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Abstract— We consider the dynamic optimization of enzyme
expression rates to drive a metabolic network between two given
equilibrium fluxes. The formulation is based on a nonlinear
control-affine model for a metabolic network coupled with a
linear model for enzyme expression and degradation, whereby
the expression rates are regarded as control inputs to be
optimized. The cost function is a quadratic functional that
accounts for the deviation of the species concentrations and
expression rates from their target values, together with the
genetic effort required for enzyme synthesis. If the network is
in dynamic equilibrium along the whole adaptation process, the
metabolite levels are constant and the nonlinear dynamics can
be recast as a nonregular descriptor system. The structure of
the reduced system can be exploited to decouple the algebraic
and differential parts of the dynamics, so as to parameterize
the controls that satisfy the algebraic constraint in terms of
a lower-dimensional control. The problem is then solved as a
standard Linear Quadratic Regulator problem for an uncon-
strained lower dimensional system. This solution allows for a
systematic computation of the optimal flux trajectories between
two prescribed dynamic equilibrium regimes for networks with
general topologies and kinetics.

I. INTRODUCTION

Metabolic networks convert nutrients into usable energy
and synthesize a variety of chemical species required by a
cell [1]. A challenging goal is the identification of design
principles that underpin their control and regulation [2].
Since it appears that biological systems have evolved so
as to optimize their adaptation to external conditions [3],
one approach aims at reverse-engineering metabolic systems
under the assumption of an underlying optimality principle,
as in e.g. [4], [5], [6], [7], [8]. Optimal solutions are
then compared with experimental data so as to provide a
quantitative justification to the behaviors observed in nature
[5], [9], [10]. In this paper we show how to solve a class
of metabolic optimization problems using classic Linear
Quadratic optimization.

A simple metabolic network is shown in Fig. 1 with the
metabolite concentrations denoted as si and the chemical
reaction rates as vi. These networks typically operate in a
dynamic equilibrium, whereby the rates are stoichiometri-
cally balanced and the metabolites are constant in time [11].
The equilibrium rates (also known as steady state fluxes)
define different operation regimes, which in turn correspond
to specific physiological states of a cell. For example, in
Fig. 1 regimes I and II represent the preferential uptake of
nutrient SA or SB , whereas regimes III and IV are associated
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Fig. 1. Metabolic network and different steady state operation regimes.

to the preferred synthesis of compound s2 or s3. The tran-
sition between different regimes is needed to satisfy cellular
demands and respond to environmental stimuli within the
resource constraints. Such adaptation mechanisms arise, for
example, in response to changes in nutritional [9], osmotic
[12], and thermal [13] conditions.

Metabolic reactions are catalyzed by enzymatic molecules,
the availability of which is controlled by genetic expression.
This allows the modulation of metabolic fluxes by adjusting
the rate at which the enzymes are synthesized. In this
paper we address the problem of optimizing the transition
between two given metabolic fluxes by means of time-
dependent enzyme expression rates. As a way of accounting
for the cost/benefit relationship between the genetic effort
required for enzyme synthesis and the transition to the new
equilibrium, we consider the minimization of a quadratic
functional that weighs the time-derivative of the expression
rates, together with the deviations of the species concentra-
tions and enzyme expression rates from their target values.

A number of approaches to dynamic optimization of
metabolic networks have been developed e.g. [14], [9],
[15]. These methods regard the reaction rates as control
inputs to be optimized, which makes them applicable in
cases where the enzyme kinetics are unknown. This is a
great advantage since the identification of enzyme kinet-
ics requires significant experimental effort. This approach,
however, overlooks the dependency of the reaction rates
on the metabolite and enzyme concentrations. In this paper
we avoid this shortcoming and describe the metabolic net-
work as a nonlinear control-affine model with the enzyme
concentrations as control inputs. This formulation accounts
for a broad class of networks with general topologies and
enzyme kinetics. The network model is coupled with a
linear model for enzyme dynamics that accounts for protein
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expression and degradation. The complete model describes
both metabolite and enzyme trajectories in response to time-
dependent enzyme expression rates.

Experimental observations have shown that variations in
metabolic fluxes can be accompanied by comparatively small
changes in the metabolite concentrations [11]. We study
the limiting case of this scenario and address the optimal
transition under constant metabolite concentrations. Under
this constraint the network remains in dynamic equilibrium
along the whole optimization interval and its dynamics can
be recast as a nonregular descriptor (linear) system. The
structure of the descriptor system is exploited to decouple
the algebraic and differential parts of the dynamics. This
allows for a parameterization of all controls that satisfy the
algebraic constraint in terms of a lower-dimensional control
variable. The problem can then be solved with the classic
Linear Quadratic Regulator (LQR) theory [16] applied to a
purely differential linear system. The analytic nature of this
solution makes it promising for large scale networks with
complex enzyme kinetics.

II. PROBLEM FORMULATION

A. Control-affine model for a metabolic network
Consider a network of n metabolites s1, s2, . . . , sn inter-

acting via m reactions. The chemical equation for the jth

reaction is
n∑

i=1

αijsi
vj←→

n∑
i=1

βijsi, j = 1, 2, . . . ,m, (1)

where vj is the reaction rate, and αij , βij ∈ N are the
stoichiometric coefficients of the ith metabolite in the jth

reaction. The rate of change of si is given by the balance
between those reactions that have si as a product and
reactant. This yields

ṡ = Nv, (2)

where s ∈ Rn
≥0 and v ∈ Rm are vectors of metabolite

concentrations and reaction rates, respectively. The matrix
N ∈ Zn×m is the stoichiometric matrix of the network
defined as N ij = βij − αij . Metabolite si is consumed
(produced) in the jth reaction whenever N ij < 0 (N ij > 0).
For future reference we define d = rankN , so that in the
typical case when n < m, n − d is the number of moiety
conserved cycles in the network.

If the reaction rates are considered as control inputs, the
model (2) is a linear time-invariant system with zero state
matrix. The linearity of (2) is favorable for the solution of
optimal control problems, but this model neglects the depen-
dency of the reaction rates on the metabolite and enzyme
concentrations. The reaction rates are typically saturable
functions (i.e. sigmoid-like) of the metabolites and linear in
the enzyme concentrations [1]. We thus make the following
assumption.

Assumption 1: The reaction rates are linear in the enzyme
concentrations and can be written as

vi = vi(s, ei) = gi(s)ei, i = 1, 2, . . . ,m, (3)

where ei ≥ 0 is the concentration of the ith enzyme, and
gi : Rn → R is Lipschitz continuous.
This assumption is met by most commonly used models for
enzyme kinetics, but exceptions can be found, for example,
in the case of enzyme-enzyme interactions [1]. The function
gi(s) is the rate per unit of enzyme concentration and
depends on the specific chemical kinetics of the enzyme.

Under Assumption 1, the model (2) becomes

ṡ = NG(s)e, (4)

where e ∈ Rm
≥0 is the vector of enzyme concentrations and

G(s) = diag {g1(s), g2(s), . . . , gm(s)} . (5)

If the enzyme concentrations are taken as control inputs, the
model (4) corresponds to a control-affine nonlinear system,
which is amenable to control-theoretic analyses [17].

B. Linear model for enzyme dynamics

Enzyme dynamics can be described as the mass bal-
ance between enzyme expression and degradation. If the
degradation rates are assumed proportional to the enzyme
concentration, then we can write

ė = r −Λe, (6)

where r ∈ Rm
≥0 is the vector of enzyme expression rates,

and Λ = diag {λ1, λ2, . . . , λm} with λi > 0. The constants
λi can account not only for enzyme degradation, but also
for dilution effects due to cell growth. The full system
(4)–(6) can be represented by the block diagram of Fig. 2.

s
ṡ = NG(s)eė = r −Λe

er

Fig. 2. Block diagram of a metabolic network coupled with enzyme
dynamics.

C. Optimal control probem

The objective is to drive the network from an initial steady
state to a given flux by means of time-dependent enzyme
expression rates. If the steady state metabolite concentration
vector is si, the initial and target fluxes (vi and vf , respec-
tively) are achieved by the following enzyme concentrations
and expression rates

ei = Gi
−1vi, ri = ΛGi

−1vi, (7)

ef = Gi
−1vf , rf = ΛGi

−1vf . (8)

where si is such that Gi = G(si) is nonsingular. Note
that since vi and vf define a steady state, from (2) it must
hold that vi, vf ∈ kerN . Since metabolic reactions cannot
occur in absence of their substrate, the nonsingularity of Gi

limits the problem formulation to those cases in which the
metabolite concentrations are nonzero. We will deal with the
following optimal control problem.

Problem 1: Let vi, vf ∈ kerN be two steady state fluxes
for the network in (4). Let si ∈ Rn

≥0 be such that Gi is
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nonsingular, and consider the initial conditions e(0) = ei,
r(0) = ri, with ei, ri given in (7). Define the quadratic
functional

J =
1

2

∫ ∞
0

((
e− ef

)T
We

(
e− ef

)
+(

r − rf
)T

Wr

(
r − rf

)
+ ṙTWṙ ṙ

)
dt, (9)

with ef , rf given in (8), We,Wr,Wṙ ∈ Rm×m and
We,Wr ≥ 0, Wṙ > 0. Find a control r : R≥0 → Rm

for the system in Fig. 2 that minimizes J subject to

s(t) = si,∀t ≥ 0. (10)
Minimization of the cost J accounts for the combined

optimization of the transition to the target steady state
together with the genetic effort allocated to enzyme synthesis
(as measured by ṙ). The nonlinearities of the system in Fig.
2 appear only in the matrix function G(s), and hence the
dynamics are linear under the constraint (10). Moreover, as
shown in the next section, the constraint introduces algebraic
dependencies in the state variable.

III. NONREGULAR DESCRIPTOR SYSTEM

The following lemma provides a useful characterization of
the constraint (10) in Problem 1.

Lemma 1: Let si ∈ Rn
≥0 be such that Gi is nonsingular.

Define T1 = Gi
−1K ∈ Rm×(m−d) with ImK = kerN .

Then, s(t) = si for all t ≥ 0 if and only if e satisfies

e = T1φ, (11)

for some function φ : R≥0 → Rm−d.
Proof: Sufficiency follows by substituting (11) in the

network (4), which yields

ṡ = NG(s)Gi
−1Kφ. (12)

Evaluation of (12) at t = 0 implies that ṡ(0) = NKφ = 0
for all φ and hence s(t) = si for all t ≥ 0 is the unique
solution (recall that G(s) is Lipschitz continuous). Necessity
can be proven by noting that in (4), ṡ = 0 holds only when

G(s)e = 0,∀t ≥ 0, (13)

or

e(t) ∈ ker {NG(s)} ,∀t ≥ 0. (14)

Equation (13) holds if e = 0 for all t ≥ 0 (the trivial case)
or G(s) = 0 for all t ≥ 0, which can be discarded because
G(s) is nonsingular at least for t = 0 (recall that Gi is
nonsingular). Moreover, s(t) = si for all t ≥ 0 implies that
(14) only holds when e(t) ∈ ker {NGi}, which is equivalent
to (11) because the columns of T1 form a basis for the
nullspace of NGi.

Define the extended state variable as

x̄ = x− xf , x =

[
e
r

]
, xf =

[
ef

rf

]
. (15)

By defining the control input as u = ṙ, the system (6) can
be rewritten as

˙̄x =

[
−Λ I
0 0

]
x̄+

[
0
I

]
u, x̄(0) = xi − xf . (16)

with xi =
[
ei

T
ri

T
]T

. From (11) in Lemma 1 we see that
d degrees of freedom need to be dropped in the enzyme
vector e. This ensures that e ∈ ker {NGi} is satisfied
pointwise in time and hence (10) is met. This also implies
that ė ∈ ker {NGi} must also be satisfied, which adds
another d constraints. Therefore, the algebraic constraints
imposed by (10) require dropping 2d degrees of freedom
in the extended state x̄. Hence any x̄ that satisfies the
algebraic constraints must be of the form x̄ = Ez with
E ∈ R2m×2(m−d) and z ∈ R2(m−d). In view of (16), this
implies that z satisfies

Eż =

[
−Λ I
0 0

]
Ez +

[
0
I

]
u, (17)

with z(0) = E+
(
xi − xf

)
and E+ =

(
ETE

)−1
ET being

the Moore-Penrose pseudoinverse of E. Note that in this case
x̄ has exactly rankE degrees of freedom, so in order to avoid
introducing further constraints on x̄, the matrix E needs to
have full column rank. Differential-Algebraic systems of the
form (17) are usually referred to as descriptor systems. If
det (λE −A) 6≡ 0, λ ∈ R, the system is regular, whereas if
det (λE −A) ≡ 0 or p 6= n the system is called nonregular.

We also note that the cost in Problem 1 can be written as
the quadratic form

J =
1

2

∫ ∞
0

(
x̄T Q̄x̄+ uTWṙu

)
dt, (18)

with Q̄ = diag {We,Wr}. The minimization of J for the
descriptor system in (17) is a Linear Quadratic Regulator
(LQR) problem [16]. The LQR problem for regular descrip-
tor systems was originally treated in [18], [19], whereas
the nonregular case was studied in e.g. [20], [21] and
the references therein. The idea behind these methods is
to “regularize” the dynamics by introducing suitable state
transformations so as to recast the dynamics as a purely
differential linear system [22]. In our case, however, the form
of the system in (17) can be exploited to choose E in a
way that the control minimizing J in (18) can be explicitly
computed in terms of the system matrices (N ,Gi,Λ) and
weights (We,Wr,Wṙ). Define the matrix T2 = ΛT1 ∈
Rm×(m−d) and pick E as

E =

[
T1 0
T2 T1

]
, (19)

so that the descriptor system (17) becomes

Eż = Az + Bu, z(0) = E+
(
xi − xf

)
, (20)

with A ∈ R2m×2(m−d) and B ∈ R2m×m defined as

A =

[
0 T1

0 0

]
, B =

[
0
I

]
. (21)
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In next section we solve the problem by using the structure of
E to explicitly decouple the algebraic and differential parts
of the descriptor system in (20).

IV. SOLUTION OF THE EQUIVALENT LQR PROBLEM

Define the matrix E∗ ∈ R2(m+n−d)×2m as

E∗ =

[
E⊥

E+

]
, (22)

where E⊥ ∈ R2n×2m is given by

E⊥ =

[
NGi 0
−NΛGi NGi

]
. (23)

Since E⊥E = 0, multiplication of the descriptor system in
(20) by E∗ yields

0 = E⊥Az + E⊥Bu, (24)

ż = E+Az + E+Bu. (25)

The above equations are the algebraic and differential parts of
the descriptor system: (24) consists of 2n algebraic equations
(note that only d of these are nontrivial), whereas (25)
comprises 2(m−d) differential equations in z. Equation (24)
can be used to explicitly find the class of controls that satisfy
the algebraic constraint. The products E⊥A and E⊥B are
given by

E⊥A =

[
0 0
0 −NGiT2

]
, E⊥B =

[
0

NGi

]
, (26)

and thus (24) reduces to the d algebraic equations

NGi (−Tuz + u) = 0, (27)

where Tu ∈ Rm×2(m−d) is given by Tu =
[
0 T2

]
.

Equation (27) implies that a control u satisfies the algebraic
constraint if and only if

(−Tuz + u) ∈ ker {NGi} . (28)

The columns of T1 span the nullspace of NGi, and thus
any u satisfying (28) has the form

u = Tuz + T1ω, (29)

for some ω ∈ Rm−d. We have obtained a parameterization
of the original control u in terms of a lower-dimensional
control ω which guarantees that the algebraic constraint is
satisfied. The dynamics for z can be rewritten in terms of ω
by substituting (29) in (25)

ż = E+ (A + BTu) z + E+BT1ω,

= E+E

[
0 I
0 0

]
︸ ︷︷ ︸

Az

z + E+E

[
0
I

]
︸︷︷︸
Bz

ω,

= Azz + Bzω, (30)

where Az ∈ R2(m−d)×2(m−d) and Bz ∈ R2(m−d)×(m−d).
Since the constraint (10) is satisfied for any ω, the solution
of Problem 1 can be obtained by optimizing ω for system
(30) without algebraic constraints. To that end, we rewrite

the cost J in (18) in terms of the new state z and control
ω. Substituting x̄ = Ez and (29) in the cost (18) yields

J =
1

2

∫ ∞
0

(
zTQz + ωTRω + 2zTSω

)
dt, (31)

where

Q = ET Q̄E + Tu
TWṙTu,

R = T1
TWṙT1,

S = Tu
TWṙT1.

(32)

It is worth noting that the algebraic constraint on u in
(29) translates into J having a mixed term that weighs the
product between state and control (via the weight matrix
S ∈ R2(m−d)×(m−d)). We also see that the dynamics of z in
(30) are unstable, since all the eigenvalues of Az are located
at the origin. Define the matrices Ãz = Az −BzR

−1ST

and Q̃ = Q − SR−1ST , and assume that the weights
satisfy R > 0 and Q̃ ≥ 0. Provided that (Az,Bz) is

stabilizable and
(
Ãz, Q̃

1
2

)
is detectable, the optimal control

is stabilizing and given by [16]

u = −R−1
(
Bz

TP + ST
)
x, (33)

where P ∈ R2(m−d) is the solution of the algebraic Riccati
equation

Ãz
T
P + PÃz − PBzR

−1Bz
TP + Q̃ = 0. (34)

The next result provides conditions under which the above
assumptions hold.

Lemma 2: Consider Az and Bz defined in (30) and Q,
R, and S defined in (32). Then:

(i) R > 0,

(ii) the pair (Az,Bz) is stabilizable,

(iii) We,Wr > 0 implies that Q̃ = Q − SR−1ST > 0,

and thus
(
Az, Q̃

1
2

)
is detectable.

Proof: Claim (i) follows by noting that T1 has full
column rank, so that Wṙ > 0 implies R = T1

TWṙT1 > 0.
Claim (ii) follows from the definitions of Az and Bz we
have [

Bz AzBz · · · Az
2(m−d)−1Bz

]
=[

0 I 0 · · · 0
I 0 0 · · · 0

]
, (35)

and so

rank
[
Bz AzBz · · · Az

2(m−d)−1Bz

]
= 2(m− d),

(36)

which means that the pair (Az,Bz) is completely con-
trollable. To prove claim (iii) we note that, provided that
We,Wr > 0, we have Q̄ > 0 and so ET Q̄E > 0, which
implies that Q = ET Q̄E + Tu

TWṙTu > 0. Using Schur’s
complement this implies that Q̃ = Q−SR−1ST > 0 if and
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only if

Q̃′ =

[
Q S

ST R

]
> 0. (37)

From the definitions of Q, R and S in (32) we get

Q̃′ =

[
ET Q̄E + Tu

TWṙTu Tu
TWṙT1

T1
TWṙTu T1

TWṙT1

]
> 0. (38)

Let y =

[
ya
yb

]
with ya ∈ R2(m−d) and yb ∈ Rm−d, then

yT Q̃′y = (Eya)
T
Q̄ (Eya) + (Tuya)

T
Wṙ (Tuya)

+ (T1yb)
T
Wṙ (T1yb) + 2 (Tuya)

T
Wṙ (T1yb) ,

= (Eya)
T
Q̄ (Eya)

+ (Tuya + T1yb)
T
Wṙ (Tuya + T1yb) . (39)

Since E has full column rank, Eya = 0 only for ya = 0, so
that Q̄ > 0 implies

(Eya)
T
Q̄ (Eya) > 0,∀ya 6= 0. (40)

In the case ya = 0, using Wṙ > 0 in (39) we get

yT Q̃′y = (T1yb)
T
Wṙ (T1yb) > 0,∀yb 6= 0 (41)

and hence we conclude that yT Q̃′y > 0 for all y 6= 0 and
so Q̃ > 0, hence claim (iii) follows.

From Lemma 2 we conclude that the stabilizability and de-
tectability conditions always hold, provided that the weights
We,Wr are positive definite. With this result the problem
can be solved using the LQR solution for the equivalent
system in (30) and the cost in (31). The solution to Problem
1 is given in the next lemma, which is a straightforward
application of (33)–(34).

Lemma 3: Assume that the weights in J satisfy

We,Wr > 0. The solution x∗ =

[
e∗

r∗

]
of Problem 1 is

x∗ = Ez∗ + xf , (42)

where z∗ satisfies

ż∗ =
(
Ãz −BzR

−1Bz
TP
)
z∗, z∗(0) = E+

(
xi − xf

)
,

(43)

and P ∈ R2(m−d)×2(m−d) is the solution of the Riccati
equation (34).

V. EXAMPLE

We illustrate our result with the metabolic network in Fig.
1. The stoichiometric matrix of this network is

N =

1 −1 0 0 −1 0
0 1 1 −1 0 0
0 0 0 0 1 −1

 . (44)

The enzyme kinetics are assumed to be of Michaelis-Menten
type:

v1 =
4SA

1 + SA
e1, v4 =

3s2
1 + s2

e4,

v2 =
2s1

1 + s1
e2, v5 =

4s1
1 + s1

e5,

v3 =
SB

1 + SB
e3, v6 =

2s3
1 + s3

e6.

All enzymes are assumed to have the same degradation
constant λ = 0.1 and the external substrates are assumed
constant with SA = SB = 1. The weights are chosen as
We = Wr = Wṙ = I , whereas the metabolite vector is
si =

[
1 1 1

]T
, and the initial and target fluxes are

vi =
[
2 1.5 1 2.5 0.5 0.5

]T
,

vf =
[
3 2 1.5 3.5 1 1

]T
.

Figure 3 depicts the optimal reaction rates and enzyme
expression rates as given by Lemma 3. Note that the reaction
rates satisfy constraint (10) and hence ṡ = Nv = 0 for all
t ≥ 0.
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Fig. 3. Optimal reaction rates and enzyme expression rates for the network
in Fig. 1.

VI. DISCUSSION AND CONCLUSIONS

In this paper we have addressed the problem of optimiz-
ing enzyme expression rates to drive a metabolic network
between different steady state fluxes. Our formulation relies
on a control-affine model for a metabolic network coupled
with a linear model for enzyme expression/degradation. The
objective function is a LQR-type quadratic functional that
accounts for the transition to the target flux and the cost of
enzyme synthesis. The optimization is carried out under a
dynamic equilibrium constraint (constant metabolites) along
the whole trajectory, which allows for recasting the dynamics
as a nonregular descriptor system. Via a parameterization
of all controls satisfying the algebraic constraints, the LQR
problem for the differential-algebraic system can be solved
as standard one for a purely differential linear system.

The use of optimization principles to reverse-engineer
metabolic networks has gained strength with successful case
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studies such as growth maximization in E. coli [10]. These
are based on a static optimization approach known as Flux
Balance Analysis (FBA) [23], whereby optimal metabolic
fluxes are computed as solutions of a linear program. In
view of the results in this paper, our dynamic optimization
approach may be combined with FBA within a two-stage
optimization setup: Once optimal initial and target fluxes are
identified via FBA, our method can be used to compute time-
dependent enzyme expression rates that yield an optimal
transition between them. By tuning the weighting matrices
in the cost function, different cellular objectives can be
tested and compared with experimental data. This approach
may be useful in systems where the assumption of constant
metabolites is sensible; it would also require knowledge on
the kinetics, but since only the matrix Gi is needed, these
can be estimated from flux and enzyme measurements (the
actual metabolite vector si and kinetic parameters need not
to be known).

Since our solution is analytical and does not assume
any specific kinetics or topologies, it shows promise for its
application to large-scale networks with complex kinetics,
such as allosteric interactions [1]. An important drawback
is the lack of state and control constraints. Their inclusion
can account for physical limitations inherent to biochemical
systems, such as positivity and upper bound constraints on
the enzyme concentrations and their expression rates. The use
of constrained optimization methods for large-scale kinetic
models still needs the development of robust and efficient
numerical algorithms, perhaps in the spirit of recent work in
the field [9], [24].
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