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Abstract— This paper considers the design of robust H∞

filters for continuous-time linear systems with uncertainties
described by integral quadratic constraints (IQCs). The syn-
thesis problem can be converted into an infinite-dimensional
optimization with frequency dependent linear matrix inequality
constraints on the filter and IQC multipliers. This optimization
is approximated by a finite dimensional semidefinite program
by restricting the filter to be a linear combination of basis
functions and enforcing the constraints on a finite, but dense,
grid of frequencies. A heuristic algorithm is described to quickly
solve the resulting finite dimensional optimization. A small
example is provided to demonstrate the proposed algorithm.

I. INTRODUCTION

Estimation is important for both signal processing and

feedback control. The well-known Kalman Filter [12], [13],

[11] provides an optimal minimum-variance estimator for

linear systems subject to Gaussian noise. The rise of robust

control techniques in the 1980s led to an interest in alterna-

tive filters, e.g. the H2 filter (a generalization of the Kalman

filter) and the H∞ filter ([25], [9]). These methods assume

the signals are generated by a known dynamic model and

robustness with respect to model uncertainty is an important

consideration. Numerous papers on robust filter design have

appeared [1], [18], [15], [28], [14], [6], [19], [4], [21], [7],

[26], [27], [24], [23].

This paper considers the robust H∞ filtering problem

for uncertain, continuous-time systems with the uncertainties

described by Integral Quadratic Constraints (IQCs). IQCs, in-

troduced in [16], provide a general framework for robustness

analysis of linear systems with respect to nonlinearities and

uncertainties. Robust filter design has been considered with

static IQC multipliers in [14], [21], [24] and with dynamic

multipliers in [24], [23]. The current paper also considers

dynamic IQCs multipliers. The problem formulation is equiv-

alent to that in [23] but the solution procedure is distinct.

The design problem requires a search for the filter and the

IQC multiplier. For the case of LTI uncertainties, this can

be recast as a µ-synthesis problem and the coordinate-wise

D-K iteration has been applied to solve for the filter and

uncertainty multipliers [1]. The D-K iteration yields sub-

optimal solutions but is a standard method to handle the

nonconvexity that arises in robust control synthesis. In robust

filter design problem, the filter enters the design interconnec-

tion in an open loop (rather than a feedback) configuration
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and this structure can be exploited. In [23], the filter synthesis

problem is converted into a semi-definite program (SDP)

[3] using a special IQC factorization to enforce nominal

stability. The set of allowable IQC multipliers is, in general,

infinite dimensional. The approach in [23] obtains a finite

dimensional optimization by restricting the multipliers to be

combinations of chosen basis functions.

A frequency-gridding approach is taken in this paper. First,

it is shown that IQC performance condition can be turned

into a frequency-dependent linear matrix inequality (LMI) in

the filter and multipliers. Next, a finite dimensional optimiza-

tion is obtained by enforcing the frequency-dependent LMI

on a dense frequency grid and restricting the filter to be a

linear combination of chosen basis functions. The frequency-

dependent IQC multipliers are allowed to be arbitrary func-

tions on the frequency grid. A unique aspect of this approach

is that engineering insight can, for some problems, be more

readily applied to select the basis functions for the filter

rather than the IQC multipliers. One drawback of this ap-

proach is that some optimization variables are frequency in-

dependent and this couples together all frequency-dependent

constraints. The resulting finite-dimensional optimization is

convex but with a large number of constraints and variables.

This paper proposes a heuristic method to obtain a reasonably

fast algorithm to solve this problem. The proposed algorithm

has similarities to frequency-gridding approaches applied for

robust feedforward design [8], [5] and for solving LMIs

derived from the KYP lemma [17].

Finally, it is worth noting that the current paper minimizes

an upper bound on the worst-case H∞ filter performance.

Specifically, the IQC performance condition used in this

paper is a sufficient condition for the filter to achieve a given

level of performance over the set of allowable uncertainties.

The use of upper bounds on worst-case performance is

common in the literature but one notable exception is [26].

In [26] it is observed that directly minimizing the worst-

case performance over the model uncertainty, rather than an

upper bound, is an infinite-dimensional convex optimization

in the filter. This is a useful insight but the algorithms in [26]

are more computationally demanding than the one proposed

here. Moreover, the algorithms in [26] are developed for re-

peated real parameter uncertainties. It does not seem possible

to extend this to the classes of uncertainties/nonlinearities

that can be handled within the IQC framework.

II. NOTATION

R and C denote the set of real and complex numbers,

respectively. RH∞ denotes the set of proper, rational func-

tions with real coefficients that are analytic in the closed
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right half of the complex plane. R
m×n, C

m×n, and RH
m×n
∞

denote the sets of m×n matrices whose elements are in R, C,

and RH∞, respectively. A single superscript index is used to

denote vectors, e.g. R
l denotes the set of l×1 vectors whose

elements are in R. For a matrix M in Rm×n or Cm×n, MT

denotes the transpose and M∗ denotes the complex conjugate

transpose. Ll
2[0,∞) is the space of functions f : [0,∞) →

Rl satisfying ‖f‖ < ∞ where

‖f‖ :=

[
∫

∞

0

f(t)T f(t)dt

]0.5

(1)

fT denotes the truncated function:

fT (t) :=

{

f(t) for t ≤ T

0 for t > T
(2)

The extended space, denoted L2e, is the set of functions f

such that fT ∈ L2 for all T ≥ 0.

III. INTEGRAL QUADRATIC CONSTRAINTS

This section briefly reviews the IQC framework introduced

in [16]. Let Π : jR → C(l+m)×(l+m) be a measurable

Hermitian-valued function. Two signals w ∈ Lm
2 [0,∞) and

v ∈ Ll
2[0,∞) satisfy the IQC defined by Π if

∫

∞

−∞

[

v̂(jω)
ŵ(jω)

]∗

Π(jω)

[

v̂(jω)
ŵ(jω)

]

≥ 0 (3)

where v̂(jω) and ŵ(jω) are Fourier transforms of v and

w, respectively. Π is called an “IQC multiplier” or simply

a “multiplier”. IQCs can be used to describe the relation-

ship between input-output signals of system components. A

bounded operator ∆ : Ll
2e[0,∞) → Lm

2e[0,∞) satisfies the

IQC defined by Π if Equation 3 holds for all (v, w) where

v ∈ Ll
2[0,∞) and w = ∆(v).

Consider the feedback interconnection specified by:

v1 = Gv2 + f1 (4)

v2 = ∆(v1) + f2 (5)

where f1 ∈ Ll
2e[0,∞) and f2 ∈ Lm

2e[0,∞) are exogenous

inputs. G is a causal, linear time-invariant operator on

Lm
2e[0,∞) with transfer function G(s) ∈ RH

l×m
∞

. ∆ is a

causal operator on Ll
2e[0,∞) with bounded gain.

Definition 1: The feedback interconnection of G and ∆
is well-posed if the map (v1, v2) → (f1, f2) defined by

Equations 4 and 5 has a causal inverse on Lm+l
2e [0,∞).

Definition 2: The feedback interconnection of G and ∆
is stable if the interconnection is well-posed and if the map

(v1, v2) → (f1, f2) has a bounded inverse, i.e. there exists a

constant γ > 0 such that
∫ T

0

(vT
1 v1 + vT

2 v2)dt ≤ γ

∫ T

0

(fT
1 f1 + fT

2 f2)dt (6)

∀T ≥ 0 and for any solution of the feedback interconnection.

The following theorem, from [16], formulates a stability

condition for the feedback interconnection in terms of IQCs

and a frequency-domain matrix inequality.

Theorem 1: Let G(s) ∈ RH
l×m
∞

and let ∆ be a bounded

causal operator. Assume that:

i) ∀τ ∈ [0, 1], the interconnection of G and τ∆ is well-

posed.

ii) ∀τ ∈ [0, 1], the IQC defined by Π is satisfied by τ∆.

iii) ∃ǫ > 0 such that
[

G(jω)
I

]∗

Π(jω)

[

G(jω)
I

]

≤ −ǫI ∀ω ∈ R (7)

then the feedback interconnection of G and ∆ is stable.

The IQC framework can be extended to robust per-

formance analysis. Consider the feedback interconnection

shown in Figure 1 and partition G :=

[

G11 G12

G21 G22

]

con-

formably with the pairs of input/output signals. Define:

M(G, Π, γ) :=

[

G11 G12

I 0

]∗

Π

[

G11 G12

I 0

]

+

[

G21 G22

0 I

]∗ [

I 0
0 −γ2I

] [

G21 G22

0 I

]

(8)

For any ∆ satisfying the IQC defined by Π, the feedback

interconnection shown in Figure 1 has L2-gain from d to e

less than γ if there exists ǫ > 0 such that:

M(G(jω), Π(jω), γ) ≤ −ǫI ∀ω ∈ R (9)

This result requires minor modifications to the definitions

of stability and well-posedness adapted to the LFT intercon-

nection in Figure 1. The proof is straightforward and details

can be found in Section 6.5 of [22]. More general quadratic

performance indices can also be considered. In this paper,

the focus will remain on the L2-gain.

v
- ∆

w

�

G d
�

e
�

Fig. 1. Interconnection for robust performance assessment

The frequency domain inequality in Equation 9 is a

sufficient but not necessary condition for the worst-case L2

gain to be less than γ. The L2 gain bound can be improved

by searching over any set of IQC multipliers satisfied by ∆.

Specifically, if ∆ satisfies the IQCs defined by {Πi}
N
i=1 then

it satisfies the IQC defined by any Π in the set

Π :=

{

N
∑

i=1

αiΠi : αi ≥ 0, i = 1, . . . , N

}

(10)

An improved L2 gain bound can be computed by solving:

inf
Π∈Π

γ (11)

s.t. M(G(jω), Π(jω), γ) ≤ −ǫI ∀ω ∈ R
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The KYP lemma [20] can be used to convert the frequency

domain inequality constraint into a LMI in the decision

variables. Thus this optimization can be recast as a finite-

dimensional SDP [3].

The form of Π in Equation 10 arises naturally in many

instances. For example, let ∆ be the saturation nonlinearity.

Then ∆ satisfies the IQC defined by multiplier for the

[0,1] sector: Π1 :=
[

0 1
1 −2

]

. If H := 1
s+1 then ∆ also

satisfies the IQC defined by Π2 :=
[

0 1+H
1+H −2−(H+H∗)

]

. Π2

corresponds to a Zames/Falb multiplier for monotonic, odd,

static nonlinearities [29]. ∆ also satisfies the IQC defined by

any Π ∈ Π := {α1Π1 + α2Π2 : α1, α2 ≥ 0}.

However, the form of Π in Equation 10 is not sufficiently

general to handle the class of multipliers for LTI uncer-

tainties. Let ∆ denote the set of unit norm-bounded, LTI

uncertainties. Then ∆ ∈ ∆ satisfies the IQC defined by any

multiplier Π in the set:

Π :=

{[

β(jω)I 0
0 −β(jω)I

]

: β(jω) ≥ 0, ∀ω

}

(12)

This set involves an arbitrary function of frequency, β(jω),
subject to the frequency domain inequality β(jω) ≥ 0, ∀ω.

For this set of multipliers Equation 11 is an infinite dimen-

sional optimization. The standard approach in IQC analysis

is to use basis functions to represent such arbitrary functions

of frequency [10]. In other words, β(jω) =
∑M

i=1 βiφi(jω)
where {φi(jω)}M

i=1 are chosen basis functions. This is the

Ritz approximation method for solving infinite dimensional

optimizations [2]. With this approximation, the optimization

in Equation 11 can be recast as a finite-dimensional SDP.

The current paper will not approximate the multipliers

using basis functions. Instead they will be approximated on

a finite, dense frequency grid. The set of uncertainties ∆ is

allowed to be block structured and Π will also have block

structure that depends on this set of allowable uncertainties.

Some blocks of Π will depend on frequency-independent

variables and other blocks will depend on frequency depen-

dent variables that are subject to frequency dependent LMI

constraints. A general form for the set of multipliers is:

Π :=

{

Π(jω) :=
N
∑

i=1

αiΠi(jω) +
M
∑

i=1

βi(jω)ΠN+i(jω)

: LMI(ω, α, β(jω)) ≤ −ǫI ∀ω ∈ R

}

(13)

where LMI(ω, α, β(jω)) ≤ −ǫI denotes some linear

matrix inequality in the specified variables. α ∈ RN is

a vector of frequency independent variables and β(jω) :
jR → C

M is a vector of frequency dependent variables.

Any of the {Πi}
N+M
i=1 may either be functions of frequency

or constant. More explicit details on multipliers for block

structured uncertainty can be found in [10], [22].

IV. ROBUST FILTER DESIGN

A. Problem Formulation

Figure 2 shows the interconnection structure for the robust

filter design problem considered in this paper. The general-

ized plant P has two inputs and three outputs. d ∈ Lnd

2

denotes the input disturbances. y ∈ L
ny

2e and z ∈ Lnz

2e denote

the measurements and signals to be estimated, respectively.

Any noises in the measurements are included in d. v ∈ Lnv

2e

and w ∈ Lnw

2e are interconnection signals associated with the

plant uncertainty. The blocks of P partitioned according to

these input/output signals are denoted as:

P :=





P11 P12

P21 P22

P31 P32



 (14)

The filter F ∈ RH
nz×ny

∞
uses the measurements to construct

an estimate ẑ.

v
- ∆

w

�

P d
�

y
�

z
�e

F
ẑ

?e
�

GF

Fig. 2. Interconnection for robust filter design

Let ∆ denote a set of uncertainties / nonlinearities. Let Π

denote a set of multipliers such that for any ∆ ∈ ∆ and any

Π ∈ Π, ∆ satisfies the IQC defined by Π. It is assumed that

Π is in the form of Equation 13. The problem considered in

this paper is to design a filter that minimizes the IQC upper

bound on the worst-case performance. In other words, the

objective is to solve the optimization:

γ∗ := inf
F∈RH

nz×ny
∞ , Π∈Π

γ (15)

s.t. M(GF (jω), Π(jω), γ) ≤ −ǫI ∀ω ∈ R

where:

GF :=

[

P11 P12

−FP21 + P31 −FP22 + P32

]

(16)

GF is the system contained in the dashed box of Figure 2.

GF maps the inputs (w, d) to the outputs (v, e). The filter

and IQC multipliers are computed in Equation 15.

B. Filter Synthesis

The constraint in the robust filter design problem (Equa-
tion 15) contains one term that involves a product of F (jω)
with itself. By Schur complements [3], the constraint is
equivalent to (suppressing the functional dependence on jω):





[

P11 P12

I 0

]

∗

Π

[

P11 P12

I 0

]

+

[

0 0
0 −γ2I

]

(·)
[

−FP21 + P31 −FP22 + P32

]

−I



 ≤ −ǫI

∀ω ∈ R (17)

The (.) term in the (1,2) block can be inferred from symme-

try. At each frequency this matrix inequality is jointly affine

in F (jω) and Π(jω). Thus the robust filter design problem
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can be expressed as an infinite-dimensional optimization with

LMI constraints in the multiplier variables and filter:

γ∗ := inf
F∈RH

nz×ny
∞ , α∈RM , β:jR→CN

γ (18)

s.t. LMI(ω, F (jω), α, β(jω), γ) ≤ −ǫI ∀ω ∈ R

The LMI in Equation 18 includes the constraint in Equa-

tion 17 and any LMI constraints that are required to specify

the IQC multipliers in Equation 13. The remainder of this

section develops finite dimensional optimizations that can be

used to compute upper and lower bounds on γ∗.

A lower bound is obtained by enforcing the constraint at

only one frequency, ω0:

γ(jω0) := inf
F∈C

nz×ny , α∈RM , β∈CN

γ (19)

s.t. LMI(ω0, F, α, β, γ) ≤ −ǫI

This optimization can be performed on a grid of frequencies

{ωk}
nω

k=1 and then γ∗ := maxk γ(jωk) is a lower bound for

γ∗. This is a finite-dimensional SDP at each frequency and

these optimizations can be solved quickly since the problems

are decoupled across frequency. There will generally be a

gap between γ∗ and γ∗. One could attempt to improve

the lower bound by enforcing the constraint on more than

one frequency. This increases the computational cost for the

lower bound and is not pursued in this paper.

The upper bound is computed by restricting F to lie in the

space of chosen basis functions: F (jω) :=
∑P

i=1 τiFi(jω)
where {Fi(jω)}P

i=1 are the chosen (stable) basis functions

and τ ∈ RP . The choice of basis functions is problem

specific but generally they should be first and second-

order filters with natural frequencies within the desired filter

bandwidth. With this approximation, an upper bound for the

robust filter design problem can be expressed as an SDP with

an infinite number of constraints:

γ̄ := inf
α∈RM , β:jR→CN , τ∈RP

γ (20)

s.t. LMI

(

ω,

M
∑

i=1

τiFi(jω), α, β(jω), γ

)

≤ −ǫI ∀ω ∈ R

γ̄ is an upper bound on γ∗ due to the approximation of F by

basis functions. To obtain a finite dimensional optimization,

the constraints are only enforced on a finite, but dense grid

of frequencies {ωk}
nω

k=1:

γ̄ ≈ inf
α∈RM , βk∈CN , τ∈RP

γ (21)

s.t. LMI

(

ωk,

M
∑

i=1

τiFi(jωk), α, βk, γ

)

≤ −ǫI

for k = 1, . . . , nω

The βk are the frequency-dependent variables in the IQC

multiplier defined at ωk. The proposed approach uses basis

functions for the filter but allows the multipliers to be

arbitrary functions on the frequency grid. This can roughly

be viewed as dual to the approach taken in [23] where

basis functions are chosen for the multipliers but the filter

is allowed to be an arbitrary, linear system. A unique aspect

of the algorithm proposed in this paper is that engineering

insight can, for some problems, be more readily applied

to select the basis functions for the filter rather than the

IQC multipliers. It will be assumed that the frequency

grid is sufficiently dense that the differences between the

optimizations in Equation 20 and 21 are negligible. The

optimal selection of the frequencies to include in this grid

is an important research problem for the development of

software for many problems in control. Alternatively, the

frequency sweeping method in [5] can, at the expense of

additional computation, be used to compute a true upper

bound on the optimal performance.

The optimization in Equation 21 is a finite-dimensional

SDP. However it involves nω LMI constraints and (M +
P + Nnω + 1) variables. The LMI constraints are coupled

due to the frequency independent variables α and τ . The

computation time to solve this problem with current SDP

algorithms would be significant for even small to moderate

sized frequency grids, e.g. nω ≈ 50.

A heuristic algorithm is used to quickly compute the

optimal solution. The basic idea is to solve the optimization

on a coarse frequency grid, check the solution on the dense

frequency grid and then add new frequency points, as needed,

to the coarse grid. The steps of the heuristic algorithm are:

0) Let {ωk}
nω

k=1 be a given dense frequency grid. Set i =
0 and Si := {ω1, ωnω

}.

1) Solve Equation 21 enforcing the constraints on the

coarse grid Si. Stop if not feasible otherwise go to

Step 2.

2) Compute the frequency dependent IQC variables on the

dense grid {ωk}
nω

k=1 by linearly interpolating between

the solution computed on the coarse grid.

3) Evaluate the LMI constraint on the dense grid using

the optimal α, τ, γ computed in Step 1 and the linearly

interpolated βk computed in Step 2. Stop if feasible

otherwise let ω∗ denote the frequency of maximal

violation of the LMI constraint.

4) Set i = i+1 and Si+1 = Si ∪{ω∗}. Return to Step 1.

If the algorithm terminates to due infeasibility in Step 1 then

there is no filter for which robust stability can be proven

via IQCs. This simply means that robust stability of the

open loop system P can not be proven with respect to the

uncertainties. This termination condition will not occur if it is

assumed that the open loop system (without the filter) can be

proven to be robustly stable using the given IQC multipliers.

If the algorithm terminates due to feasibility in Step 3 then

optimal IQC multipliers and filter have been computed on the

dense grid. The algorithm must terminate in a finite number

of iterations. In particular, a new frequency point is added

to the coarse grid at each iteration and the algorithm must

terminate if Si is equal to {ωk}
nω

k=1. The algorithm typically

terminates with the coarse grid containing many fewer points

than the dense grid.

This algorithm is similar to that proposed in [5] for robust

feedforward design with respect to LTI uncertainties. The

key distinction lies in Step 3. In particular, [5] compute
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the optimal multipliers at each frequency in the dense grid

using a µ upper bound calculation. This step alone can be

costly to perform on a dense grid for each iteration of the

algorithm. The linear interpolation used in the algorithm

proposed in the current paper is sub-optimal but fast. The

linear interpolation is typically less than 1 to 2 percent of the

total time. The sub-optimality of the linear interpolants has

not been a significant issue in test examples. The worst-case

performance is achieved on a small number of frequencies in

the test examples and sub-optimal multipliers are acceptable

away from these frequencies.

Finally, it is noted that the optimal filter returned by the

algorithm is stable. Stability is assured simply by selecting

stable basis functions because stable transfer functions form

a subspace of all rational, proper transfer functions. In fact,

the search for filters can be performed over any subspace

simply by choosing the basis functions to lie within the

desired subspace. Thus it would be quite easy to design

robust filters with a certain structure, e.g. decentralized

filters. A similar observation was made in [6] with regards

to a different robust filter design algorithm for systems with

polytopic uncertainty. It is also worth noting that a good

basis functions can be computed by solving the nominal

filter design problem, i.e. the optimal filter for ∆ = 0. If

∆ contains only LTI uncertainties, then another good basis

function can be computed using D-K iteration to find a sub-

optimal solution to the related µ-synthesis problem.

V. EXAMPLE

The proposed algorithm is demonstrated on the two-mass

example considered in [23]. The generalized plant P is:

ẋ =









0 0 1 0
0 0 0 1
−2 1 −2 2
2 −2 4 −4









x +









0
0

−1.5
3.0









w +









0 0
0 0
1 0
0 0









d

(22)

v =
[

0 0 1 −1
]

x (23)

y =
[

1 0 0 0
]

x +
[

0 1
]

d (24)

z =
[

0 1 0 0
]

x (25)

w = δv (26)

The first entry of d is a plant input disturbance and the

second entry represents sensor noise. The uncertainty is a

single norm-bounded real parameter, δ ∈ R with |δ| ≤ 1.

This represents uncertainty in the damping between the two

masses. There is only one copy of this uncertainty since

it enters the model in [23] via a rank one matrix. The

norm-bounded uncertainty δ satisfies the IQC defined by any

multiplier Π in the set:

Π :=

{[

β1(jω) jβ2(jω)
−jβ2(jω) −β1(jω)

]

: β1(jω) ≥ 0, ∀ω

}

(27)

where β1, β2 : jω → R are arbitrary functions of frequency.

The robust filter computed in [23] achieves a worst-case H∞

performance of 2.64.

A lower bound on the optimal performance was computed

using frequency-gridding method described in Section IV-B.

The frequency grid consisted of 250 logarithmically spaced

points between 0.1 and 10 rad/sec. Figure 3 shows the lower

bounds versus frequency. The total time to compute the

bounds at all 250 frequency points was 7.8 sec. The largest

value across frequency is γ = 2.64 and hence the method of

[23] achieves the optimal filter within the reported accuracy.

Fig. 3. Lower bound on optimal H∞ filter performance, γ(jω)

The method proposed in this paper uses the following basis

functions for the filter:
{

1,
1

s + 0.1
,

1

s + 1
,

1

s + 10
,

1

s2 + 0.16s + 0.64
,

}

(28)

The last basis function is a lightly damped second order
system with natural frequency at 0.8 rad/sec. This particular
basis function was chosen because the lower bound plot (Fig-
ure 3) has a sharp peak near this frequency. The optimal filter
within the span of these bases functions was computed using
the method described in Section IV-B. The frequency grid
again consisted of 250 logarithmically spaced points between
0.1 and 10 rad/sec. The algorithm described in Section IV-
B completed after 13 iterations. The total time to compute
the optimal filter was 7.2 sec. The linear interpolation of the
frequency-dependent IQC scalings took less than 0.1 sec of
this total time. The optimal filter within the span of the basis
function is

F (s) :=
1.04s5 + 15.99s4 + 14.22s3 + 13.92s2 + 7.76s + 1.03

s5 + 11.26s4 + 13.52s3 + 9.88s2 + 7.26s + 0.64
(29)

This filter achieves a worst-case H∞ performance of 2.64

which is again the optimal performance. Figure 4 shows the

Bode plot for this filter. The inclusion of the lightly-damped

second order basis function is important. If this is removed

from the list of basis function then the optimal filter can only

achieve a worst-case gain of 3.26.

VI. CONCLUSIONS

This paper considered the design of robust H∞ filters for

continuous-time linear systems with uncertainties described

by IQCs. The synthesis problem was converted into an

infinite-dimensional optimization with frequency dependent

LMI constraints. A frequency-gridding approach was used to
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Fig. 4. Bode plot of optimal filter

approximate this optimization by a large, finite-dimensional

SDP. A heuristic algorithm was described to quickly solve

the resulting optimization. A small example was provided to

demonstrate the proposed algorithm. Future work will focus

on applying this procedure to develop robust fault detection

filters for aerospace applications.
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