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Abstract— We propose a new set point tracking controller
for plants subject to simultaneous input amplitude and rate
constraints. Short settling times are achieved by allowing the
controller to saturate. The tracking controller can be deduced
from a controller stabilizing the origin with an associated
domain of attraction. Additionally, no assumptions concerning
the rate of the reference signal are necessary.

I. INTRODUCTION

The stabilization of linear systems subject to control and

state constraints is a well studied problem. Different methods

were derived to estimate the domain of attraction, e.g. [3],

[10]. Recently, methods were developed for the stabilization

of linear systems which are subject to simultaneous rate and

amplitude constraints, e.g. [2], [7], [11].

Focus of these methods is driving an initial state to the

origin contrary to the task of driving the system to another

steady state. One approach to overcome the tracking problem

is rewriting the state space model such that the tracking error

becomes part of the state vector. Then the task is stabilizing

the origin of the modified system. In this case, the maximal

allowable set point is a function of the initial condition.

Such methods were presented in [6], [9] for systems that are

exclusively subject to input amplitude constraints. Additional

rate constraints are considered in [15]. Therein an exosystem

is used to provide the reference signal and therefore the set

of possible reference signals is limited.

In [4] a non-saturating tracking controller is derived that

can be deduced from the stabilizing controller. In [12] this

method was extended to saturating inputs but rate constraints

were not considered. In this paper we extend the concept of

[4] to the case of systems with simultaneous amplitude and

rate constraints employing saturating feedback controllers as

derived in [2]. We also provide a convex design method.

In Section II the control problem under the assumption of

a square system is formulated. Since the proposed controller

can be inferred from a saturating state feedback controller

which stabilizes the origin we refer to the stability of linear

systems with state feedback controllers in the presence of

simultaneous input amplitude and rate constraints in Section

III. In Section IV we briefly state the results from [4] and in

Section V we extend the concept to saturating controllers in

the presence of rate constraints. After we refer to non-square

systems in Section VI, a convex controller design method is
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provided in Section VII. Finally, we show the effectiveness of

the proposed controller on a linear model of the McDonnell

Douglas Tailless Advanced Fighter Aircraft (TAFA) [1].

II. PROBLEM STATEMENT

We consider systems with linear dynamics

ẋo = Aoxo + BouA

yo = Coxo + DouA

(1)

with Ao ∈ R
no×no , Bo ∈ R

no×m, Co ∈ R
q×no and

Do ∈ R
q×m subject to input amplitude and rate constraints

|uA,i| ≤ 1 and |u̇A,i| ≤ 1, i = 1, . . . , m. The elements uA,i

of the input vector uA are provided by an amplitude and rate

limited actuator, whose structure is depicted in Fig. 1. The

differential equation

u̇A = σ

(

T
(

σ(u) − uA

))

uA(0) = uA,0 (2)

models the actuator dynamics. Therein we have T =
diag (τ1, . . . , τm), and σ(·) = [σ(·) · · · σ(·)]T denotes the

m-dimensional normalized saturation function with σ(u) =
sgn(u)min(1, |u|). Since the commanded input is con-

strained on |u| ≤ 1, |uA,i| ≤ 1 holds. For τi → ∞ we

obtain the ideal rate limiter [15]. Augmenting the state vector

x = [x⊤
o u⊤

A]⊤ we obtain the overall system

ẋ = Ax + Bσ (K1x + Tσ(u)) , (3)

with

A =

[

Ao Bo

0 0

]

, B =

[

0

I

]

, K1 = [0 − T] ,

(4)

where A ∈ R
n×n, B ∈ R

n×m, K1 ∈ R
m×n and n =

no +m. Note that nonunity saturation levels can be absorbed

in the matrices B, T and K1. Our objective is to design a

saturating tracking controller that is able to drive the system

to a new steady-state. To this end, we assume that the

actuator output uA is measurable. At the steady state,

Aoxo + BouA = 0,

i.e, Ax = 0 holds, as well as u̇A = 0. The latter implies

that uA = u. If the system is square and the matrix

S =

[

Ao Bo

Co Do

]

is invertible, the new steady-state can be calculated depend-

ing on an external (admissible) reference signal r provided

that the reference signal is admissible. If the reference vector

r is constant the error ‖y−r‖ converges to zero for t → ∞.
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Fig. 1. Amplitude and rate constrained actuator.

The new steady state xo(r) and the corresponding input

uA(r) for a reference signal r can be derived from
[

xo(r)
uA(r)

]

= S−1

[

0

r

]

.

For compact notation we will use xo = xo(r) and uA =
uA(r) for the reminder of the paper. If the system is square,

the stationary state

x =

[

xo

uA

]

of the augmented systems as well as the stationary input

u = uA are known. The case where S is not invertible is

considered in Section VI.

III. STABILIZING FEEDBACK CONTROLLER

The proposed tracking controller can be deduced from a

controller stabilizing the origin of the system (3) and the

related estimate of the domain of attraction. To state a lemma

concerning the stability of linear systems subject to input

constraints under nonlinear state feedback we need the set

G = {x ∈ R
n : v(x) ≤ 1} (5)

with the positive definite function v(x). The latter implies

v(x) > 0 for all x 6= 0 and v(0) = 0. Additionally, we need

Definition 1: The closed set G is said to be contractively

invariant for the system ẋ = f(x), if v̇(x) < 0 holds for all

x ∈ G\{0}.

A contractively invariant set is a domain of attraction.

Defining the set V = {v ∈ N
m : vi ∈ {1, 2, 3}}, the matrix

M ( v, w1(x),w2(x),w3(x))

= diag {δ(v1−1), δ(v2−1), . . . , δ(vm−1)}w1(x)

+ diag {δ(v1−2), δ(v2−2), . . . , δ(vm−2)}w2(x)

+ diag {δ(v1−3), δ(v2−3), . . . , δ(vm−3)}w3(x)

(6)

with

δ(j) =

{

1, if j = 0
0, if j 6= 0,

and the set

L(h(x)) = {x : |hi(x)| ≤ 1, i = 1, 2, . . . , m}

in which the state feedback h(x) does not saturate, we

can state a lemma from [11] concerning the stability of

systems (4) under nonlinear state feedback. The lemma is

an extension of the stability conditions derived in [2].

Lemma 1 ([8]): Given the dynamical system ẋ = Ax +
Bσ (K1x + Tσ(u)) with the saturating state feedback u =

k2(x) and the set G. If there exist state feedbacks u = h1(x)
and u = h2(x), such that G ⊆ L(h1(x)) ∩ L(h2(x)) and

∂v(x)

∂x
(Ax + BM(v,h1(x),K1x + Th2(x),

K1x + Tk2(x))) < 0 (7)

hold for all x ∈ G and v ∈ V , then the set G is contractively

invariant under the state feedback u = k2(x). Therefore, G
is a domain of attraction.

In case a linear state feedback controller is employed,

Lemma 1 simplifies to the lemma given in [2].

Lemma 2 ([2]): Given the dynamical system ẋ = Ax +
Bσ (K1x + Tσ(u)) with the linear saturating state feed-

back u = K2x and the domain of attraction G, if there exist

state feedbacks H1x,H2x such that G ⊆ L(H1x)∩L(H2x)
and

∂v(x)

∂x
(Ax + BM(v,H1x,K1x + TH2x,

K1x + TK2x)) < 0

hold for all x ∈ G and v ∈ V , then the set G is contractively

invariant under the state feedback u = K2x. Therefore, G is

a domain of attraction.

Ellipsoids are commonly used estimates of the domain of

attraction and so we use v(x) = x⊤Rx with the positive

definite Matrix R for the reminder of the paper. Lemma 1

and 2 will be used later on to prove stability of the proposed

saturating tracking controller. Note that state constraints can

be easily employed by demanding G ⊆ X .

IV. NON-SATURATING TRACKING CONTROL

In [4] a tracking controller for systems with linear dy-

namics under input and state constraints is derived. In this

section we will state the major results of [4].

Before the tracking domain of attraction is defined, we

refer to the admissible reference signals. In order to ensure

that the available input amplitude allows for reaching the

steady-state x corresponding to the reference signal r it must

be ensured that u = σ(u) holds. Additionally, the steady-

state must be contained in the domain of attraction, i.e., x ∈
G. This limits the set of possible reference signals r. Using

the set of non-saturating input vectors

U = {u ∈ R
m : |ui| ≤ 1, i = 1, . . . , m} ,

the set of admissible reference signals

R = {r ∈ R
q : u(r) ∈ U ,x(r) ∈ G}

is defined. Next, we specify an admissible reference signal.

Definition 2: Given 0 < ǫ < 1. A reference signal r(t) is

said to be admissible, if it is continuous and

lim
t→∞

r(t) = r∞ ∈ Rǫ

with

Rǫ = {r ∈ R
q : (1 + ǫ)u(r) ∈ U , (1 + ǫ)x(r) ∈ G}

is satisfied.
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The scalar ǫ is introduced in order to avoid singularities

in the control law. Because ǫ can be chosen arbitrary small,

it does not influence the problem. Note that an admissible

reference signal r(t) can take values outside the set Rǫ, as

long as r∞ ∈ Rǫ holds.

In order to restrict the reference signals to the admissible

set Rǫ the function

P (r) = inf

{

γ > 0 :
1

γ
r ∈ Rǫ

}

(8)

is used and so we obtain the restricted reference signal

r = Γ(r) =

{

rP (r)−1 if P (r) > 1,
r otherwise.

(9)

Definition 3: The set G ⊆ X is called a tracking domain

of attraction, if there exists a (possibly nonlinear) state

feedback controller

u(t) = kT(x(t), r(t)) ,

such that for any x(0) ∈ G and any admissible reference

signal r(t) the conditions x(t) ∈ G and limt→∞ y(t) = r∞
hold.

Remark 1: We have slightly modified the definition given

in [4] by dropping the claim u(t) ∈ U to allow for a

saturating controller, which is proposed in the next section.

Suppose that we have designed a possibly nonlinear non-

saturating controller k(x) ∈ U satisfying k(cx) = ck(x)1

stabilizing the origin of system (1) with the associated

domain of attraction G. Because r(t) = 0 is an admissible

reference signal, any tracking domain of attraction is a

domain of attraction G. In [4] it is shown that every domain

of attraction G is also a tracking domain of attraction.

Therefore, the tracking controller can be deduced from the

stabilizing and possibly nonlinear controller associated with

the domain of attraction (5).

Since the tracking controller defined in [4] is only allowed

to command input vectors u ∈ U , the available input energy

is not fully utilized. In order to circumvent this disadvantage,

we propose a saturating tracking controller.

V. SATURATING TRACKING CONTROL FOR SYSTEMS

WITH AMPLITUDE AND RATE CONSTRAINTS

In this section we will show that the results from [4]

remain valid also in case of a tracking controller kT(x, r) /∈
U that is allowed to saturate concerning the commanded

input amplitude and the input rate. To derive the tracking

controller and to prove stability we follow [4] and make use

of the Minkowski-functional

V (x) = inf

{

γ > 0 :
1

γ
x ∈ G

}

. (10)

Since γ−1x ∈G holds if v(γ−1x) = γ−2x⊤Rx ≤1 we get

from (10)

V (x) =
√

xT Rx.

1Note that linearity additionally implies that the superposition property
is fulfilled, i.e., k(x1 + x2) = k(x1) + k(x2).

x1

x2

G x

x

x̂

Fig. 2. Level sets of the function V∗(x,x). The level set V∗(x, x) = 1
is identical to the the boundary ∂G = {x : V (x) = 1} = {x : v(x) = 1}

The gradients of the functions v(x) and V (x) have the same

direction and it makes no difference which one is used as a

Lyapunov function [3]. The following deformed version of

(10) is used to overcome the tracking problem

V∗(x,x) = inf

{

γ > 0 : x +
1

γ
(x − x) ∈ G

}

(11)

with x ∈ intG where intG denotes the interior of G. Note

that (11) is convex and for any x ∈ G and any fixed x ∈ intG
V∗(x,x) = 0, (12)

V∗(x,x) < 1 if x ∈ G, (13)

V∗(x,x) = 1 if x ∈ ∂G (14)

hold. Therefore, the function V∗(x,x) seems to be a suitable

Lyapunov function for the tracking problem. Next, we can

state the tracking controller

u = kT(x, r) = k2(x̂)V∗(x,x) + (1−V∗(x,x))u. (15)

Therein, the vector

x̂ = x +
1

V∗(x,x)
(x − x) (16)

lies on the boundary of G, i.e., x̂ ∈ ∂G holds. Fig. 2

illustrates the level sets of the function V∗(x,x) together

with x and x̂. Note that the level set {x : V∗(x,x) = 1} is

identical to the level set {x : V (x) = 1} = {x : v(x) = 1}
and therefore identical with ∂G. The main result ensuring

the stability of the tracking control is stated in

Theorem 1: Given a domain of attraction G of the sys-

tem ẋ = Ax + Bσ (K1x + Tσ(u)) under the controller

u = k2(x) that satisfies k2(cx) = ck2(x) as well as the

conditions

∂v(x)

∂x
(Ax + BM(v,h1(x),K1x + Th2(x),

K1x + Tk2(x))) < 0 ∀x ∈ G,v ∈ V
and G ⊆ L(h1(x)) ∩ L(h2(x)) for all v ∈ V . Then for

any admissible reference signal r(t) = r together with the

controller

u = kT(x, r) = k2(x̂)V∗(x,x) + (1 − V∗(x,x))u,
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it follows that x(t) ∈ G and limt→∞ x(t) = x(r) hold for

all x(0) ∈ G.

Proof: To prove Theorem 1 we have to show that for

any x ∈ G\ {x} and x ∈ intG

V̇∗(x,x) =
∂V∗(x,x)

∂x
ẋ < 0

holds. Suppose we have x 6= x. Then we have to demand

V̇∗(x,x) =
∂V∗(x,x)

∂x
(Ax + Bσ(K1x + Tσ(u))) < 0.

(17)

In order to show (17) we derive an upper bound for V̇∗(x,x).
To this end, we use a similar procedure as the one used in [2]

to derive stability conditions of the equilibrium state x = 0.

First, we need the virtual controllers

hT1(x, r) = h1(x̂)V∗(x,x) (18)

and

hT2(x, r) = h2(x̂)V∗(x,x) + (1 − V∗(x,x))u. (19)

Both are non-saturating, since hT2(x, r) is a convex com-

bination of h2(x̂) and u ∈ U . If G ⊆ L(h2(x)) holds, the

controller h2(x̂) is non-saturating on G. By convexity we

have hT2(x, r) ∈ U . Rewriting (17) and using the gradient

∇V∗ = ∂V∗(x,x)/∂x we obtain

∇V∗Ax+

m
∑

i=1

∇V∗biσ
(

k⊤

1,ix + τi (σ(kTi(x, r)))) < 0,

(20)

where bi denotes the i-th column of B. To get a more

compact notation we abbreviate

fi(x, r) = k⊤

1,ix + τiσ (kTi(x, r)) .

First we eliminate the outermost saturation function. Con-

sider the four cases in which fi(x, r) is saturating, i.e.,

|fi(x, r)| ≥ 1:

• ∇V∗bi ≥ 0 and

fi(x, r)≤−1: ∇V∗biσ(fi(x, r)) ≤ ∇V∗bihT1,i(x, r),
fi(x, r)≥ 1: ∇V∗biσ(fi(x, r)) ≤ ∇V∗bifi(x, r),

• ∇V∗bi ≤ 0 and:

fi(x, r)≥ 1: ∇V∗biσ(fi(x, r)) ≤ ∇V∗bihT1,i(x, r),
fi(x, r)≤ −1: ∇V∗biσ(fi(x, r)) ≤ ∇V∗bifi(x, r).

In case fi(x, r) is non-saturating, we have σ(fi(x, r)) =
fi(x, r). Combining the above results leads to

∇V∗biσ(fi(x, r))

≤max{∇V∗bihT1,i(x, r),∇V∗bifi(x, r)} . (21)

We proceed in the same way with the term σ (kTi(x, r)) in

(20) and finally obtain

∇V∗Ax +

m
∑

i=1

∇V∗biσ
(

k⊤

1,ix + τi (σ(ki(x, r)))
)

≤

∇V∗Ax +

m
∑

i=1

max{∇V∗bihT1,i(x, r), ∇V∗bi

(

k⊤

1,ix

+τihT2,i(x, r)) ,∇V∗bi

(

k⊤

1,ix + τikTi(x, r)
)}

. (22)

From (17), (22) and using M(v,w1(x),w2(x),w3(x))
given by (6) we conclude that

V̇∗ = ∇V∗ · ẋ ≤ ∇V∗ ·M (v,Ax+BhT1(x, r),Ax+

BK1x+BThT2(x, r), Ax + BK1x+ BTkT2(x, r)) < 0

for all v ∈ V .

Using (16) we substitute x = x̂V∗(x,x)+(1−V∗(x,x))x.

Then we insert the tracking controller (15) and the non-

saturating virtual controllers (18), (19) and get

∇V∗M (v, (Ax̂ + Bh1(x̂))V∗(x,x)+ Ax(1 − V∗(x,x)),

(Ax̂ + BK1x̂ + BTh2(x̂))V∗(x,x)

+ (Ax + BK1x + BTu)(1 − V∗(x,x))

(Ax̂ + BK1x̂ + BTk2(x̂))V∗(x,x)

+(Ax + BK1x + BTu)(1 − V∗(x,x))) < 0 (23)

At the new steady-state, Ax = 0 and u̇A = 0 holds. Thus,

(23) simplifies to

∇V∗ẋ ≤ ∇V∗M (v, (Ax̂ + Bh1(x̂))V∗(x,x),

(Ax̂ + BK1x̂ + BTh2(x̂))V∗(x,x),

(Ax̂ + BK1x̂ + BTk2(x̂))V∗(x,x) ) < 0.

Note that x̂ ∈ ∂G holds. On the boundary ∂G the gradients

of V (x) and V∗(x,x) are aligned. Since the gradients of

v(x) and V (x) are also aligned and we demanded that the

conditions formulated in Lemma 1 are fulfilled, ∇V∗ · ẋ < 0
holds for all x ∈ G.

In case the system is square the condition y(t) → r∞
as t → ∞ is equivalent to x(t) → x(r∞), u(t) → u(r∞)
[4]. Since V̇∗(x,x) < 0 we conclude that V∗(x,x) → 0
as t → ∞ for all x ∈ intG and x ∈ G. This implies that

x(t) → x(r∞) and kT(x(r∞), r∞))=u(r∞).
Remark 2: The controller (15) is not defined for x = x

because of the term k2(x̂)V∗(x,x). But as k2(cx) = ck2(x)
holds, the function x → x can be extended by continuity,

i.e., k2(x̂)V∗(x,x)=k2(x̂V∗(x,x))=0 for x → x.

VI. NON-SQUARE SYSTEMS

In case the matrix S is not square or/and not invertible,

one possibility could be to use the Moore-Penrose inverse

S+. Unfortunately, the Moore-Penrose inverse does not guar-

antee, that the steady-state condition ẋo = 0 is met. To

overcome this problem we define a least-squares problem

with the equality constraint

L

[

xo

uA

]

=
[

Ao Bo

]

[

xo

uA

]

= 0.

The solution to this problem can be found in [14]. From

there we obtain
[

xo

uA

]

= S̃

[

0

r

]

=
(

S+

+
(

S⊤S
)−1

L⊤

(

L
(

S⊤S
)−1

L⊤

)−1

LS+

) [

0

r

]

. (24)

This solution minimizes the tracking error ||y − r||, while

ensuring ẋo = 0. In case S is invertible S̃ = S−1 holds.
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VII. DESIGN OF A LINEAR SATURATING TRACKING

CONTROLLER

In this section we state the design of a tracking controller

that is employed in the following section. Using Lemma 2

and the Lyapunov function v(x) = x⊤Rx we obtain

G =
{

x ∈ R
n : x⊤Rx ≤ 1

}

. (25)

We use the LMI2 design proposed in [2] but with another

objective function. First, we briefly state the LMI conditions.

Therein, we use the common substitutions Q = R−1, Y1 =
H1Q, Y2 = H2Q and Z = K2Q. The LMIs ensuring that

v̇(x) < 0 for all x ∈ G are

QA⊤ + AQ + BM(v,Y1,K1Q + TY2,K1Q + TZ)

+ M(v,Y1,K1Q + TY2,K1Q + TZ)⊤B⊤ ≺ 0 (26)

for all v ∈ V . To ensure G ⊆ L(H1x)∩L(H2x) we use the

LMIs
[

Q yj,i

y⊤
j,i 1

]

� 0, (27)

for i = 1, . . . , m, j = 1, 2 where y⊤

j,i denotes the i-th row

of the matrix Yj . In order to ensure that all states of interest

are included in the domain of attraction, we use the convex

polyhedron X0 with N vertices x0,j and demand X0 ⊆ G,

leading to the LMI
[

1 x⊤

0,j

x0,j Q

]

� 0, j = 1, . . . , N. (28)

We suggest to choose the estimate of the rate of convergence

[5] of the virtual system ẋ = Âx = (A+BK1 +BTK2)x
as an objective function. The rate of convergence is defined

as the largest α such that for all trajectories

lim
t→∞

eαt||x(t)|| = 0

holds. If for the positive definite matrix Q and a positive α
the inequality QÂ⊤ + ÂQ ≺ −2αQ is met, then α < α
is a lower bound of the rate of convergence of the artificial

system. We replace the condition in (26) referring to the case

v = [3 3 . . . 3]⊤

QA⊤ + AQ + (K1Q + TZ)⊤B⊤

+ B(K1Q + TZ) ≺ −2αQ (29)

and maximize α to achieve a fast controller. In order to

avoid numerical difficulties resulting from unnecessary large

elements in Z, we restrict the saturating controller to |ui| =
|k⊤

2ix| ≤ β. This leads to the LMIs
[

Q zi

z⊤i β2

]

� 0, i = 1, . . . , m. (30)

Next, we solve the optimization problem

max
α,Q,Y1,Y2,Z

α, s. t. (31)

(26), (27), (28), (29), (30).

2For an introduction to LMIs see [5].

This optimization problem can be easily solved using current

LMI-Solvers. In this paper we used the interface YALMIP

[13] together with the solver SDPT3 [16].

Solving the optimization problem (31) we obtain the con-

troller K. From this solution we infer the tracking controller

kT(x, r). Therefore, we need the Minkowski-function

V∗(x,x) = inf
{

γ > 0 : x + γ−1ex ∈ G
}

=
x⊤Rex +

√

(x⊤Rex)2 + e⊤x Rex(1 − x⊤Rx)

1 − x⊤Rx
.

with ex = x−x. Inserting V∗(x,x) in (15) and exploiting the

property ck2(x) = k2(cx) we obtain the tracking controller

kT(x, r) = K2x + (1 − V∗(x,x))(u − K2x).

Finally, we restrict the reference signals to the set of ad-

missible reference vectors. Using the maximum norm and

ur = Sur we get

P (r) = (1 + ǫ)max

{

(r⊤S⊤RSr)1/2, ‖ ur,i

umax,i
‖∞

}

where Sx and Su consist of the associated rows and columns

of S̃ from (24).

Remark 3: The non-saturating controller for comparison

purposes can be designed solving the optimization problem

max
α,Q,Y

α, s. t. (32)

[

Q yi

y⊤

i 1

]

� 0,

[

Q gi

g⊤

i 1

]

� 0, i = 1, . . . , m,

QA⊤ + AQ + G⊤B⊤ + BG ≺ −2αQ,

and (28).

where we used the substitutions Q = R̃−1, G = K1Q+TY

and Y = K̃2Q. yi and gi denote the i-th row of Y and G

respectively. The first LMI ensures the the commanded input

amplitude is non-saturating and the second LMI ensures that

the input rate is non-saturating.

VIII. EXAMPLE

In order to show the effectiveness of the proposed method,

we use the linearized longitudinal dynamics of the McDon-

nell Douglas Tailless Advanced Fighter Aircraft (TAFA) [1],

ẋo =

[

−1 1
6 −2

]

xo +

[

0
8

]

uA,

where x1 is the deviation of the angle of attack rad and

y = x2 is the body axis pitch rate rad/s. The latter is

our controlled variable. An amplitude and rate constrained

actuator provides the elevator deflection angle from the trim

flight condition as input uA, which is limited to |ua| ≤
20/180πrad and |u̇a| ≤ 40/180πrad/s. The linearized

system has a stable pole at λ1 = −4 and an unstable pole

at λ2 = 1. We want to guarantee an operating region that

includes possible initial conditions contained in the set

X0 =

{

x : |xo1| ≤
20

180
π rad, |xo2| ≤

25

180
π rad/s

}

.
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Fig. 3. Evolution of reference signal r and system output y for a saturating
and a non-saturating controller (first). The commanded elevator deflection
angle u (second), the input rate u̇A (third) and the actual elevator deflection
angle uA (fourth). The initial state was chosen as x0 = [0 0]⊤.

We choose τ = 5 assume that the elevator is initially

not elongated, i.e., uA,0 = 0. We designed the saturating

controller as explained in Section VII with β = 50 resulting

in

K2 =
[

−31.5926 −10.5239 −26.0708
]

,

R =





1.7484 0.5826 0.9388
0.5826 0.1943 0.3127
0.9388 0.3127 0.8029



 .

The non-saturating controller is designed solving the opti-

mization problem (32) and we obtain

K̃ =
[

−0.2423 −0.0808 0.5049
]

,

R̃ =





4.1704 1.2982 5.3482
1.2982 0.5063 1.7600
5.3482 1.7600 13.2112



 .

The evolutions of the system output, the commanded input

u, the actual input rate u̇A and uA for the initial state

x0 = [0 0]⊤ are depicted in Fig. 3. As reference signal we

choose a step function of height r = 20/180π at t = 1s.

Obviously the saturating tracking controller has a shorter

settling time compared to the non-saturating controller be-

cause the available input amplitude and rate is exploited.

The commanded input amplitude as well as the input rate

are saturating.

IX. CONCLUSIONS

We proposed a set point tracking controller for systems

subject to simultaneous amplitude and rate constraints. The

commanded input as well as the input rate are allowed to

saturate. To this end, we extended the non-saturating tracking

controller proposed in [4] for systems that are exclusively

subject to amplitude constraints to the case of additional

rate constraints. We provided a saturating controller based

on linear state feedback [2] that can be designed using

LMIs. Finally, we showed the effectiveness of the saturating

controller in comparison with a non-saturating controller.

REFERENCES

[1] C. Barbu, R. Reginatto, A. Teel, and L. Zaccarian. Actuator Saturation
Control, chapter Anti-windup for exponentially unstable linear systems
with rate and magnitude input limits. Marcel Dekker, Inc., 2002.

[2] A. Bateman and Z. Lin. An analysis and design method for linear
systems under nested saturation. Systems and Control Letters, 48:41–
52, 2003.

[3] F. Blanchini. Set invariance in control. Automatica, 35:1747–1767,
1999.

[4] F. Blanchini and S. Miani. Any domain of attraction for a linear
constrained system is a tracking domain of attraction. SIAM Journal

on Control and Optimization, 38:971–994, 2000.
[5] S. Boyd, L. E. Ghaouli, E. Feron, and V. Balakrishnan. Linear Matrix

Inequalities in System and Control Theory. SIAM, 1994.
[6] Y. Y. Cao and D. G. W. Z.Lin. Anti-windup design of output tracking

systems subject to actuator saturation and constant disturbances.
Automatica, 40:1221–1228, 2004.

[7] J. M. da Silva jr. and S. Tarbouriech. Local stabilization of linear sys-
tems under amplitude and rate saturating actuators. IEEE Transactions

on Automatic Control, 48:842–847, 2003.
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[12] K. Kefferpütz and J. Adamy. Saturating set point tracking control for
linear systems subject to input constraints. In 49th IEEE Conference
of Decision and Control, Atlanta, USA, December 2010.
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