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Abstract: The evaluation of vehicle steering systems has 

typically been performed by engineers and consumer focus 

groups using in-vehicle and automotive simulator studies. In 

the latter case, driver preferences have been extensively 

gathered using written questionnaires. However, this delays the 

testing procedure and may introduce outside influences that 

may skew the results. In this paper, an objective steering 

preference metric has been created to gather steering 

preferences without directly communicating with the driver. 

Streaming vehicle data has been recorded, processed, and 

correlated with subjective response data to create a global 

steering preference metric. A combination of the vehicle’s yaw 

rate, longitudinal acceleration, and lateral acceleration 

demonstrated an excellent correlation with survey responses 

regardless of the steering setting. Furthermore, changes in the 

steering ratio resulted in an even stronger correlation between 

the objective data (longitudinal acceleration, front tire angle, 

and throttle position) and test subject questionnaire responses. 

Overall, the proposed index offers a unique approach to 

evaluate steering system designs. 

I. INTRODUCTION 

A re-occurring problem in ground vehicle steering system 

development is the identification of a steering setting (ratio 

and effort characteristics) that is favored by a majority of 

likely customers. The initial dealership drive tends to be 

critical to the vehicle purchase process. However, there are 

two inherent difficulties with steering system parameter 

selection. First, steering tuning has been typically performed 

by seasoned automotive engineers who may select a setting 

based on either personal preference or estimation of what the 

target customer may prefer. Although this may be partially 

remedied by customer feedback, the difficulty remains in 

selecting the design parameters given the subjective nature 

of the task. Second, drivers are different and each likely has 

a unique preference for their steering setting. This means 

that no matter how diligently an engineer tries to obtain an 

optimal setting, their selection will always be a compromise 

and hence, a non-optimal selection. However, the emerging 

trend toward customer personalization may lead to unique 

steering settings for future vehicles. 

Previous research has been focused on finding an optimal 

steering setting using a driving simulator and questionnaires 

aimed at tapping into a driver's steering preference [1,2]. 

While successful, it still required the interaction of 

researchers with drivers to inquire about their preferences. 
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Sugita et al. [3] attempted to establish design criteria for an 

optimal electric power steering system configuration. Their 

efforts focused on determining a target level of passivity that 

felt most comfortable to the driver. Andonian et al. [4] used 

an automotive simulator to study the steering performance of 

drivers using a joystick versus a steering wheel. Performance 

was judged objectively, paving the way for future objective 

judgements of steering systems. Català et al. [5] attempted to 

correlate objective steering torque data with kinematics and 

compliance test results. Jaksch [6] found that yaw velocity 

response time was a dominant factor in the subjective rating 

of a vehicle’s handling characteristics during a lane change 

maneuver.  Hearthershaw [7] developed a variable steering 

ratio strategy that maximized driver performance in multiple 

repeatable tests. Yamaguchi and Murakami [8] used an 

adaptive control steer-by-wire system to create virtual 

steering characteristics. In the future, such a system could be 

applied to create personalized steering preferences for 

drivers. The next step in steering preference research should 

be the development of an objective metric to identify 

preferences without significant driver interactions so that the 

process may be automated. 

The link between objective vehicle response and driver 

steering preference was investigated. In essence, a hybrid 

metric of fused vehicle dynamics signals may be used to 

predict how much drivers enjoy their steering experience. It 

should be recognized that many implications associated with 

this topic exist that may merit further study. First, if 

questionnaires could be removed from the simulator (or in-

vehicle) testing procedure, then the required participation 

time would decrease. More importantly, the accuracy should 

improve. For example, one challenge faced during human 

subject testing was requesting the participants to synthesize 

their steering experience as a separate entity from the rest of 

the vehicle environment. Simply asking participants about 

their steering experience likely tainted their response to the 

questions. Thus, an objective metric would eliminate this 

possible questionnaire bias. 

The second issue concerns the development of an 

objective steering metric establishing the foundation for an 

automatically adjusting steering system. It has been assumed 

that each driver has a unique steering preference. Instead of 

forcing a driver to adapt to a non-optimal steering setting 

compromise, the steering setting could instead adapt to the 

driver. This innovative feature is the basic concept behind 

developing a steering feedback automatic tuning controller. 

Specifically, this system would systematically adjust 
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steering settings while tracking and optimizing a prescribed 

objective preference metric. After a learning period, the 

steering system would be optimized for the given driver, 

eliminating the need to create a compromised steering 

design. Finally, an on-board self-tuning steering control 

system will eventually become a standard feature on future 

production vehicles. 

The remainder of the paper has been organized as follows. 

The custom steering simulator and testing procedure will be 

covered in Sections II and III. The analysis methodology for 

investigating the steering preference metric will be described 

in Section IV. The test results will be analyzed in Section V 

with a comprehensive discussion. Finally, the summary is 

contained in Section VI. 

II. AUTOMOTIVE DRIVING SIMULATOR 

The Clemson University steering simulator (refer to Fig. 

1) was developed to accurately replicate an automobile's 

steering feel to investigate driver steering preferences [9]. 

Beyond realistic steering feel, the steering simulator had to 

be highly adjustable and provide environments that simulate 

typical driving situations. The front half of a Honda CRV 

vehicle body was used as the simulator cabin. The 

production steering shaft was removed and replaced with a 

motor-torque sensor system connected directly to the 

steering wheel. Pedal linkages were replaced with linear 

potentiometers and the stock dashboard was rewired to be 

controlled remotely. 

 

 
Fig. 1: Steering simulator with immersive environment 

 

A dSPACE 1103 rapid control prototyping board created 

the interface between the hardware components and the real-

time simulated driving environment. Two computer 

workstations were added for control and display functions: 

the first offered run control, and the second generated the 

visual scenes that were projected using three short throw 

projectors. CarSim, a commercial vehicle dynamics software 

package from Mechanical Simulation Corporation, created 

the realistic vehicle response of a Honda CRV along with 

the visualization of the driving environment. The CarSim 

module was coupled with a steering model [10] in 

Matlab/Simulink. The dSPACE controller board handled 

real-time data acquisition and control tasks. 

III. HUMAN SUBJECT TESTING 

The first phase of this steering project was the 

development of an objective steering preference metric. 

Extensive simulated vehicle performance data was collected 

during human subject tests. Human subjects drove the 

simulator on a winding country road shown in Fig. 2. The 

course had no traffic and ended after approximately one 

minute of driving time. Subjects drove five steering 

configurations: baseline (C1), quick steering ratio (C2), slow 

steering ratio (C3), heavy effort (C4), and light effort (C5).  

These steering adjustments were large enough to be 

noticeable to an average driver while still being within a 

reasonable design range. After each steering configuration 

was driven through the complete course, the drivers 

completed a nine question survey to capture their steering 

preferences [11]. The vehicle behavior data was also 

recorded simultaneously for future off-line analysis.   

 

 
Fig. 2: Final turn of winding country road in simulator 

 

The steering data for two different configurations has been 

displayed in Fig. 3. The solid line corresponds to a preferred 

steering setting while the dotted line denotes a low rated 

steering setting (and subsequent poor driver performance). 

Both traces were from a single driver, test subject 20 of 39, 

and the only difference between the runs was the steering 

setting (C2 and C3). While driving the less preferred setting, 

this driver had a tendency to overshoot their steering input 

by as much as 86%, often with a subsequent overcorrection 

as noted in the graph. This steering wheel “sawing” could be 

pulled out of the data stream through the application of basic 

statistics (e.g., mean, standard deviation). 
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Fig. 3: Steering angle for test subject #20 (driving steering 

configurations C2 and C3 on a winding course) versus 

vehicle longitudinal position; the solid line (C3) was 

identified through questionnaire feedback as the preferred 

setting while dotted line (C2) was not preferred 

IV. ANALYSIS METHODOLOGY 

An inspection of the available recorded simulator data 

reveals that drivers behaved differently depending on the 

steering configuration. A question was formulated – “Does a 

metric exists that can predict a driver’s satisfaction with the 

vehicle’s steering behavior using a normalized numeric 

value captured from the vehicle operating data?” A 

combination of vehicle operating variables may be used to 

create a robust metric. In this manner, the metric may be 

protected from changing road conditions that may skew a 

single element. Ideally, the evaluation index would not use 

impractical vehicle information such as lateral road position 

or tire slip angles so that the final entity would be valid in 

both simulator and vehicle applications. 

In human-subject testing conducted using the steering 

simulator, thirteen data signals were collected via CarSim 

output (refer to Table 1). All driver inputs and the basic 

vehicle outputs were selected along with the two variables 

unique to a simulator environment: lateral offset from 

centerline and tire slip angles. Even though the goal was to 

use practical vehicle data streaming, it was important to be 

thorough in case an exceptional correlation emerged in this 

project. In other words, an objective metric can be created 

using the recorded vehicle variables based on the automotive 

engineer’s preferences. In this study, a country road driving 

scenario was considered for the development of the steering 

preference metric. This decision was based on the consistent 

driving profile with a fixed route exhibited by the country 

road. City and highway driving environments allow too 

much creativity from the driver in terms of path selection 

and traffic demands, which may lead to unreliable data. 

 

 

No. Variable Symbol 
cr  

cw  
ratiocw  

effortcw  

1 Lateral offset d  -0.22 0 0 0 

2 
Left front tire 

slip angle lf  -0.28 0 0 0 

3 
Left rear tire 

slip angle lr  -0.24 0 0 0 

4 
Right front 

tire slip angle rf  -0.27 0 0 0 

5 
Right rear tire 

slip angle rr  -0.25 0 0 0 

6 Yaw rate   -0.32 5 0 0 

7 
Longitudinal 

acceleration xa  -0.30 6 3 10 

8 
Lateral 

acceleration ya  -0.31 8 0 0 

9 
Brake 

position 
BP -0.15 0 0 0 

10 
Left front tire 

angle lf  -0.28 0 1 5 

11 
Right front 

tire angle rf  -0.27 0 0 0 

12 
Throttle 

position 
TPS -0.31 0 5 0 

13 
Longitudinal 

velocity xv  -0.18 0 0 9 

Table 1: Chassis variables, single variable correlations, 
cr , 

and weighting factors producing optimal steering preference 

metrics for global, 
cw , ratio, 

ratiocw , and effort, 
effortcw  

A total of 39i   human subjects evaluated 5k   steering 

configurations for a total of 195 data sets. Each combination 

of driver and steering configuration had a matching 

questionnaire ( 9j  ) result, 
ikq , with the test subject’s 

opinion on “fun-to-drive”, “controllability”, and “ease of 

driving” for each setting (note: questionnaires were 

completed during an extensive demographics study) [11]. 

The results were averaged, 
iq , and normalized into a single 

global steering preference, 
ikQ , for each steering 

configuration and test subject as 
5 9

1 1

1 1

5 9
i ijk

k j

q q
 

   and 

9

1

1

9
ik ijk i

j

Q q q


   for ( 1,2,...,39)i   and ( 1,2,...,5)k  . In 

the expressions, the symbol q denotes the question response 

on a given questionnaire, and Q is the normalized response 

for a given driver and steering configuration. The variables i, 

j, and k represent the human subject number, survey 

question number, and steering configuration, respectively.   

The thirteen variables from Table 1 – column 3, placed in 

vector , , ...,c lf xH d v     where ( 1,2,...,13)c 
 
were 

processed with future applications in mind. Potential control 

strategies may require a metric to be positive and reliable 
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after a fixed time period. The variables, 
cH , were converted 

into a metric, 
ickJ , with a single value for each combination 

of test subject, data signal, and steering configuration for the 

country road using the expression 
40

2

0

s

ick ickJ H dt   ( 1,...,39)i  , ( 1,...,13)c  , ( 1,...,5)k   (1) 

where c denotes the number corresponding to the respective 

data signal. Note that a 40t s  period was selected using a 

sampling time of 0.025t s  . 

The metric, 
ickJ , was then normalized for each driver. 

This action permitted comparisons with the subject pool by 

computing the average of the given metric for all steering 

configurations, 
icJ . The result was applied to the individual 

metrics, 
ickJ , such that a normalized value, 

normJ , becomes 

5

1

1

5
ic ick

k

J J


   and 
ick

ick

norm

ic

J
J

J


 

for ( 1,...,39)i  , 

( 1,...,13)c  , and ( 1,...,5)k  . 

The normalized metrics were then correlated with the 

normalized questionnaire data for a given human subject and 

steering configuration. The correlations were calculated as 
39 5

1 1

39 5 39 5
2 2

1 1 1 1

( )( )

( ) ( )

ick c

ick c

norm norm ik

i k

c

norm norm ik

i k i k

J J Q Q

r

J J Q Q

 
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 
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 (2) 

where 
39 5

1 1

1 1

39 5
ik

i k

Q Q
 

   and

 

39 5

1 1

1 1

39 5c icknorm norm

i k

J J
 

   for 

( 1,2,...,13)c  .  

 Once the strongest (i.e., largest absolute value of 
cr ) 

correlations were discovered, a computer-based optimization 

algorithm was applied to create a robust metric, 
ikwJ , based 

on both the combination and weighting of individual metric 

elements. The weighted metric was formulated as 

 
13

1
ik ickw c norm

c

J w J


   ( 1,2,...,39)i  , ( 1,2,...,5)k   (3) 

where 
1 2 13{ , ,..., }cw w w w  is a vector of scaling factors.  

The weighting factors, 
cw , were allowed any integer value 

between 0 and 10 with the goal of maximizing the absolute 

value of the correlation coefficient. 

The weighted metric was correlated with the normalized 

questionnaire responses, ikQ , to create the weighted 

correlation, wr , as  

39 5

1 1

39 5 39 5
2 2

1 1 1 1
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 (4) 

where 
39 5

1 1

1 1

39 5 ikw w

i k

J J
 

  . The optimization problem was 

formulated as 
{0:10}

max | |
c

w
w

r
  

and solved by calculating all 

combinations of the thirteen weighting factors.   

The analysis method has been displayed in Fig. 4 as a 

flowchart. In summary, both objective and subjective data 

was collected from the human test subjects who drove five 

steering configurations on a winding road course. The 

objective data was formulated into positive metrics, and then 

both the metrics and subjective data were normalized for 

consistency. Correlations between the metric elements and 

the subjective data were calculated for preliminary review. 

The metric elements were then combined into a single robust 

metric that was weighted to maximize the correlation with 

the subjective data. The full results of this analysis will be 

presented in the next section.  

 

 
Fig. 4: Analysis methodology to create a weighted objective 

metric to predict driver steering preference 

V. DISCUSSION OF RESULTS 

All correlations were evaluated using the standard scale. 

Specifically, values between 0.1 0.3 r , 0.3 0.5 r , 

and 0.5r  can be considered small, moderate, and large 

correlations. The metrics were correlated with the global 

normalized questionnaire data. Initially, the important 

connection was between the physical survey and the 

collected data signals, while the steering setting was ignored. 

The objective metrics were calculated for each data signal, 

human subject, and steering configuration using equation (1) 

for a total of 2,535 data points. These metrics were 

normalized and correlated with the global normalized 

questionnaire data. A single correlation coefficient, cr , was 

calculated for each data variable for a total of thirteen 

correlation coefficients which have been displayed in Table 

Human Subjects 
Drive

Collect Objective 
Data

Process Data 
Channels

Comparison

Weighting

Final Metric

Collect Survey 
Data

Process Survey 
Data
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1. Note that all correlations were negative, which implied 

that a smaller metric value corresponded to a more favorable 

steering setting. The best correlation, 0.32r   , occurred 

with the yaw rate,  . This correlation, along with three of 

the remaining correlations, fit in the moderate correlation 

category. The normalized yaw rate metric has been plotted 

against the normalized questionnaire data in Fig. 5 to 

visualize the strength of the correlation. For the horizontal 

axis, 0 1Q   and 1 2Q   corresponds to “do not like” 

and “favorable” responses by the subjects, respectively. The 

vertical axis can be split into 
6

0 1normJ   and 
6

1 2normJ   

as smooth and aggressive yaw rate responses. Using a 

standard four quadrant approach, quadrants II and IV 

support the negative correlation which reflects that drivers 

have been recorded to drive more smoothly when they prefer 

a steering setting, and more aggressively when they dislike a 

setting. In contrast, quadrants I and III are less populated, 

but support a positive correlation implying that drivers drive 

more aggressively when they prefer a steering setting, and 

more smoothly when they do not like it.  

All thirteen data signals produced small and moderate 

correlations with the questionnaire data; however, some 

variables may have contained similar vehicle response data. 

For instance, the left and right front tire angles, 
lf  and 

rf , 

should have only differed slightly based on steering linkage 

compliance and suspension geometry effects. The weighting 

optimization aimed to eliminate data signals with duplicate 

information, while retaining those offering unique 

information that correlated with the questionnaire results. 

The weighted metric, 
wJ , was created and optimized while 

maximizing the absolute value of the correlation, 
wr .  

 
Fig. 5: Normalized questionnaire data, Q , vs normalized 

yaw rate metric, 
6normJ , to visualize 0.32r    correlation 

The optimization resulted in a maximum correlation of 

0.39r    for all five steering configurations (global 

weight) with the scaling factors listed in Table 1 – column 5 

(yaw rate, longitudinal acceleration, lateral acceleration). 

Although still a moderate correlation, it nearly fell in the 

excellent correlation range, and was significantly stronger 

than any single metric. Fig. 6a shows the plot of the 

correlated data to visually demonstrate the strength of the 

correlation. In this plot, the vertical axis zones 0 19wJ   

and 19 35wJ   correspond to smooth and aggressive 

command of the entire vehicle, respectively. The value 

19wJ   was selected as the cutoff point representing the 

mean of the data points. The horizontal axis was partitioned 

the same as Fig. 5 with 0 1Q   and 1 2Q   

corresponding to “do not like” and “favorable” responses, 

respectively. Note that smoother driving habits corresponded 

with preferred steering settings (quadrant IV).  

To further investigate the weighted metric, the same 

weighted optimization process was performed while 

isolating the cases where either the steering ratio ( 2,3k  ) 

or steering effort (k=4,5) was changed. The steering ratio 

(effort) corresponded to configurations C2 and C3 (C4 and 

C5). The results offered an interesting conclusion. The 

maximum correlation for steering ratio changes was 

0.55r   ; however, the maximum correlation for steering 

effort changes was 0.15r   . This result demonstrated that 

the objective metric may be reliable for discovering an 

optimal steering ratio, but insignificant for tuning steering 

effort settings. The best weighting factors for these two 

approaches have been summarized in Table 1. 

The ratio weighting factors were largely longitudinal 

dynamics, which may indicate that the drivers misjudge safe 

cornering speeds when they are unhappy with the steering 

ratio (safety issue). The plots of the correlated data for the 

steering ratio and steering effort, independent of each other, 

have been presented in Fig. 6b and 6c versus the normalized 

questionnaire data. The significance of a 0.55r    

correlation can be clearly seen in Fig. 6b with a strong linear 

grouping. In contrast, Fig. 6c shows how ambiguous a 

correlation of 0.15r    appears.  

VI. SUMMARY 

Vehicle steering system setting targets (i.e., selection of 

design parameters such as ratio, damping, and power assist) 

remain an ongoing challenge for engineers. As society 

moves into an age of product personalization, automotive 

companies must adapt to “win” the next generation of car 

buyers who seek a custom ground vehicle. One area of 

adaptation resides in the creation of an automatic tuning 

steering control system that can customize the driving 

experience for each operator. Accordingly, the first step 

must be the identification of a performance index which 

captures a driver’s steering system preferences. 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Normalized Questionnaire Data

N
o
rm

a
liz

e
d
 Y

a
w

 R
a
te

 M
e
tr

ic

(Favorable) 

(Do Not Like) 

1871



  

 
Fig. 6: Weighted metric, 

wJ , vs. normalized questionnaire 

data, Q : (a) ( 1,2,...,5)k 
 
with 0.39r   ; (b)

 
( 2,3)k 

 
with 0.55r   ; and (c)

 
( 4,5)k 

 
with 0.15r    

 

This study has investigated an objective steering 

preference metric through the use of a steering simulator. 

Objective data recorded from vehicle sensor signals was 

correlated with questionnaire data completed by human test 

subjects. A global weighted objective metric was formulated 

which combined the yaw rate, lateral acceleration, and 

longitudinal acceleration variables. The resulting weighted 

objective metric produced a correlation with questionnaire 

data of 0.39r   . When steering ratio setting changes were 

isolated, an even stronger correlation of 0.55r    was 

encountered using longitudinal acceleration, 
xa , left front 

tire steer angle, 
lf , and throttle position, TPS. The findings 

suggest that an objective steering preference metric may be 

able to predict a driver’s steering ratio preference, while 

steering effort preferences may be transparent to an 

objective metric. Further research is recommended to 

investigate the application to vehicle steering system 

designs. 
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