k. Let by be a randomness matrix. We can
construct another randomness matrix b?v’ in which the only
difference between by and by are b}, (i) = br+1(i), b, (j) =
bi+1(4)s U1 () = bie (), b1 (J) = k(). When by, (i) =0
and bg+1(j) = 1, in policy Iy, the early broadcasting
of sensor 7 does not reach the fusion center, while the
late broadcasting of sensor j reaches. Then in policy Ty,
bi41(i) = 0 and bj(j) = 1. This means only the early
broadcasting of sensor j reaches the fusion center. Since a
later broadcasting is better, Py (Iy,bly) > Pn(In,bn),
which means exchanging the broadcasting of two sensors
degrades the performance on this pair of sample paths.
Fortunately, when considering the expected value, we have
Theorem 4. E[f(1k+1+e7¢)©bk+1 o f(]k“l‘ej)@bk (2)] >
E[fIet1te)Obkir o fUkte)®bi()] 2 > 0, i < j,
Ik (i) = In(§) = Ing1(i) = T2 (j) = 0.
Proof: For any given (bg,bry1) € B2, construct
(o Vy) S V() = b (1), 045) = biger (7). By (8) =
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bi(i), biyr (4) = bk (5), 04(1) = be(D),1 # i, j,t = K,k + 1.
It is easy to verify that when (b (4), bx+1(j)) = (0,0), we
have

fURr1Fe)Obty o pUrte;)Ob (o)
— f(1k+1+ej)®bk+1 ° f(lk-‘req,)@bk (x)

When (by(2),bg+1(7)) = (1,1), we have
fURr1Fe)Obhyy o pUrte;)Ob ()

> f(1k+1+€j)®bk+1 ° f(Ik"Fei)@bk (CL‘)

When (by (i), br+1(5)) € {(0,1),(1,0)}, we have
fUkr1Fe)Obry o pUktes)Ob (g)
(bk (2),br+1(5))€{(0,1),(1,0)}
_ Z f(1k+1+€j)®bk+1 o f(Ik"rei)@bk (x) > 0(13)
(bx (2),br+1 (7)) €{(0,1),(1,0)}
Note that Pr{b,(i) = 0,bp+1(j) = 1} =

Lbgy1(j) = 0} =
cases, we have

Pr{br(i) =
(1 — X\). Combining the above three

E[f(lk+1+ei)®bk+l o f(1k+€_j)®bk (m)]

> E[f(1k+1+ej)®bk+1 o f(Ile‘ei)@bk ($>]

|
Note that Theorem 4 means that E[P,_ +11(I N)] <
E[P. _5_11(13\/)] However, we have not been able to show
E[Py'(In)] < E[Py'(Iy)], neither E[Px(Iy)] >
E[Pn(I%y)]. Thus we have not been able to show that GSLB
rule leads to the optimal policy. But the above analysis
implies that GSLB rule might give good performance, if not
optimal. How to theoretically quantify the performance loss,
if any, will be a future research topic.

V. CONCLUSION

In this paper, we consider the discrete-time Kalman fil-
tering of a linear time-invariant scalar system using WSNs,
where each sensor has limited communication budget and
the WSN has a limited wireless communication bandwidth.
First, when there is no packet drop, the good-sensor-late-
broadcast (GSLB) rule is shown to provide the optimal
performance. An algorithm is developed to obtain the optimal
policy within Zﬁ1 C; steps of calculations, which is easy to
use in practice. Second, when there is a positive probability
for packet drop, we show that the GSLB rule improves
E[P, ']. Though we have not been able to show that the
GSLB rule reduces E[Py], the theoretical analysis suggests
that the GSLB rule might have good performance, if not
optimal. How to theoretically quantify the performance loss,
if any, is a future work. It is also an important future research
topic to consider the vector system state, and random delay
in the wireless communication instead of packet dropping.
Note that the case of deterministic packet delay has been
addressed in [22].
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