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Abstract— In this paper, we consider the problems of semi-
global and global internal stabilization along with disturbance
rejection for the case of so-called matched uncertainties and
disturbances for linear systems subject to actuator saturation.
We develop here low-and-high gain and scheduled low-and-high
gain state as well as measurement feedback design methodolo-
gies to solve the posed stabilization and disturbance rejection
problems.

I. INTRODUCTION

Almost all physical systems operate under a variety of

inherent constraints, limitations, as well as uncertainties

and external disturbances. One of the ubiquitous physical

limitations is input saturation. Over the last two decades,

stabilization of linear systems subject to input saturation have

received intense renewed interest from control community,

see for instance [1], [2], [3], [12], [13], [15] and references

therein. Based on these works, what are known as low-

gain and scheduled low-gain desgin methodologies were

developed in [5], [6] for semi-global stabilization, and in

[9] for global stabilization of linear systems subject to input

saturation.

Uncertainties and disturbances are also inevitable in many

control engineering applications, where we have to face a

situation of both input saturation and various uncertainties

and disturbances. There have been several studies on the

problems of semi-global and global robust stabilization and

disturbance rejection for linear systems with input saturation.

For the case when the uncaertainties and disturbances are

input additive, these problems have been resolved in [4], [7],

[8], [10]. Note that in the presence of disturbances, the low-

gain feedback cannot solve the disturbance rejection prob-

lems (see for instance [4]). A so-called low-and-high gain de-

sign methodology was first proposed in [7] for systems with

a special structure of having only a chain of intergrators, and

then it was generalized later on in [8] and [10] for general

linear systems subject to actuator saturation. The low-and-

high gain feedback when appropriately designed can achieve

semi-global stabilization and disturbance rejection. In [4],

a scheduled low-and-high gain design methodology was
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developed where both low-gain and high-gain parameters are

scheduled simultaneously to solve the global stabilization

problems studied in [10]. Here the scheduling of low-gain

parameter is based on [9], however the high gain parameter

is scheduled in a different fashion.

In this paper, following the innovations of [10] and [4],

we investigate the semi-global and global robust stabilization

and disturbance rejection in the presence of input saturation

and matched uncertainty and disturbance. That is, we con-

sider a system of the form,

ẋ = Ax+Bσ(u(t))+B f (x, t).

Clearly, the magnitude of f (x, t) has to be restricted since

the input is bounded. To illustrate this, simply consider a

double integrator with a constant disturbance | f (x, t)| = 1.

Because of input saturation, the state will be driven to infinity

regardless of the controller we use. Therefore, we assume

that | f (x, t)|< 1−δ , for any a priori given δ ∈ (0,1). Under

such an assumption, we expand and generalize the low-and-

high gain design and scheduled low-and-high gain design

methodologies from the input-additive case to the matched

case.

This paper is organized as follows: In Section II, we

formulate formally the problems to be studied in the paper. A

low-and-high gain design is introduced in Section III which

solves the semi-global robust stabilization and disturbance

rejection problem by state feedback. In Section IV, a sched-

uled low-and-high gain controller is constructed to solve the

global counterpart by state feedback. Section V considers

semi-global observer based measurement feedback designs.

II. PROBLEM FORMULATION

Consider a linear system:

Σ :

{

ẋ = Ax+Bσ(u(t))+B f (x, t),
y = Cx,

(1)

where x∈R
n, u∈R

m, and y∈R
p are the state, control input,

and measured output respectively, and σ(·) : Rm → R
m is a

standard saturation defined as σ(u) = [σ1(u1), . . . ,σm(um)]
where σi(s) = sgn(s)min{|s|,1}. Moreover, the term f (x, t)
represents an unknown uncertainty or disturbance. Without

loss of generality, we assume here that B and C have full

rank.

We make the following assumptions:

Assumption 1: The given system (1) is asymptotically null

controllable with bounded control (ANCBC), or equivalently

the given system (1) in the absence of saturation is stabiliz-

able and has all its open-loop poles in the closed left-half

plane.
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Assumption 2: The given system (1) in the absence of

saturation and uncertain element f (x, t), which is then

characterized by the triple (A,B,C), is left invertible and

minimum phase. Moreover, we assume that the matrix pair

(A,C) is detectable.

Assumption 3: The uncertainty and disturbance f (x, t) is

piecewise continuous in t and locally Lipschitz in x, and

satisfies

‖ f (x, t)‖ ≤ 1− δ ∀(t,x) ∈ R
+×R

n

for some δ ∈ (0,1).
Assumption 4: The norm of f (x, t) is bounded by a known

function

‖ f (x, t)‖ ≤ f0(‖x‖) ∀(t,x) ∈ R
+×R

n

where f0 :R+ →R
+ is locally Lipschitz and satisfies f0(0)=

0.

We present two formal problem statements, first one for

the semi-global case and the second one for the global case,

utilize state feedback.

Problem 1: Consider the given system (1), and let As-

sumptions 1 and 3 be satisfied. The semi-global stabilization

problem is to find, if possible, for any arbitrary large bounded

subset W ⊂R
n and arbitrary small bounded subset W0 ⊂R

n

containing the origin, a state feedback law u = Fx, such that

the closed-loop system satisfies the following conditons:

1) Any trajectory starting in W will enter W0 and remain

in W0 thereafter.

2) If f (x, t) satisfies Assumption 4 for a certain f0, then

the equalibrium point x = 0 is locally asympotically

stable with W contained in its domain of attraction.

Problem 2: Consider the system (1) satisfying Assump-

tion 1 and 3. The global stabilization problem is to find, if

possible, for any arbitrary small bounded subset W0 ⊂ R
n

containing the origin, a state feedback law u = s(x, t), such

that the closed-loop system satisfies the following conditons:

1) For all initial conditions in R
n, the trajectories will

enter W0 and remain in W0 thereafter.

2) If f (x, t) satisfies Assumption 4 for a certain f0, then

the equalibrium point x = 0 is globally asympotically

stable.

Next, we present a formal problem statement for the semi-

global case, utilizes measurement feedback.

Problem 3: Consider the given system (1), and let As-

sumptions 1, 2, and 3 be satisfied. The semi-global stabi-

lization problem is to find, if possible, for any arbitrary large

bounded subset W ⊂R
2n and arbitrary small bounded subset

W0 ⊂R
2n containing the origin, a measurement feedback law,

{

˙̂x = g(x̂,y, t), x̂ ∈ R
n

u = h(x̂, t),

such that the closed-loop system satisfies the following

conditons:

1) Any trajectory starting in W will enter W0 and remain

in W0 thereafter.

2) if f (x, t) satisfies Assumption 4 along with a given f0,

the equalibrium point x = 0 is locally asympotically

stable with W contained in its domain of attraction.

III. SEMI-GLOBAL STATE FEEDBACK DESIGNS

In this section, we construct a low-high-gain feedback

control law which can solve Problem 1.

Let Pε > 0 be the solution of the continuous-time algebraic

Riccati equation,

A′Pε +PεA−PεBB′Pε + εI = 0. (2)

Since the system is stabilizable, such a Pε always exists.

Moreover, since all eigenvalues of A are in the closed left

half plane, Pε → 0 as ε → 0. The low-gain controller is then

given by

uL =−B′Pε x

We choose a high gain state feedback law of the form, uH =
−ρB′Pεx and Pε is the same as in the low-gain feedback

design while ρ ≥ 0 is to be determined.

The low-high-gain state feedback control law is formed by

adding together a low and high gain feedback control. We

have

u = FLH(ε,ρ)x = uL + uH =−(1+ρ)B′Pε x. (3)

We claim that the controller (3) solves Problem 1 for

appropriately chosen ε and ρ , as stated formally in the

following theorem:

Theorem 1: Consider the given system (1) that satisfies

Assumption 1. For any bounded subsets W ⊂ R
n and W0 ⊂

R
n containing the origin, there exists an ε∗ such that for each

ε ∈ (0,ε∗] there exists a ρ∗ with the property that for ρ > ρ∗,

the low-high-gain feedback u = FLHx solves Problem 1.

Proof: Let c be such that

c = sup{x′Pε x | ε ∈ (0,1], x ∈ W }.
Define V (x) = x′Pεx and Lv(c) = {x|V (x)< c}. There exists

an ε∗ ∈ (0,1] such that for all x ∈Lv(c) we have ‖B′Pε x‖ ≤
δ .

Consider the derivative of V = x′Pε x along the trajectory

of the closed-loop system. We have

V̇ (x)≤−x′Qε x−2x′PεB[σ((1+ρ)B′Pεx)−B′Pεx− f (x, t)].

Denote B′Pε x by v and denote the ith component of v and

f (x, t) by vi and fi respectively. We have

V̇ ≤− λmin(Qε )
λmax(Pε)

V (x)− 2v′[σ(v+ρv)− v− f (x, t)].

We know that

|vi|< δ , and | fi|< 1− δ . (4)

This implies that |vi + fi|< 1.

If |ρvi|> | fi|, then

|vi +ρvi|= |vi|+ |ρvi| ≥ |vi|+ | fi| ≥ |vi + fi|.
Together with (4), we get

−vi[σ(vi +ρvi)− (vi+ fi)]< 0.
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If |ρvi|< | fi|, we have

|vi +ρv1|= |vi|+ |ρvi|< |vi|+ | fi|.

Then (4) implies that |vi +ρv1|< 1. Therefore, we get

−2vi[σ(vi +ρvi)− (vi + fi)]≤−2vi[ρvi − fi]≤ f 2
i

2ρ .

Hence,

V̇ (x)≤− λmin(Qε )
λmax(Pε)

V (x)+
m

∑
i=1

f 2
i

2ρ . (5)

Since | fi|< 1, we get

V̇ (x)≤− λmin(Qε )
λmax(Pε )

V (x)+ m
2ρ .

Choose ν such that Lv(ν)⊂ W0. Define

ρ∗
1 = mλmax(Pε )

2νλmin(Qε )
.

If ρ > ρ∗
1 , we have V̇ < 0 for all x ∈ Lv(c) for which

x /∈ Lv(ν). This implies that any trajectory starting from W

will enter and remain in W0 within finite time.

If f (x, t) satisfies Assumption 4, we can define

M = sup{ f0(s)
s

| s ∈ (0,c/
√

λmin(Pε)]}.

Such a M exists because f0 is locally Lipschitz.

Therefore, from (5), we can conclude that for x ∈ Lv(c),

V̇ (x)≤ [−λmin(Qε )+
mM2

2ρ ]‖x‖2.

Define

ρ∗
2 = mM2

2λmin(Qε )
.

If ρ > ρ∗
2 , we have V̇ < 0 for all x ∈Lv(c). Hence the origin

is asymptotically stable with W contained in its domain of

attraction.

IV. GLOBAL LOW-HIGH-GAIN STATE FEEDBACK DESIGNS

In this paper, we use the same scheduling of low-gain

parameter as in [4] which is developed in [9]. Consider

εs(x) = max{r ∈ (0,1] | (x′Prx) trace
[

B′PrB
]

≤ δ 2 }. (6)

Choose the scheduled high-gain parameter ρs as

ρs(x) =
ρ0[g

2(‖x‖)+1]λmax(Pεs(x))

2λmin(Qεs(x))
(7)

where ρ0 is to be determined and g(x) is defined as follows:

if Assumption 4 is not satified, g(x) ≡ 0; if Assumption

4 is satisfied, g(x) is any locally Lipschitz function such

that g(x) ≥ f0(x)
x

. Such a g(x) exists since f0(x) is locally

Lipschitz and f0(0) = 0.

We claim that the controller constructed in the preceding

section together with the scheduling low-gain and high-gain

parameters solves Problem 2.

Theorem 2: Consider the given system (1) that satisfies

Assumptions 1 and 3. For any bounded subset W0 there exists

ρ∗
0 such that the low-high-gain feedback controller (3) when

ε and ρ are replaced with the scheduling parameters εs(x)
as in (6) and ρs(x) as in (7) with ρ0 > ρ∗

0 solves Problem 2.

Proof: Consider the derivative of V = x′P(εs)x along any

trajectory,

V̇ (x)≤−λmin(Q)‖x‖2 − 2v′[σ(v+ρv)− v− f (x, t)]

+x′
dPεs(x)

dt
x.

As shown in the previous section,

V̇ (x)≤− λmin(Qεs(x))

λmax(Pεs(x))
V (x)+

m

∑
i=1

f 2
i

2ρs
+ x′

dPεs(x)

dt
x

≤− λmin(Qεs(x))

λmax(Pεs(x))
[V (x)− m

ρ0
]+ x′

dPεs(x)

dt
x.

Let ν ≤ 1 be such that Lv(ν) ⊂ W0. Define ρ∗
0 = m

ν . We

have

V̇ < x′
dPεs(x)

dt
x, ∀ρ0 ≥ ρ∗

0 and x /∈ LV (ν). (8)

Assume that V̇ ≥ 0 for some x(t) /∈ LV (ν). We have two

possible cases:

1) Case I: εs(x) = 1. We have
dPεs

dt
= 0. But then (8)

implies that V̇ < 0. This yields a contradiction.

2) Case II: εs(x) 6= 1. Note that V trace
[

B′Pεs(x)B
]

= δ 2

whenever εs 6= 1. Hence V̇ ≥ 0 implies that
dPεs
dt

≤ 0.

But (8) gives V̇ < 0. This yield a contradiction.

Therefore, we conclude that V̇ < 0 for all x /∈LV (ν). Any

trajectory will enter and remain in W0 after finite time.

If f (x, t) satisfies Assumption 4, we have

V̇ (x)≤− λmin(Qεs(x))

λmax(Pεs(x))
V (x)+

m

∑
i=1

f 2
i

2ρs
+ x′

dPεs(x)

dt
x

≤− λmin(Qεs(x))

λmax(Pεs(x))
V (x)(1− m

ρ0
)+ x′

dPεs(x)

dt
x.

we get

V̇ < x′
dPεs(x)

dt
x, ∀x 6= 0 and ρ0 > ρ∗

0 .

We have V̇ < 0 for all x 6= 0. Therefore the origin is globally

asymptotically stable.

V. SEMI-GLOBAL OBSERVER BASED MEASUREMENT

FEEDBACK DESIGNS

Before we proceed with our design, it is necessary to

introduce a Special Coordinate Basis (SCB) of the given

system (1) in the absence of saturation and uncertain element

f (x, t). Consider
{

ẋ = Ax+Bu

y = Cx
(9)

where x∈R
n, u∈R

m and y ∈R
p. Without loss of generality,

we assume that B and C have full rank. Then, there exist

nonsingular transformation matrices Γx, Γy and Γu such that

x̄ = Γ−1
x x ȳ = Γ−1

y y ū = Γ−1
u u,

where

x̄ =
(

x′a x′b x′c x′d
)′
, ȳ =

(

y′b y′d
)′
, ū =

(

u′c u′d
)′
,

xb =
(

x′b,1 . . . x′b,mb

)′
, xb,i =

(

xb,i1 . . . xb,iri

)′
,

xd =
(

x′d,1 . . . x′d,md

)

xd,i =
(

xd,i1 . . . xd,iqi

)′
,

yb =
(

yb,1 . . . yb,mb

)′
, yd =

(

yd,1 . . . yd,md

)′
,

ud =
(

ud,1 . . . ud,md

)′
,
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and where xa, xb, xc and xd are of dimension na, nb, nc

and nd respectively, yb and yd are of dimension mb and md

respectively, uc and ud are of dimension m− md and md

respectively,

n = na + nb + nc+ nd, nb = ∑
mb
i=1 ri, nd = ∑

md
i=1 qi,

mb +md = p.

In the new coordinate basis, we have

ẋa = Aaaxa +Labyb +Ladyd ;

ẋc = Accxc +Lcbyb +Lcdxd +Bc[Ecaxa + uc].

For i = 1, . . . ,mb,

ẋb,i = Ari
xb,i +Lbibyb +Lbidyd

yb,i =Cri
xb,i = xb,i1 .

For i = 1, . . . ,md ,

ẋd,i = Aqi
xd,i +Liyd +Bqi[ud,i +Eiaxa +Eibxb +Eicxc +Eidxd ]

yd,i =Cqi
xd,i = xd,i1 ,

where

Ar =

(

0 Ir−1

0 0

)

,
Br =

(

0 . . . 0 1
)′
,

Cr =
(

1 0 . . . 0
)

.

The SCB given above displays explicitly both finite and

infinite zero structure of the system given in (9), and has

a number of important properties (see [11], [14]). We need

to stress that in view of these SCB properties, Assumption

2 implies that Aaa is Hurwitz, and xc and uc do not exist.

Hence we have md =m and mb = p−m. Moreover, the input

transformation Γu = I, in another word, we don’t need to

transform the input.

We now proceed to implement the low-and-high gain

controller designed in Section III using a high-gain observer

under Assumption 2.

The measurement feedback is of the form:
{

x̂ = Ax̂+Bu+L(ℓ)(y−Cx̂)
u = FLH(ε,ρ)x̂

(10)

where FLH(ε,ρ) is given by (3) and where parameterized

observer gain L(ℓ) is designed shortly as given in (11).

We construct the high gain observer in following steps:

Step 1: Transform the system into the Special coordinate

basis. Given Assumption 2 satisfied, we have

x̄ =
(

x′a x′b x′d
)′
, ȳ =

(

y′b y′d
)′
, ū =

(

ud,1 . . . ud,m

)′

xb =
(

x′b,1 . . . x′b,p−m

)′
, xbi

=
(

xb,i1 . . . xb,iri

)′

xd =
(

x′d,1 . . . x′d,m
)′
, xdi

=
(

xd,i1 . . . xd,iqi

)′

yb =
(

yb,1 . . . yb,p−m

)′
, yd =

(

yd,1 . . . yd,m

)′

ẋa = Aaaxa +Labyb +Ladyd ,

and for i = 1, . . . , p−m,

ẋb,i = Ari
xb,i +Lbibyb +Lbidyd

yb,i =Cri
xb,i = xb,i1

For i = 1, . . . ,m,

ẋd,i = Aqi
xd,i +Liyd +Bqi[ud,i +Eiaxa +Eibxb +Eidxd ]

yd,i =Cqi
xd,i = xd,i1 ,

Step 2, Since (Ari
,Cri

) is observable, for i = 1 to p−m,

choose Lb,i ∈ R
ri×1 such that Ac

ri
= Ari

−Lb,iCri
is Hurwitz.

Similarly, (Aqi
,Cqi

) is observable. For i = 1 to m, choose

Ld,i ∈ R
qi×1 such that Ac

qi
= Aqi

−Ld,iCqi
is Hurwitz

Step 3, For any ℓ ∈ (0,1], define a matrix L(ℓ) ∈R
n×p as

L(ℓ) = Γx





Lab Lad

Lbb +Lb(ℓ) Lbd

0 Ldd Ld(ℓ)



Γ−1
y , (11)

where

Lbb =











Lb1b

Lb2b

...

Lbp−mb











, Lbd =











Lb1d

Lb2d

...

Lbmd











, Ldd =











L1

L2

...

Lm











,

Lb(ℓ) = blkdiag
{

Sri
(ℓ)Lb,i

}p−m

i=1
,

Ld(ℓ) = blkdiag
{

Sqi
(ℓ)Ld,i

}m

i=1

and Sr(ℓ) = blkdiag
{

ℓi
}r

i=1
for any integer r ≥ 1.

We have following theorem

Theorem 3: Consider the system (1). Let Assumptions 1,

2, 3 be satisfied. There exist ε∗, ρ∗ and ℓ∗ such that for any

ε ∈ (0,ε∗], ρ > ρ∗ and ℓ > ℓ∗, the measurement feedback

controller (10) solves the Problem 3.

In order to prove this theorem, we need to establish the

following lemmas. Let Σ̃ denote the system,

Σ̃ :

{

ẋ = Ax+B[σ(u)+ f (x+Te, t)+Ee]
ė = Aoe,

(12)

where x ∈R
n, u ∈ R

m, e ∈R
k and Ao is Hurwitz stable. Let

Po be the solution of the Lyapunov equation, i.e.

A′
oPo +PoAo =−I.

Define τ =
√

λ (E ′E) and κ =
√

λ (T ′T ).
Lemma 1: Given δ ,ε ∈ (0,1). Let c > 0 be such that

‖B′Pε x‖< 1 ∀x ∈ {x ∈ R
n : x′Pεx < c2 + 1},

where Pε is as in (2). Define

γ = max{1,(τ2+1)λmax(Po)}
min{1,

λmax(Pε )
λmin(Qε )

}
, M = sups∈(0,F)

{

g0(s)
s

}

,

F =
√

c2 + 1(
√

λmin(Pε)−1 +κ
√

[(τ2 + 1)λmin(Po)]−1),

ρ∗
1 = 2m

(c2+1)γ
, ρ∗

2 = 2mM2

λmin(Qε )
, ρ∗

3 = 2mM2κ2.

Assume ρ > max{ρ∗
1 ,ρ

∗
2 ,ρ

∗
3}. For the system Σ̃ that satisfies

Assumption 1 and 3, and with controller (3), there exists a

continuous function ψ :Rn×R
m →R

+ such that the function

V (x,e) = x′Pε x+(τ2 + 1)e′Poe

satisfies V̇ ≤−ψ(x,e).
If Assumption 4 is not satisfied, then

(x′,e′)′ ∈ LV (c
2 + 1)⇒ ψ(x,e)≥ γ(V − ρ∗

1
ρ

c2+1
2

).

If Assumption 4 is satisfied, then

(x′,e′)′ ∈ LV (c
2 + 1)⇒ ψ(x,e)≥ 0.5γV.

Proof: Note that u = −(1+ ρ)B′Pε x. We denote B′Pε x by

v and denote the ith component of v and f (x+Te, t) by vi
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and fi respectively. Consider the derivative of V along the

trajectory in the set LV (c
2 + 1),

V̇ =−x′Qε x− 2v′[σ((1+ρ)v)− f (x+Te, t)− v]− v′v+

2v′Ee− (τ2 + 1)e′e. (13)

Similar with the proof in Section III, we have

2v′[σ((1+ρ)v)− f (x+Te, t)− v]≤
m

∑
i=1

f 2
i

2ρ ≤ m
2ρ .

Hence

V̇ ≤−x′Qε x+
m

∑
i=1

f 2
i

2ρ − e′e ≤−γ[V (x)− ρ∗
1

ρ
c2+1

2
].

Moreover, if Assumption 4 is satisfied and ρ >max{ρ∗
1 ,ρ

∗
2},

we have

V̇ (x) =− x′Qε x+ mM2‖x+Te‖2

2ρ − e′e

≤− x′Qε x+ mM2(‖x‖2+κ2‖e‖2)
ρ − e′e

≤− [0.5λmin(Qε)− mM2

ρ ]‖x‖2 − [0.5− mM2κ2

ρ ]‖e‖2

− 0.5γV(x)

≤− 0.5γV(x).

The following Lemma is the same as Lemma 4 in [10],

which is adapted from [16].

Lemma 2: Consider the nonlinear system
{

ż = f (z,e, t), z ∈ R
n;

ė = ℓAe+ g(z,e, t), e ∈ R
m

where ℓ > 0 and A is Hurwitz matrix. Assume that for the

system ż = f (z,0, t), there exists a neighborhood W1 of the

origin in R
n and a C1 function V1 : W1 →R+ which is positive

definte on W1 \ {0} and proper on W1 and satisfies

∂V1
∂ z

f (z,0, t)≤−ψ1(z),

where ψ1(z) is continuous on W1 and positive definite on

{z : ν1 <V1(z) ≤ c1 + 1} for some nonnegative real number

ν1 < 1 and some real number c1 ≥ 1. Also assume that there

exist positive real numbers α and β and a bounded function

γ with γ(0) = 0 satisfying

‖ f (z,e, t)− f (z,0, t)‖ ≤ γ(‖e‖)
‖g(z,e, t)‖ ≤ α‖e‖+β

}

∀(z,e, t) ∈ {z ∈ R
n : V1(z)≤ c1 + 1}×R

m×R
+

Let c2(ℓ) be a class K∞ function satisfying limℓ→∞
ℓ

c4
2(ℓ)

= ∞

and P solves the Lyapunov equation A′P+PA =−I. Define

the function

V (z,e)= c1

V1(z)

c1 + 1−V1(z)
+c2(ℓ)

ln(1+ e′Pe)

c2(ℓ)+ 1− ln(1+ e′Pe)
,

and the set

W := {z : V1(z)< c1 + 1}×{e : ln(1+ e′Pe)< c2(ℓ)+ 1}.
Then, for ℓ > 0, V : W → R+ is positive definite on W {0}
and proper on W . Furthermore, for any ν2 ∈ (0,1), there

exists an ℓ∗(ν2) > 0 such that, for all ℓ ∈ [ℓ∗(ν2),∞), the

derivative of V along the trajectories of systems satisfies V̇ ≤
−ψ2(z,e) where ψ2(z,e) is positive definite on {(z,e) : ν1 +
ν2 ≤V (z,e)≤ c2

1 + c2
2(ℓ)+ 1}.

Next, we proceed to prove theorem 3.

Proof of theorem 3: Consider the closed-loop system of (1)

and (10),






ẋ = Ax+B[σ(u)+ f (x, t)]
˙̂x = Ax̂+Bu+L(ℓ)(y−Cx̂)
u = FLH(ε,ρ)x̂.

(14)

Using the state and output transformation Γx and Γy, we

transform the system into its SCB form,

x̄ = Γ−1
x x =

(

x′a x′b x′d
)′
, ¯̂x = Γ−1

x x =
(

x̂′a x̂′b x̂′d
)′
.

We construct a new state as

x̃ = Γx

(

x̂′a x′b x′d
)

, ẽ =
(

e′a e′b e′d
)′
,

where ea = xa − x̂a, eb = Sb(ℓ)(xb − x̂b), ed = Sd(ℓ)(xd − x̂d),

Sb(ℓ) = blkdiag
{

ℓriS−1
ri
(ℓ)

}p−m

i=1
,

Sd(ℓ) = blkdiag
{

ℓqiS−1
qi
(ℓ)

}m

i=1
.

We denote ebd = (e′b,e
′
d)

′. Then the closed-loop system in

the new basis is

˙̃x = Ax̃+B[σ(u)+ f (x̃+Γxaea, t)+Eaea], (15)

ėa = Aea, (16)

˙̃ebd = ℓAbdebd +Bb f [σ(u)+ f (x̃+Γxaea, t)

− u+EbdS−1
bd (ℓ)ebd ], (17)

u = FLH(ε,ρ)[x̃−ΓxbdSbd(ℓ)
−1ebd], (18)

where

Ea =
[

E1a . . . Ema
]

Abd = diag{Ac
r1
,Ac

r2
, . . . ,Ac

rp−m
,Ac

q1
,Ac

q2
, . . . ,Ac

qm
}

Bbd = [0,diag{Bq1
,Bq2

, . . . ,Bqm}′]′

Ebd =











E1b E1d

E2b E2d

...
...

Emb Emd











Sbd(ℓ) = blkdiag{Sb(ℓ),Sd(ℓ)}

and Γx = (Γxa,Γxbd) with Γxa ∈R
n×na and Γxbd ∈R

n×(nb+nd).

Consider the dynamic of x̃ and ea. We will apply Lemma

1. Set ebd = 0 in the closed-loop equations (15), (17) and

(18). Then, we have






˙̃x = Ax̃+B[σ(u)+ f (x̃+Γxaea, t)+Eaea]
ėa = Aaaea

u = FLH(ε,ρ)x̃.

By Assumption 2, Aaa is Hurwitz stable. Let Pa > 0 be the

solution of

A′
aaPa +PaAaa =−I.

Following Lemma 1, we define

V1(x̃,ea) = x̃′Pε x̃+(τ2 + 1)e′aPaea,
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where τ =
√

λmaxE ′
aEa. Let c1 > 1 be such that

c2
1 > sup{V1(x̃,ea) | (x, x̂) ∈ W ,ε ∈ (0,1)}.

There exists an ε∗ such that for any ε ∈ (0,ε∗)

‖B′Pε x̃‖< 1, ∀(x, x̂) ∈ LV1
(c1) = {V1(x̃,ea)< c2

1 + 1}.

Fix ε ∈ (0,ε∗]. Let Pbd satisfy the Lyapunov equation

A′
bdPbd +PbdAbd =−I,

and let V3 = e′bdPbdebd . Observe that from the definition of

Sr(ℓ), if we assume ℓ > 1, there exists a k > 0 such that, for

any r ≥ 0, we have

‖(x̃′,e′a,e′bd)
′‖ ≤ r ⇒ ‖(x′, x̂′)′‖ ≤ kr. (19)

Moreover, this k is independent of ℓ provided that ℓ > 1.

We can choose ν ∈ (0,1), a strictly positive real number

such that, for all ℓ > 1, we have

LV1
(ν)×LV3

(exp(ν)− 1)⊂ W0.

Such a ν exsits since W0 contains zero in its interior, Pε , Pa

and Pbd are positive definite and (19) holds for all ℓ > 1. It

follows from Lemma 1 that if

ρ > max{ρ∗
1 ,

ρ∗
1 (c

2
1+1)

2ν },

we get V̇1 ≤−ψ1(x̃,ea), where

(x̃′,e′a)
′ ∈ { ν

4
<V1(x̃,ea)≤ c2

1 + 1}⇒−ψ1(x̃,ea)< 0. (20)

Let ρ be fixed. Choose

c2(ℓ) = ln(1+λmax(Pb f R2ℓ2(nb+nd))),

where R is such that (x, x̂)∈W implies that ‖xb− x̂b‖< R/2

and ‖xd − x̂d‖ < R/2. Obviously c2(ℓ) is of class K∞ and

satisfies

lim
ℓ→∞

ℓ
c4

2(ℓ)
= ∞.

We then define the Lyapunov function

V2(x̃,ea.ebd)=
c2

1V1

c2
1 + 1−V1

+
c2(ℓ) ln(1+ e′bdPbdebd)

c2(ℓ)+ 1− ln(1+ ebdPbdebd)
,

and the set

W2 = {(x̃× ea) : V1(x̃,ea)< c2
1 + 1}×

{ebd : ln(1+ e′bdPbdebd)< c2(ℓ)+ 1}. (21)

It then follows from Lemma 1 that for all ℓ> 0, V2 is positive

definite on W2 {0} and proper on W2. Furthermore, there

exists an ℓ∗(ε,ρ ,ν) such that, for all ℓ > ℓ∗(ε,ρ ,ν), we have

V̇2 ≤−ψ2(x̃,ea,ebd),

where ψ2(x̃,ea.ebd) is positive definite on

W3 := {(x̃,ea,ebd),ν/2 <V2 < c4
1 + c2(ℓ)

2 + 1}.

It is clear that (x, x̂) ∈ W implies V2 < c4
1 + c2

2(ℓ) and V2 <
ν/2 implies (x, x̂) ∈ W0. This completes the proof of item 1

in Problem 3.

If Assumption 4 is satisfied, it follows from Lemma 1 that

for ρ ≥ max{ρ∗
2 ,ρ

∗
3} and for any ν ∈ (0,1), we have

(x̃′,e′a)
′ ∈ {ν/4 <V1(x̃,ea)≤ c2

1 + 1}⇒ ψ1(x̃,ea)> 0.5γV1.

This implies that the origin of (x̃,ea) is locally exponen-

tially stable. Then for any a priori given neighborhood H

of the origin, the local asymptotic stability of the origin

of (x̃,ea,ebd) with a domain of attraction containning H

follows from the standard singular perturbation result.

So far we have discussed semi-global stabilization along

with disturbance rejection while utilizing measurement feed-

back. Along the same lines, a similar result for global

stabilization can be developed.

VI. CONCLUSIONS

Low-and-high gain and scheduled low-and-high gain state

and measurement feedback design methodologies are ex-

panded and generalized to solve semi-global and global

internal stabilization along with disturbance rejection for the

case of matched disturbances and uncertainties for linear

systems subject to actuator saturation.
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