
 

 

 

  

Abstract—Based on key resource subsets, a necessary and 
sufficient condition is proposed under which a resultant siphon 
can be always marked if its strict minimal siphons (SMS) are 
optimally controlled. The proposed condition is established by 
analyzing the structural characteristics and markings of the 
resource subnets in a class of Petri nets called L-S3PR. When it is 
used in deadlock prevention policies, the number of monitors 
can be significantly reduced, thereby decreasing control 
implementation complexity and cost.  
 

Index Terms—Deadlock, manufacturing systems, Petri nets, 
siphon  

I. INTRODUCTION 

FOR a class of Petri nets called Systems of Simple 

Sequential Processes with Resources (S3PR), Ezpeleta et al. 
[1] propose an approach where liveness is enforced by adding 
a monitor to every SMS. However, too many monitors need 
to be added, leading to a highly complex controlled Petri net. 
The number of monitors to be added is equal to the number of 
SMS in the net and the number of arcs added is generally 
much larger than that of monitors, particularly for large-scale 
Petri nets.  

In fact, not all SMS have to be controlled via monitors. In 
other words, some monitors may be redundant. Many 
researchers have worked on the problem of redundant 
monitors and made remarkable progress [2-11]. In this paper, 
we focus on finding ways to solve this problem. 

Li and Zhou [6], [7] pioneered in classifying SMS in a Petri 
net into two categories: elementary and dependent siphons. By 
making the former invariant-controlled in an S3PR net, they 
prove that under some conditions, the latter can be always 
marked. In [8], they investigate the existence of dependent 
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siphons and propose more general conditions under which a 
dependent siphon can be always marked. Based on the results 
of [8], Li and Zhao [9] claim that the controllability of 
dependent siphons in an ordinary Petri net is a special case of 
that in a generalized one. In their work, controllability 
condition of a dependent siphon is expressed in terms of the 
control depth variables of its elementary siphons. These 
methods significantly reduce the number of monitors, but a 
shortcoming of their methods is that they need to compute all 
the SMS beforehand. Some related work is reported in [10, 11]. 
In [11], Chao proposes the concept of basic and compound 
siphons. By controlling the basic siphons via monitors, he 
finds the conditions for a compound to be implicitly controlled. 
But his condition is also sufficient but not necessary.  

By fully utilizing the structural information in a Petri net, Li 
and Zhou [12] propose a method to compute a set of 
elementary siphons in S3PR based on resource circuits.  They 
claim that any dependent siphon can be found through the 
composition of elementary ones that are derived from 
resource circuits. However, it remains unexplored to relax the 
controllability conditions of the resultant siphons. Similar 
works are reported by Xing et al. [13] and Wang et al. [14]. 
Based on resource circuits, this work for the first time studies 
the relationship between two SMS and their resultant siphon 
by analyzing the structural characteristics and markings of the 
resource subnets.  

Given two SMS and their resultant siphon, this paper 
derives the controllability condition of the latter in an L-S3PR. 
The new contributions of this paper include: 

1) The concept of loop resource subset is proposed, which 
is important in establishing new results of the controllability 
conditions of an SMS; 

2) Given two SMS and their resultant siphon, the concept 
of a key resource subset is proposed. It plays a critical role in 
deciding the controllability conditions of resultant siphons. 

3) A necessary and sufficient condition under which a 
resultant siphon can be always marked if its SMS are 
optimally controlled is proposed and proved. 

II. PRELIMINARIES 

A. Petri Nets [15], [16] 
A Petri net is a 3-tuple N= (P, T, F), where P and T are 

finite, nonempty, and disjoint sets. P is a set of places, and T 
is a set of transitions. The set F⊆(P×T)∪(T×P) is the 
incidence relation. Given a net N= (P, T, F), and a node 
x∈(P∪T), •x ={y∈P∪T|(y, x)∈F} is the preset of x, while 
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x•={y∈P∪T|(x, y)∈F} is the post-set of x. The incidence 
matrix of N is a matrix [N]: P× T→Z indexed by P and T such 
that [N](p, t)= -1 if p∈•t\t•; [N](p, t)=1 if p∈t•\•t; otherwise 
[N ](p, t)=0 for all p∈P and t∈T. N is called a state machine if 
∀t∈T, |•t|=|t•|=1. 

Let N= (P, T, F) be a Petri net. A marking M of N is a 
mapping from P to  where = {0, 1, 2, ...}. In general, we 
use multi-set notation ( )p P

M p p
∈∑ to denote vector M, 

where M (p) indicates the number of tokens in p at M. For 
example, M =[1, 2, 0, 0] T  is denoted by M = p1+2 p2. p is 
marked by M if M(p)>0. 

   A transition t is enabled at a marking M, denoted by M 
[t>, if ∀p ∈•t, M (p) > 0.  An enabled transition t at M can fire, 
resulting in a new marking M', denoted by M [t >M', where 
M'(p) = M (p)+ [N ](p, t). A sequence of transitions α=t1 t2  . . . 
tk, ti ∈T, i = 1, 2, . . . , k is feasible from a marking M if there 
exist Mi [ti >Mi+1 and i = 1, 2, . . . , k, where M1 = M. In such a 
case, we use M [α>Mi to denote the case that Mi is reachable 
from M after firing a sequence of transitions α. Let R(N, M0) 
denote the set of all reachable markings of N from the initial 
marking M0. 

A P-vector is a column vector I: P→Z indexed by P and a 
T-vector is a column vector J: T→Z indexed by T, where Z is 
the set of integers. I is a P-invariant if I≠0 and I T •[N] =0T 

hold. P-invariant I is a semiflow if every element of I is 
non-negative. ||I||= {p∈P |I(p) ≠0} is called the support of I. 

A nonempty set S ⊆P is a siphon if •S ⊆ S•. A siphon is 
minimal if there is no siphon contained in it as a proper subset. 
A minimal siphon that does not contain the support of any 
P-invariant is called an SMS. A subset S ⊆ P is marked by M 
if  at least one place in S is marked by M .The sum of tokens in 
all places in S is denoted by M(S) ,where M(S)= ( )

p S
M p

∈∑ . 

A siphon S is said to be controlled in a net system (N, M0) if 
∀M∈R(N, M0), M(S)>0.  S is said to be optimally controlled 
in a net system (N, M0) if only the markings at which S 
becomes unmarked are removed.  

Let N= (P, T, F) be a Petri net. A string x1,…, and xn in P∪ 
T is called a path of N if ∀i∈{1, 2,..., n-1}, xi+1∈ xi

•. An 
elementary path from x1 to xn is a path whose nodes are all 
different (except, perhaps, x1 and xn). It is called an 
elementary circuit if it is an elementary path and x1= xn.  

A transition without any input place is called a source 
transition, and one without any output place is called a sink 
transition. Note that a source transition is unconditionally 
enabled, and that the firing of a sink transition consumes 
tokens, but does not produce any.  

B. L-S3PR [17] 
Definition 1: A Linear S3PR (L-S3PR) is an ordinary Petri 

net N = (P, T, F) such that: 
(1) P= PA ∪P0 ∪PR is a partition such that 
      a) 1

0 0 0{ ,..., }, 0,kP p p k= > is the set of idle places. 

      b)  
1

k i
A Ai

P P
=

=∪ is the set of operation places, where 
i j

A AP P∩ = ∅ , for all .i j≠  
      c) 1{ ,..., }, 0,R nP r r n= > is the set of resource places. 

(2) 
1

k i
i

T T
=

=∪ is the set of transitions, where 
i jT T∩ = ∅ , for all .i j≠  

(3) ∀i∈ ={1,2,...,k}, the subnet iN generated by 

0{ }i i
Ap P∪  iT∪ is a strongly connected state machine, such 

that every circuit contains 0{ }ip and ,| | 1.i
Ap P p•∀ ∈ =  

(4) ∀i∈ , , , { }i
A R R Rp P r P p P p P r•• ••∀ ∈ ∃ ∈ ∩ = ∩ =  and 

| | 1Rp P•• ∩ = . 

(5) For , ( ) ( )R Ar P H r r P••∈ = ∩  is the set of operation 
places that use r and are called holders of r. 

(6) For , ( ) { }A R pp P p P r••∈ ∩ = where resource rp is called 
the resource used by p. 

(7) N is strongly connected. 
Definition 2: Let N = (PA ∪P0 ∪PR, T, F) be an L-S3PR. An 

initial marking M0 is called an acceptable one for N if 1) 
0 0, ( ) 1;p P M p∀ ∈ ≥ 2) 0, ( ) 0;Ap P M p∀ ∈ =  and 3)   

0, ( ) 1Rp P M p∀ ∈ ≥ . 

III. CONTROLLABILITY CONDITION 
 In this section, we first briefly introduce some 

fundamental concepts of resource circuits, loop resource 
subsets, and resource subnets. Based on them, the 
controllability condition of resultant siphons is discussed for 
L-S3PR.  In the remaining discussion, we assume that N = (PA 
∪P0 ∪PR, T, F) is an L-S3PR net with an acceptable initial 
marking. 

Proposition 1: Let S be an SMS in (N, M0) and (N1, M1) be 
the net derived from (N, M0) by adding a monitor VS. S is 
optimally controlled if VS is added such that 1) ∀p∈ PA ∪P0 

∪PR, M1(p)= M0(p); 2) M1(VS)= M0(S)-1; and 3) I= px+…+ 
py+ VS is a P-invariant of  (N1, M1) where  {px,…, 
py}=( ( )

Rr S P
H r

∈ ∩∪ ) \ S. 

Proof: Similar to the proof of Proposition 1 in [18]. 
Definition 3: Let {r1, r2,…, rm} ⊆  PR (m ≥2) be a set of 

resources in N. An elementary circuit C(r1, t1, r2, t2, …, rm, tm) 
is called a resource circuit if 1) ∀i∈{1, 2,..., m}, ri∈• ti; 2) 
∀i∈{2,..., m}, ri∈ ti-1

•; and 3) r1∈ tm
•.  

We use CR= {r1, r2, …, rm } to denote the set of resources in 
a resource circuit C in N . 

Definition 4: Let C= {C1, C2,…, Cn} be the set of resource 
circuits in N. The set of loop resource subsets 2 RP⊆ is 
recursively defined as follows: 1) ∀ Ci∈ C, R

iC ∈ ; 2) if 1Ω , 

2Ω ∈ , 1Ω ∩ 2Ω  ≠∅, then 1,2Ω = 1Ω ∪ 2Ω ∈ . 
The net shown in Fig. 1(a) has three resource circuits: C1 

(p11, t2, p12, t7), C2 (p12, t3, p13, t8), and C3 (p13, t4, p14, t9).  Let 
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1Ω = 1
RC , 2Ω = 2

RC , and 3Ω = 3
RC . Clearly, 1Ω = 1

RC = {p11, 

p12}, 2Ω = 2
RC = {p12, p13}, and 3Ω = 3

RC ={p13, p14} are loop 
resource subsets. Since 1Ω ∩ 2Ω ={p12}≠∅ and 2Ω ∩ 

3Ω ={p13}≠∅, then 4 1,2Ω = Ω = 1Ω ∪ 2Ω ={p11, p12, p13} and 

5 2,3Ω = Ω = 2Ω ∪ 3Ω ={p12, p13, p14} are loop resource 

subsets as well. Similarly, so is 6 1,2,3Ω = Ω = 1Ω ∪ 

2,3Ω = 1,2Ω ∪ 2,3Ω = {p11, p12, p13, p14}. 
Definition 5: Let Ω = {r1, r2,…, rm} ⊆  PR (m ≥2) be a 

subset of resources in N. Then ( , , )N P T FΩ Ω Ω Ω=  is called a 
resource subnet of N generated by Ω if 1) PΩ  = Ω ; 2) 
TΩ =• Ω ; and 3) FΩ  = F ∩ [( PΩ  ×TΩ ) ∪ (TΩ × PΩ )]. TΩ-source 
⊆ TΩ  is defined as the set of source transitions in NΩ , and the 
set of source transitions related to a resource r is defined 
as r

sourceTΩ− = •r ∩ TΩ-source. 
 

 
 
Fig. 1 (a) A marked L-S3PR (N, M0) and (b) Resource subnet 
NΩ  obtained from (N, M0) 
 

As shown in Fig. 1(a), Ω = {p11, p12, p13} is a subset of 
resources in N. Then, resource subnet ( , , )N P T FΩ Ω Ω Ω=  
generated by Ω  is shown in Fig. 1(b) with PΩ = Ω = {p11, p12, 
p13} and TΩ ={t1, t2, t3, t7, t8, t9}. Trivially, TΩ-source= {t1, t9},  

11p
sourceTΩ−  ={t1}, 12p

sourceTΩ−  = ∅ , and 13p
sourceTΩ− ={t9}. 

By using the proposed resource subnets, we can have the 
following lemmas. 

 Lemma 3: Let Ω = {r1, r2,…, rm} ⊆  PR (m ≥2) be a subset 
of resources in N. S is a siphon if S = Ω  ∪ ( )

source
At T

t P
Ω−

•

∈
∩∪ . 

Proof: Refer to the work in [19].                                     ■ 
In what follows, we use SΩ  to denote the siphon derived 

from a resource subset Ω , i.e., ( ).
source

At T
S t P

Ω−

•
Ω ∈

= Ω∩ ∩∪  

Lemma 4: Let Ω = {r1, r2,…, rm}∈ (m ≥2) be a loop 

resource subset in N. Then, SΩ  is an SMS. 
Proof: Similar to the proof of Theorem 10 in [14].           ■ 
Definition 6: Let S

αΩ and S
βΩ  (α≠β) be two siphons in N, 

where αΩ , βΩ , and ,α β α βΩ = Ω ∪ Ω  are three resource 

subsets. S
αΩ and S

βΩ are composable if ,α βΩ ∩ Ω ≠ ∅          

,α βΩ ⊄ Ω and .β αΩ ⊄ Ω  The resultant siphon by 
composing S

αΩ and S
βΩ  is defined as  

, S,
, ( )

ource
At T

S S S t P
α β α β

α β
α β

Ω −

•
Ω Ω Ω ∈

= = Ω ∪ ∩D ∪ . 

As shown in Fig. 1(a), 1Ω = {p11, p12}, 2Ω = {p12, p13}, and 

1,2Ω = {p11, p12, p13} are three resource subsets. 

1
SΩ =

1
1 ( )

source
At T

t P
Ω −

•

∈
Ω ∪ ∩∪ = {p2, p8, p11, p12}. 

2
SΩ = 

2
2 ( )

source
At T

t P
Ω −

•

∈
Ω ∪ ∩∪ = {p3, p9, p12, p13}.  

1 2 12{ } ,pΩ ∩ Ω = ≠ ∅ 1 2 ,Ω ⊄ Ω and 2 1Ω ⊄ Ω . Hence 

1
SΩ and

2
SΩ are composable and the resultant siphon by 

composing them is  

1,2 1 2
1,2

1,2 ( )
source

At T
S S S t P

Ω −

•
Ω Ω Ω ∈

= = Ω ∪ ∩D ∪ = {p2, p9, p11, 

p12, p13}. 
Lemma 5: Let S

αΩ and S
βΩ  (α≠β) be two composable 

siphons with 
,

S
α βΩ being their resultant one in N. If 

S
αΩ and S

βΩ are SMS, so is 
,

S
α βΩ . 

Proof: Similar to the proof of Theorem 11 in [14].          ■ 
Lemma 6: Let S

αΩ and S
βΩ  (α≠β) be two composable 

siphons with 
,

S
α βΩ being their resultant one in N. If 

S
αΩ and S

βΩ are SMS, then there always exist two places 

xp and yp ( x yp p≠ ) such that \xp S
α αΩ∈ Ω , \yp S

β βΩ∈ Ω , 

and 
,

,x yp p S
α βΩ∉ . 

Proof: Refer to the work in [19].                                     ■ 
Definition 7: Let S

αΩ and S
βΩ （α≠β）be two composable 

SMS with 
,

S
α βΩ being their resultant one in N. 

, ( )Dα β λ λΩ ⊂ Ω   is called a key resource subset of λΩ  if  

, ,, ( ) { | , , }r r r r
source source source sourceD r r T T T T

λ α β λ α βα β λ λ Ω − Ω − Ω − Ω −Ω = ∈Ω ⊃ ≠ (

λ=α, β). Key resource subsets denote the subsets of resource 
places whose source transition count is decreased after 
composing two SMS. Key resource subsets are key factors 
deciding the controllability condition of resultant siphons. 

For example, 
4

SΩ = {p2, p9, p11, p12, p13} and
5

SΩ = {p3, p10, 

p12, p13, p14} are SMS in Fig. 1(a) with 4Ω = {p11, p12, p13} 
and 5Ω = {p12, p13, p14}. 

4,5
SΩ ={p2, p10, p11, p12, p13, p14} is 

the resultant one by composing 
4

SΩ and
5

SΩ , where 

4,5Ω = {p11, p12, p13, p14}. By Definition 5, the resource 

subnets that are generated by 4 5, ,Ω Ω  and 4,5Ω are shown in 
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Fig. 2. 
Trivially, 

4 4,5

13 13p p
source sourceT TΩ − Ω −⊃  and

5 4,5

12 12p p
source sourceT TΩ − Ω −⊃ . 

Hence 4,5 4( )D Ω = {p13} and 4,5 5( )D Ω = {p12} are the 

respective key resource subsets of 4Ω and 5Ω . 
 

     
 

Fig. 2 Three resource subnets (a)
4

NΩ , (b)
5

NΩ , and (c)
4,5

NΩ  

 
 
Lemma 7: Let 

1
SΩ and

2
SΩ be two composable siphons with 

1,2
SΩ being their resultant one in N. If 

1
SΩ and

2
SΩ are SMS, 

then 1,2 1( )D Ω ≠ ∅  and 1,2 2( )D Ω ≠ ∅ . 
Proof: Refer to the work in [19].                                     ■ 
Remark 1: Lemma 7 indicates that each of two composable 

SMS has at least one resource place whose source transition 
count is decreased after composing two SMS. 

Lemma 8 [26]: Let S be an SMS. Then, there exists an 
acceptable initial marking M0 such that 0( , )M R N M∃ ∈ : 

( )M S =0. 
Lemma 9: Let 

1
SΩ and

2
SΩ be two composable SMS with 

1,2
SΩ being their resultant one in N. If 

1,2 1 1,2 2| ( ) ( ) | 2D DΩ ∪ Ω ≥  , then there exists an acceptable 

initial marking M0 such that 0( , )M R N M∃ ∈ :
1,2

( )M SΩ =0, 

1
( ) 0M SΩ ≠  and 

2
( ) 0M SΩ ≠ . 

Proof: Refer to the work in [19].                                     ■ 
Remark 2: Lemma 9 indicates that if the total number of 

key resources of 
1

SΩ and
2

SΩ are larger than one, their 

resultant siphon 
1,2

SΩ may be unmarked at a marking M where 

1
( ) 0M SΩ ≠  and

2
( ) 0M SΩ ≠ .  

For example, 
4

SΩ = {p2, p9, p11, p12, p13} and
5

SΩ = {p3, p10, 

p12, p13, p14} are SMS in Fig. 1(a) with 
4,5

SΩ ={p2, p10, p11, p12, 

p13, p14} being their resultant one. The initial marking M0 = [5, 
0, 0, 0, 0, 5, 0, 0, 0, 0, 1, 2, 1, 1 ]T. M= [3, 0, 1, 0, 1, 2, 1, 1, 1, 
0, 0, 0, 0, 0 ]T is a marking reachable from M0. According to 
Definition 7, 4,5 4( )D Ω = {p13} and 4,5 5( )D Ω = {p12}.  

Trivially,
1

( ) 1M SΩ = , 
2

( ) 1M SΩ = , and 
1,2

( )M SΩ =0 with 

4,5 4 4,5 5| ( ) ( ) | 2D DΩ ∪ Ω = . 
Corollary 1: Let 

1
SΩ and

2
SΩ be two composable SMS with 

1,2
SΩ being their resultant one in N. Let 

1
SΩ and

2
SΩ be 

optimally controlled. 
1,2

SΩ is not controlled if 

1,2 1 1,2 2| ( ) ( ) | 2D DΩ ∪ Ω ≥ .  

As shown in Fig.  3, two SMS
4

SΩ ={p2, p9, p11, p12, p13} 

and 
5

SΩ = {p3, p10, p12, p13, p14} in the net in Fig. 1  are 

optimally controlled via monitors V4 and V5  by Proposition 1. 
Trivially, their resultant siphon 

4,5
SΩ ={p2, p10, p11, p12, p13, p14} 

is not controlled with  4,5 4 4,5 5| ( ) ( ) | 2D DΩ ∪ Ω = . 
 

 
 

Fig. 3 Two monitors added to the net in Fig. 1(a) 
 
 
Lemma 10: Let 

1
SΩ and

2
SΩ be two composable SMS with 

1,2
SΩ being their resultant one in N 

and 1,2 1 1,2 2( ) ( ) { }D D rΩ = Ω = . If 0 ( ) 2,M r ≥ then there exists 

an acceptable initial marking M0 such that 0( , )M R N M∃ ∈ : 

1,2
( )M SΩ =0, 

1
( ) 0M SΩ ≠  and 

2
( ) 0M SΩ ≠ . 

Proof: Similar to the proof of Lemma 9.                        ■ 
Remark 3: Lemma 10 indicates that if two composable 

SMS 
1

SΩ and
2

SΩ share the unique key resource r with 

0 ( ) 2,M r ≥ their resultant siphon 
1,2

SΩ may be unmarked at a 

marking M where 
1

( ) 0M SΩ ≠  and
2

( ) 0M SΩ ≠ . 

 For example, 
1

SΩ = {p2, p8, p11, p12} and
2

SΩ = {p3, p9, p12, 

p13} are SMS in Fig. 1(a) with 
1,2

SΩ ={p2, p9, p11, p12, p13} 

being their resultant one. The initial marking M0 = [5, 0, 0, 0, 
0, 5, 0, 0, 0, 0, 1, 2, 1, 1 ]T. M= [3, 0, 1, 1, 0, 3, 1, 1, 0, 0, 0, 0, 
0, 1 ]T is a marking reachable from M0. According to 
Definition 7, 1,2 1( )D Ω = 1,2 2( )D Ω = {p12}. 

Trivially,
1

( ) 1M SΩ = , 
2

( ) 1M SΩ = , and 
1,2

( )M SΩ =0 with 

0 12( ) 2M p = . 
Corollary 2: Let 

1
SΩ and

2
SΩ be two composable SMS with 

1,2
SΩ being their resultant one in N 

and 1,2 1 1,2 2( ) ( ) { }D D rΩ = Ω = . Let 
1

SΩ and
2

SΩ be optimally 

controlled. 
1,2

SΩ is not controlled if 0 ( ) 2M r ≥ .  

As shown in Fig.  4, two SMS
1

SΩ = {p2, p8, p11, p12} and 
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2
SΩ = {p3, p9, p12, p13} in the net in Fig. 1 are optimally 

controlled via monitors V1 and V2 by Proposition 1 where 
1,2 1( )D Ω = 1,2 2( )D Ω = {p12} with 0 12( ) 2M p = . Trivially, 

their resultant siphon 
1,2

SΩ ={p2, p9, p11, p12, p13} is not 

controlled. 
 

 
 

Fig. 4 Two monitors added to the net in Fig. 1(a) 
 
 
Lemma 11: Let 

1
SΩ and

2
SΩ be two composable SMS with 

1,2
SΩ being their resultant one in N. 

1
( ) 0M SΩ ≠    

and
2

( ) 0M SΩ ≠
1,2

( ) 0M SΩ⇒ ≠ , if 

1,2 1 1,2 2( ) ( ) { }D D rΩ = Ω =  and 0 ( ) 1M r = . 
Proof: Refer to the work in [19].                                     ■ 
Remark 4: Lemma 11 indicates that if two composable 

SMS 
1

SΩ and
2

SΩ share the unique key resource r with 

0 ( ) 1,M r = their resultant siphon 
1,2

SΩ is marked at any 

marking M where 
1

( ) 0M SΩ ≠  and
2

( ) 0M SΩ ≠ .  

For example, 
2

SΩ = {p3, p9, p12, p13} and
3

SΩ = {p4, p10, p13, 

p14} are SMS in Fig. 1(a) with 
2,3

SΩ ={p3, p10, p12, p13, p14} 

being their resultant one. The initial marking M0 = [5, 0, 0, 0, 
0, 5, 0, 0, 0, 0, 1, 2, 1, 1 ]T and  2,3 2( )D Ω = 2,3 3( )D Ω = {p13} 

with 0 13( ) 1M p = . Trivially, we cannot find a marking M 
reachable from M0 such that 

1
( ) 0M SΩ ≠ , 

2
( ) 0M SΩ ≠ , and 

1,2
( )M SΩ =0. 

Corollary 3: Let 
1

SΩ and
2

SΩ be two composable SMS with 

1,2
SΩ being their resultant one in N. Let 

1
SΩ and

2
SΩ be 

(optimally) controlled. 
1,2

SΩ is controlled if 

1,2 1 1,2 2( ) ( ) { }D D rΩ = Ω =  and 0 ( ) 1M r = .  
As shown in Fig.  5, two SMS

2
SΩ = {p3, p9, p12, p13} and 

3
SΩ = {p4, p10, p13, p14} in the net in Fig. 1 are optimally 

controlled via monitors V2 and V3 by Proposition 1 where 
2,3 2( )D Ω = 2,3 3( )D Ω = {p13} with 0 13( ) 1M p = . Trivially, 

their resultant siphon 
2,3

SΩ ={p3, p10, p12, p13, p14} is 

controlled. 
 

 
 

Fig. 5 Two monitors added to the net in Fig. 1(a) 
 
 
Theorem 1: Let 

1
SΩ and

2
SΩ be two composable SMS with 

1,2
SΩ being their resultant one in N. 

If
1

( ) 0M SΩ ≠ and
2

( ) 0M SΩ ≠ then 
1,2

( ) 0M SΩ ≠  iff 

1,2 1 1,2 2( ) ( ) { }D D rΩ = Ω =  and 0 ( ) 1M r = . 
Proof: Straight forward from Lemmas 8, 9, 10, and 11. ■ 
Remark 5: Theorem 1 shows that if and only if two 

composable SMS 
1

SΩ and
2

SΩ share the unique key resource r 

with 0 ( ) 1,M r = their resultant siphon 
1,2

SΩ is marked at any 

marking M where 
1

( ) 0M SΩ ≠  and
2

( ) 0M SΩ ≠ .  

Theorem 2: Let 
1

SΩ and
2

SΩ be two composable SMS with 

1,2
SΩ being their resultant one in N. If 

1
SΩ and

2
SΩ are 

optimally controlled, then 
1,2

SΩ is controlled iff 

1,2 1 1,2 2( ) ( ) { }D D rΩ = Ω =  with 0 ( ) 1M r = . 
Proof: Straight forward from Corollary 1, Corollary 2, and 

Theorem 1.                                                                           ■ 
Theorem 3: Let 

i
SΩ be optimally controlled for 

∀i∈{1,2,…,k} and 
1,2,3, , 1 2 3k k

S S S S SΩ Ω Ω Ω Ω=
"

D D D"D            

1 2 3
( (( ) ) )

k
S S S SΩ Ω Ω Ω= " D D D" D . 

1,2,3, ,k
SΩ "

 is controlled if 

(1,2, ), 1 1,2, , (1,2, ), 1 1( ) ( ) { }i i i i i i iD D r+ + +Ω = Ω =" " " with 0 ( ) 1iM r =  

for ∀i∈{1,2,…,k-1}. 
Proof: Straight forward from Theorem 2.                       ■ 
Remark 6: Theorems 2 and 3 indicate that under some 

conditions, a resultant siphon is always controlled if its SMS 
are optimally controlled. Therefore, no monitor is needed to 
control such resultant siphons. In an L-S3PR, there are many 
instances that the initial marking of each resource place is 1. 
Therefore, in a general case, utilizing Theorems 2 and 3 can 
reduce the number of monitors.  

IV. CONCLUSION   
Given an L-S³PR net model, the common deadlock 

prevention policies need to add a monitor to every SMS. 
These approaches have a problem that the supervisor can be 
highly complex when the number of SMS is very large.  To 
minimize the number of SMS that need to be controlled, this 
paper proposes a sufficient and necessary condition under 
which the resultant siphon is always marked if its SMS are 
optimally controlled in an L-S3PR. Future work includes 
extending the controllability conditions to more general 

4488



 

 

 

classes of Petri nets and utilizing the newly derived 
controllability conditions in deadlock prevention policies.  
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