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Abstract— This paper presents a trajectory generation
method that optimizes a quadratic cost functional with respect
to linear system dynamics and to linear input and state con-
straints. The method is based on continuous-time flatness-based
trajectory generation, and the outputs are parameterized using
a polynomial basis. A method to parameterize the constraints
is introduced using a result on polynomial nonpositivity. The
resulting parameterized problem remains linear-quadratic and
can be solved using quadratic programming. The problem can
be further simplified to a linear programming problem by
linearization around the unconstrained optimum. The method
promises to be computationally efficient for constrained systems
with a high optimization horizon. As application, a predictive
torque controller for a permanent magnet synchronous motor
which is based on real-time optimization is presented.

I. INTRODUCTION

Trajectory optimization in real-time is an important part
of many modern control systems, for instance, predictive
control. The trajectory optimization problem must be solved
in the sampling interval, determined by the plant dynamics.
A computationally efficient solution, however, encounters
two major obstacles: first, the optimization horizon has a
minimum length, either to avoid suboptimality or as stability
criterion, and second, the trajectory must satisfy input and
state constraints to be feasible. For fast systems, many of
the existing constrained predictive control schemes, which
are based on numerical iterations, are not applicable.

Concerning the horizon length problem, the continuous
approach to predictive control is of interest [1]. Using differ-
ential flatness, the optimal control problem can be rewritten
as output optimization problem. The basis function approach
is applied to obtain a finite-parameter optimization problem
[2] [3] [4] [5], analogeously to discrete-time optimization.
A long optimization horizon is, however, obtained with
comparably few optimization parameters.

A remaining issue regarding computational efficiency is
the inclusion of constraints. The classical method is the
application of penalty functions [3]. As an alternative, a
coordinate transformation was proposed to modify the con-
strained problem to a nonlinear unconstrained problem [6],
solvable with nonlinear calculus of variations methods. The
existing optimization methods with penalty functions or
nonlinear coordinate transformations lead to a nonlinear or
non-linear-quadratic problem, increasing the computational
burden. If only feasibility is of interest, numerical procedures
applying time scaling to slow down some variables can be
used [1].

This paper treats the special case of the linearly con-
strained linear-quadratic problem. The linear structure of the
system is exploited in the transformation of the problem to a
finite-parameter optimization problem. The linear-quadratic
structure of the problem is maintained. The unconstrained
problem is solved algebraically as it is convex. A quadratic

This work was supported through the National Research Funds of
Luxembourg under grant PhD-08-070.

J-F. Stumper and R. Kennel are with the Institute of Electrical Drive
Systems and Power Electronics, Department of Electrical Engineering and
Information Technology, Technische Universität München, Arcisstr. 21, D-
80333 Munich, Germany. jean-francois.stumper@tum.de

or linear programming (QP/LP) solver is then applied for
constraint handling to modify the solution to a feasible
trajectory. The solution is computationally efficient, as first
a continuous parameterization is performed, and second a
linear programming solver is used for the quadratic problem
by linearizing around the unconstrained optimum. To the
knowledge of the authors, QP and LP have so far not been
applied to this type of continuous problems.

II. PRELIMINARIES: CONTINUOUS FLATNESS-BASED

LINEAR-QUADRATIC TRAJECTORY OPTIMIZATION

A. Optimal Control Problem

The optimal control problem considered is to generate tra-
jectories on a finite time horizon T minimizing the quadratic
cost functional

J =

∫ T

0

(

xT(t)Qx(t) + uT(t)Ru(t)
)

dt

+ (x(T ) − x∗)TP(x(T ) − x∗) (1)

with states x(t) ∈ R
n, inputs u(t) ∈ R

m, weight matrices
P ∈ R

n×n, Q ∈ R
n×n and R ∈ R

m×m, and the desired
final state x∗ ∈ R

n. The weight matrices are assumed to be
positive definite and symmetric. Any quadratic functional is
eligible, for instance the reference x∗ can also be included
in the cost integral. Quadratic cost functionals are preferred
in predictive control as they will provide good closed-loop
behavior [7]. They can also describe physical costs better
than other norms. Furthermore, if the weight matrices are
positive definite, the optimization problem is convex and
easily solvable: a unique optimum exists and is found by
solving first-order necessary conditions. The states and inputs
are constrained to the time invariant linear dynamics of the
multi-input multi-output system

ẋ(t) = Ax(t) + Bu(t) (2)

with system matrix A ∈ R
n×n and input matrix B ∈

R
n×m. The system is further assumed to be controllable. The

optimization is subject to Nc linear input and state constraints

Gxx(t) + Guu(t) + g0 ≤ 0, ∀t ∈ [0, T ] (3)

with Gx ∈ R
Nc×n, Gu ∈ R

Nc×m, g0 ∈ R
Nc , as well as the

n initial conditions

x(0) = x0. (4)

Terminal constraints could be imposed too, but may yield an
unfeasible problem in the presence of input or state bounds.

B. Parameterization of the System Variables using Flatness

By definition, a linear system is said to be differentially
flat if there exist m output functions

yf (t) = Cf x(t), (5)

with yf (t) ∈ R
m, Cf ∈ R

m×n, such that all states x(t)
and inputs u(t) can be expressed as linear combination of
the flat outputs and a finite number of their derivatives [8]
[9]. Differential flatness can be interpreted as transformation
into controller canonical form, and in the linear case, it is
equivalent to controllability [9]. The flat outputs yf (t) are
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thus the controller canonical form outputs, and the canonical
form state vector is

z(t) =
((

yf1, ẏf1, .., y
(r1−1)
f1

)

,
(

yf2, ẏf2, .., y
(r2−1)
f2

)

,

..,
(

yfm, ẏfm, .., y
(rm−1)
fm

))T

(6)

with z(t) ∈ R
n and where ri is the corresponding vector

relative degree with regard to the output yfi (yfi being the
i-th flat output resp. i-th element of yf in (5), see [9]). Note

that
∑m

i=1 ri = n. The differential parameterization of the
system variables is [8] [9]

x = Ξx

(

yf , ẏf , .., y
(k−1)
f

)

, (7)

u = Ξu

(

yf , ẏf , .., y
(k)
f

)

, (8)

where k ∈ R is k = max{ri}. The functions Ξx and Ξu

are linear functions of z resp. of z and ż, as they are derived
from the controller canonical form transformation. See that
(7) is the inverse transformation from controller canonical
form, and (8) follows from (7) and (2).

C. Output Parameterization with a Polynomial Basis

The Ritz-Galerkin method, also called basis function ap-
proach, is a direct method to find an approximate solution
to an optimal control problem [10]. In the flatness-based ap-
proach, the outputs are parameterized as a linear combination
of time-variant basis functions. It is comparable to the control
parameterization Ritz method (CPRM) [11], where the inputs
u are parameterized. Convergence of this method (combined
with linear splines) was studied in [12] and more generally
in [13].

As basis functions, polynomials are chosen. Their simplic-
ity is exploited for the further developments, main advantage
being that the parameters enter linearly, for instance they
allow to prove that the transformed cost remains convex.
They also allow constraint transformation based on a result
on polynomial nonpositivity in section III. Furthermore,
the dynamic shape of the resulting trajectory can be well
analyzed.

Higher-order polynomials (for instance Laguerre and Leg-
endre) have been used in many applications, but here,
power series, the simplest form of polynomials, are used.
The methods and results are all applicable to higher-order
polynomials, there, the undetermined coefficients still enter
linearly and they might inherit numerical advantages (power
series are numerically stable only up to degree 12..15), but
the notation would be less comprehensible. In [14] it was
shown that only the polynomial degree but not the type of
series are important for convergence. The choice is a simple
approximate, but yet, it turns out to be quite accurate.

The system outputs are defined as degree N power series

yfi(t) =
N

∑

j=0

αij

tj

T j
, i = 1..m, t ∈ [0, T ] (9)

with αij ∈ R. This is not an approximation of a system step
response, but merely an assumption that the optimal solution
can be described as a polynomial. The system response is
exact, only the output is reduced in dimensionality.

The original problem is thereby transformed to a finite-
parameter optimization problem where a set of constants is
searched. Fig. 1 demonstrates the computational advantage.
For instance, in the example in section IV, the prediction
horizon is 2 ms (the slowest time constant in the system)
and the sampling rate is 10 kHz (determined by the power
stage). A discrete description takes 20 parameters, but here,
only 6 are sufficient to describe a setpoint change. A more
complicated trajectory may not be expected on most plants.

0 0.5 1 1.5 2
0

0.5

1

Time [ms]

Fig. 1. Trajectories with 6 free parameters. Discrete-time horizon is
maximum 0.6 ms, continuous trajectory is well-conditioned at the desired
horizon length of 2 ms.

The n initial conditions (4) define n of the parameters αij ,
they are computed via the transformed state z(0) in (6) (See
that the initial time is t0 = 0, such that only the first element
of the power series is nonzero, same for the derivatives). For
further notational simplicity, the vector α is defined as the
vector of the undetermined coefficients

α = (α1r1
, .., α1N , α2r2

, .., α2N , .., αmrm
, .., αmN )T, (10)

with α ∈ R
N ′

with N ′ = m × N − n, and the indices
ri represent the respective vector relative degree of the flat
output yfi.

Based on the flatness parameterization (7) and (8), and

knowing that di

dti yf are polynomials, the system variables
can be parameterized with the coefficients α yielding the
functions

x(t) = Γx(α, t), (11)

u(t) = Γu(α, t). (12)

These functions are degree N polynomials of time t, where
the coefficients α enter linearly.

It is seen that N ≥ max{ri}, i = 1..m, is mandatory
to have degrees of freedom on the trajectory. It should be
remarked that when choosing a higher N , the error bounds
of the basis function approach become smaller and the
dynamical response increases, at the cost of higher com-
putational requirements and the risk of less good numerical
conditioning of the parameters.

D. Remark: Generality of the Parameterization for Linear
Systems with Power Series Outputs

It is remarked that the same parameterization (11) and (12)
can be obtained for arbitrary non-flat outputs of a controllable
and observable linear system, if the output is defined as
polynomial series with undetermined coefficients [15]. Then,
the outputs do not need to be redefined to flat, or controller
canonical form outputs.

E. Parameterizing the Cost Functional

The parameterization of the system variables (11), (12)
is applied to transform the cost functional (1) to a finite-
parameter cost function.

Proposition II.1
Conditioning the cost functional.
The cost functional (1) with the substitutions (11) and (12)
yields a biaffine function in the undetermined parameters α

of the type

J(α) = α
TKα + kT

α + k0 (13)

with k0 ∈ R, k ∈ R
N ′

and K ∈ R
N ′

×N ′

.
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The proof follows from a straightforward computation
with the knowledge that (11), (12) are polynomials with
affine coefficients α, and is omitted.

Eq. (13) is derived directly from (1) by substitution of
(7), (8) and (9) (or (11) and (12)). Practical (symbolical)
calculations are performed using a computer algebra tool,
matrix K is the Hessian matrix of J , and vector k follows
from the gradient of J .

Proposition II.2
Convexity of the conditioned cost function.
The conditioned cost function (13) is convex over the set

α ∈ R
N ′

if matrices Q, R and P in (1) are positive definite
and real-symmetric matrices.

This statement of convexity is not obvious, as the trans-
formed cost function (13) has a higher dimension as the orig-
inal cost functional (1) (N ′ instead of n). It is proven for the
unconstrained linear-quadratic case. This proof follows from
the knowledge that the states and inputs are polynomials
with coefficients linearly dependent on α, and is sketched
in appendix I. As only linear constraints are regarded, the
result can be assumed valid also for the constrained case.

This result allows to apply first-order conditions of op-
timality, and will guarantee a solution in finite time as an
unique minimum of J exists.

III. MAIN RESULTS: CONSTRAINT HANDLING

The previous section presented the unconstrained opti-
mization of a controllable linear system with a flat output pa-
rameterized with a polynomial basis. This section introduces
a computationally efficient method for including constraints
in trajectory generation. It is a follow-up to the previous
section.

A. Parameterizing the Constraints

The input and state constraints (3) are transformed with
the system variable parameterizations (11) and (12). With
the knowledge that the parameterizations (11) and (12) are
univariate polynomials in t, each of the constraints in (3) is
also a polynomial in t of order N where the coefficients are
affine functions in α. Thus, the constraints are rewritten as

Pk(t) =
N

∑

i=0

(

gki0 + gT
ki α

)

ti ≤ 0, k = 1..Nc, t ∈ [0, T ],

(14)

with gki0 ∈ R and gki ∈ R
N ′

. Checking constraints
over a time interval t ∈ [0, T ] is difficult. The typical
solutions for such continuous problems are penalty functions
in the cost functional, or nonlinear state transformations.
In the following, the constraints are transformed to allow
a direct check on α independent of t, while maintaining the
simplicity of a linear constraint.

Proposition III.1
Sufficient affine conditions for the constraints.
The univariate polynomials Pk(t) are positive on the finite
interval t ∈ [0, T ] if the conditions

Pk(0) ≤ 0, ∀k = 1..Nc, (15)

Pk

(

p
T

N

)

− ∆ · Pk(0) ≤ 0, ∀p = 1..N, k = 1..Nc, (16)

with a constant ∆ ∈ R > 0 are satisfied.

The constraints, written in the introduced notations, are
(

gk00 + gT
k0 α

)

≤ 0, k = 1..Nc (17)

and
N

∑

i=0

(

gki0 + gT
kiα)

T i

N i
pi − ∆ · (gk00 + gT

k0 α

)

≤ 0,

p = 1..N, k = 1..Nc. (18)

The underlying idea is shown in Fig. 2. If a polynomial
trajectory P (t) of degree N is constrained at N +1 sampling
points on the interval [0, T ] to be nonpositive, then, in the
worst case, this polynomial reaches a maximum of P (t) =
−∆ · P (0). This maximum offset of −∆ · P (0) is applied
as interleaf to the constraint boundary (the second term in
(16)). The proof of this proposition is presented in appendix
II, where also the value of the constant ∆ is found, which is a
constant depending on the polynomial degree N only. After
transformation of the constraints, they can be used directly
in an optimization procedure, as the result is an affine and
purely parametric constraint. They are affine functions of α.
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Fig. 2. A degree N polynomial trajectory (black) constrained at N + 1
points to be nonpositive (red arrows) will not exceed the upper bound of
−∆ · P (0) (green line). Here, N = 6, P (0) = −1 and ∆ = 0.037.

The resulting set of constraints is sufficient, but not neces-
sary, thus they guarantee maintainance of the constraints, but
are too restrictive. The offset between the necessary and the
sufficient conditions is the factor ∆, and the restriction is, for
example, 6.4% for N = 3, 1.2% for N = 10, and even less
for higher N . It is assumed that this restriction is acceptable
for most applications regarding the inherited computational
advantages.

Exact results on necessary and sufficient conditions on
positivity of univariate polynomials over an interval [0, T ]
exist. Semidefinite programming (SDP) is applied to estab-
lish linear matrix inequalities (LMI), which, just as for the
presented results, are independent of t and can directly be
used in a program [16]. These methods, however, require
a numerical iterative algorithm to establish the LMIs, and
can therefore not be considered if computational efficiency is
important. Due to updated initial conditions, the constraints
must be reconditioned in each trajectory generation cycle,
and the computational burden adds up.

B. Trajectory Generation in Finite Time

In the previous section, the optimal control problem has
been transformed to a finite-parameter optimization problem.
The transformed problem can be solved in finite time using
quadratic programming (QP) to find the parameters α, as
the cost function is quadratic in α and as the constraints
are affine functions of α. This is an interesting result for
continuous systems, as QP is a standard method in discrete-
time optimization. Furthermore, the number of parameters
is decoupled from the horizon length, thus higher prediction
horizons can be reached with less parameters.

An even more convincing advantage of the presented
method shall be a further reduction of the computational

1906



complexity. In the following, the problem will be approx-
imated such that it is solvable using linear programming
(LP) techniques. The approximation yields a feasible solu-
tion (thus it is satisfying the constraints) with a bounded
suboptimality.

C. Transformation to a Least Distance Problem

In the first step, a transformation is performed to obtain a
simpler cost functional.

Proposition III.2
Reformulation as least-distance problem.
The cost functional can be transformed to

J = fTf + c, (19)

where f = (f1, f2, .., fN ′)T ∈ R
N ′

is the vector of trans-
formed parameters and c ∈ R a constant.

The new parameter vector f is defined as

f = F(α − α0), (20)

where α0 ∈ R
N ′

is the unconstrained minimum of the
parameterized cost functional (13)

α0 = −
1

2
K−1k, (21)

and matrix F ∈ R
N ′

×N ′

is defined such that

FTF = K (22)

with K from eq. (13). Computation is not an issue as K is
positive definite and symmetric, for instance, in the notations
in appendix I one would set F = BA. If this decomposition
is not known, F can be computed via the Cholesky matrix
decomposition FT = cholesky(KT).

Transformation (20) must also be applied to transform
the constraints. This is done by substituting the inverse
transformation

α = α0 + F−1f (23)

to the constraint equation, yielding directly the affine con-
straints in terms of f. The same equation is applied to
retransform the obtained results into the original parame-
ters. Contrary to the amount of parameters, the amount of
constraints is not increased.

The least-distance problem is simpler to solve as the orig-
inal QP problem, as some computations become obsolete in
the iterations [17]. The transformation renders the quadratic
programming more efficient and increases numerical stabil-
ity.

D. Transformation to a Linear Programming Problem

Now the least distance problem can be approximated for a
solution using linear programming. The L2-norm is rewritten
as L1-norm. The variables in linear programs are limited to
positive numbers, thus the variables f are replaced by

fi = fip − fin, (24)

with fip, fin ∈ R and fip ≥ 0, fin ≥ 0.

Proposition III.3
Linear Cost Function for the Least-Distance Problem.
The cost function approximation

J = c +

N
∑

i=1

f2
i ≈ c +

N
∑

i=1

|fi| = c +

N
∑

i=1

(fip + fin) = J ′,

(25)

with fip, fin ≥ 0, yields a feasible solution with bounded
suboptimality for a least-distance problem.

This approximation implies a large offset between the
linearized cost J ′ and the correct cost J . However, this is not
of importance, as the goal is to find a point in the parameter
space f that is feasible and least-distance to the origin. Under
this aspect, the suboptimality is not the variation of the cost,
but of the difference of the found parameters in the squared
distance to the origin. The contour lines of the quadratic cost
are circles around the origin, whereas these of the linear cost
are lozenges [7].

It should be remarked that |fi| is not necessarily equivalent
to fip + fin, but in the reverse, if fip + fin is minimized, it
is equivalent to |fi| as fip, fin ≥ 0, such that at least one of
each fip, fin is zero.

The advantages of a linear programming solver are ob-
vious, increased reliability and reduced computational com-
plexity, and the computational burden only grows linearly
with the degree of the output polynomial N . It represents a
significant computational saving compared to when applying
QP as solver.

If no constraint is active, the solution is exact. If a con-
straint is active, the worst case is when the active constraint
vertex is parallel to a contour line (i.e. parallel to a side of
the lozenge). It can be shown that the resulting cost is

J ′ = J0 + N ′ × JC (26)

in the worst case, where J ′ is the cost with the linear
program, J0 the cost of the unconstrained problem, JC

the extra cost when considering constraints in a quadratic
program, and N ′ = dim(α) the amount of free parameters
α. Thus, the linear programming solver yields the worst-
case suboptimality J ′/(J0 + JC) of up to N ′ times the
cost. If not all constraints are active, or if the constraints
intersect the contour lines, suboptimality will be considerably
less. The bound of the suboptimality and the consideration
that the overall suboptimality is relative to the cost of the
unconstrained problem makes the simplification of a linear
programming solver acceptable for many applications.

IV. EXAMPLE: PREDICTIVE TORQUE CONTROL OF

PERMANENT-MAGNET SYNCHRONOUS MACHINES

To present the advantages and the good functionality of
the presented trajectory optimization scheme, a predictive
torque controller for a permanent-magnet synchronous ma-
chine (PMSM) is presented. So far, this plant has been
controlled via generalized predictive control (GPC), via finite
control set MPC (FS-MPC) and via the explicit solution [18].
Even though the methods provided good results, they were
either unconstrained, or limited to few prediction steps. The
presented method obtains a high optimization horizon (2 ms)
while respecting all constraints.

Its suboptimality in 1) the assumption of a polynomial
output, 2) the restrictive constraint parameterization (of 2%),
and 3) the use of LP instead of QP is analyzed.

A cascaded control structure is chosen [19]. The speed
loop is controlled via a PI controller, and the current (and
torque) loop is the predictive controller. The electrical sub-
system of a non-salient PMSM, consisting of the torque-
generating and field-generating currents iq and id (peak
values), and the machine torque τM as output, is given as

d

dt
id = −

R

L
id + npωM iq +

1

L
vd (27)

d

dt
iq = −

R

L
iq − npωM id − npωMK +

1

L
vq (28)

τM =
3

2
npKiq (29)
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which is linearized by the assumption that speed is constant
over the prediction horizon,

d

dt
ωM (t0) ≈ 0 ⇒ ωM (t) = ωM (t0) ∀t ∈ [t0, t0 + T ].

(30)

The parameters are taken from a real machine: R = 0.86
Ω, L = 6 mH, np = 3, K = 0.236 Vs, rated speed 314
rad/s, rated torque 10 Nm. The trajectory optimization shall
minimize the control error

Pctrl(t) = (τM (t) − τ∗

M )2 (31)

and at the same time optimize the power efficiency by
minimizing the dissipated energy

Ploss(t) = R
(

i2d + i2q
)

+
ωM

Rm

(

(Lid + K)2 + i2q
)

, (32)

where Rm = 1800Ω, thus the goal is to minimize J =
∫ T

0
(qPctrl(t) + Ploss(t))dt + q T Pctrl(T ) with the weight

q = 20. The flat outputs id and iq are each parameterized
with a degree 5 power series. The prediction horizon is T = 2
ms and the sampling rate is 10 kHz. The optimization must
also maintain the current constraints

i2d + i2q ≤ I2
max = 102A2 (33)

to protect the power inverter, and the voltage constraints

v2
d + v2

q ≤ V 2
max = 3302V2 (34)

to obtain a feasible trajectory. These constraints are lin-
earized as shown in Fig. 3, similar as in [20]. The argu-
mentation is that only id ≤ 0 makes sense (field-weakening,
see (32)), and that the current and voltage range in q-axis is
more important for PMSMs with isotropic rotors.

iq

id

vq

vd

Imax

Imax

Umax

Umax

Fig. 3. Linearized current and voltage constraints. Circle: feasible set
of current and voltage vectors, grey: feasible set after linearization of the
constraints.

Numerical simulation results are shown in Fig. 4. The
results of the QP solver are shown in blue, and the results of
the LP solver in red. Experimental results are shown in [21].
At t = 0.01 s, a speed setpoint change from ωM = 0 to 420
rad/s is commanded. Then, at t = 0.07 s, a load torque step
of 8 Nm is applied. From the computational results, QP takes
17 iterations in the worst case, wereas LP takes 24 iterations.
This increased number is logical, as there are 20 parameters
instead of 10. As the LP algorithm is much simpler, this
still represents a considerable computational saving. With
an optimized C implementation, the worst case computation
time of the LP was 20µs on a PC (1.4 GHz clock). Runtime
is further discussed in [21].

From a qualitative standpoint, the resulting behavior is
identical for both solvers. The system is always operating
at its performance limit. There is a (feasible) voltage peak
on vq at t = 0.01 s to rapidly establish a torque current
iq, and after this, the induced voltage increases proportional

to speed on vd and vq. The iron losses are reduced by
imposing id < 0. Then, at high speed, the load step
is quickly compensated via the cascaded speed controller,
which commands a torque increase. To do this, the trajectory
optimization generates a negative peak on id (green arrow)
which, according to the model, reduces the induced voltage
on iq, thereby d

dt
iq is higher as when keeping id small. This is

the advantageous behavior of predictive control; in contrast
to feedback controllers with saturation, the coupling between
the states is exploited to bypass the constraints in an optimal
fashion. This result is only visible as a high optimization
horizon and the constraints are included in the trajectory
generation.

As the constraint handling of LP is suboptimal, there is
a quantitative difference, especially in dynamical operation.
The peaks are generally somewhat smaller, and at t = 0.07,
the negative id-peak is of shorter duration and thus less
effective.

V. CONCLUSION

A trajectory optimization scheme minimizing a quadratic
cost functional to generate continuous trajectories for a
linear control system with linear constraints was presented.
The scheme recombines several methods in order to obtain
a computationally efficient solution. These are the use of
differential flatness and of a parameterization using a poly-
nomial basis. A result on polynomial nonnegativity is used
as a suitable way to parameterize the constraints. Further
developments are done to formulate a linear programming
problem.

Numerical simulations of a predictive controller for a
permanent magnet synchronous machine show that the sub-
optimality of the method is acceptable. The optimization
problem is sufficiently simplified and solvable in real-time, in
the presented application, 2 ms prediction are implemented
at a sampling rate of 10 kHz.
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APPENDIX I
PROOF OF PROPOSITION III.2

Convexity of the conditioned cost function.
Assume Q is positive definite. Then,

x
T (t)Qx(t) > 0, ∀x(t) �= 0 (35)

and

J =

∫ T

0

x
T (t)Qx(t)dt > 0, x(t) �= 0∀t ∈ [0, T ]. (36)

The inverse model replaces x(t) by polynomials p(t) with linear
coefficients in α

J =

∫ T

0

p
T (t)Qp(t)dt > 0, x(t) = p(t) �= 0∀t ∈ [0, T ]. (37)

Define the primitives P(t) =
∫

p(t)dt thus P(T ) =
∫ T

0
p(t)dt

J = P
T (T )QP(T ) > 0, ∀P(T ) �= 0. (38)

The expression P(t) is the primitive of a polynomial, thus a
polynomial, with linear coefficients in α, and P(T ) is rewritten
as

P(T ) = Aα (39)

and we assume rank(A) = n with n = dim(x). It follows

J = α
T

A
T

QAα > 0, ∀P(T ) �= 0. (40)

The matrix of the parameterized cost function is K = AT QA and
as we assumed Q is positive definite we know Q = BT B (Cholesky
decomposition). The weight matrix is then

K = A
T

B
T

BA = (BA)T (BA) (41)

which is positive definite as any matrix K = CT C for some C
with rank(C) = n is positive semidefinite [C.D. Meyer, Matrix
analysis and applied linear algebra, SIAM books, 2000, pp. 566].
The parameterized cost functional J is thus a convex function of
the parameters α.

APPENDIX II
PROOF OF PROPOSITION III.3

Sufficient affine conditions for the constraints.
The polynomial

P (s) =
N

∑

i=0

cis
i ≤ 0, (42)

with ci ∈ R, is analyzed on non-positivity over a segment s ∈ [0, 1].
A first necessary and sufficient condition is

P (0) = c0 ≤ 0 (43)

which in the following is assumed satisfied. Furthermore, the N
conditions

P

(

k

N

)

≤ 0, k = 1..N (44)

are also assumed to hold for all ci.
These conditions can be rewritten in matrix notation

c0 + Qc ≤ 0 (45)

with c0 = (c0, .., c0)
T ∈ R

N , c = (c1, .., cN )T ∈ R
N and Q ∈

R
N×N such that

Q = (qij) =

(

∂

∂cj

P (i/N)

)

=

(

(

i

N

)j
)

,

i = 1..N, j = 1..N. (46)

It can be shown that det(Q) �= 0 for N > 0, and that Q is positive
definite. It follows

c ≤ −Q
−1

c0 (47)

which can be placed into the polynomial equation

P (s) = c0 + s
T

c ≤ c0 − s
T

Q
−1

c0 = (−c0)ǫ (48)

with s = (s, .., sN )T ∈ R
N and ǫ = −1 + sT Q−1(1, .., 1)T . As

we assumed c0 ≤ 0, the upper bound of P (s) under the mentioned
conditions is at when ǫ is at its maximum. It can be shown that
the upper bound of ǫ, ∆ = sup{ǫ} ∀s ∈ [0, 1], is positive and
only dependent on N , as Q is known. Some values, which were
computed numerically, are shown in the table below.

N 2 3 4 10 20
∆ = sup{ǫ} 0.125 0.064 0.041 0.012 0.005

Therefore if the conditions (44) hold, we have

P (s) ≤ −∆P (0). (49)

Shifting the conditions by the constant (and negative) factor ∆P (0),
the sufficient conditions for non-positivity of the polynomial P (s)
are found:

P (0) ≤ 0, (50)

P (
k

N
) − ∆ · P (0) ≤ 0, k = 1..N. (51)
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