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Abstract— We study the reach control problem for affine
systems on simplices, and the focus is on cases when it is known
that the problem is not solvable by continuous state feedback.
Using the reach control indices for affine systems on simplices,
we propose a subdivision algorithm and associated piecewise
affine feedback. The main result is that if the reach control
problem is solvable by open-loop controls, then it is solvable
by piecewise affine feedback.

I. INTRODUCTION

This paper studies the reach control problem on simplices.

The problem is for an affine system defined on a simplex to

reach a prespecified facet of the simplex in finite time. The

problem has been developed in [3]–[10]. The significance of

the problem stems from its capturing the essential features

of reachability problems for control systems: the presence of

state constraints and the notion of trajectories reaching a goal

in a guided and finite-time manner. See [2] for motivations

and an alternative approach.

In [3] it was shown that affine feedback and continuous

state feedback are equivalent from the point of view of

solvability of the reach control problem (RCP). In [4] we

developed reach control indices which expose how affine or

continuous state feedbacks may fail - such feedbacks induce

closed-loop equilibria in sub-simplices that are inherently

starved of sufficient inputs. Fortunately, the reach control

indices also give insight on how to overcome the problem of

insufficient inputs. We present here a subdivision procedure

that triangulates the simplex into sub-simplices with sub-

reach-control problems. The approach generalizes a subdivi-

sion method for hypersurface systems (having n− 1 inputs)

first presented in [8]. It enables a reassigment of controls to

the effect that the shortage of inputs can be overcome. The

final outcome is that if the reach control problem is solvable

by open-loop controls, then it is solvable by piecewise affine

feedback.

Notation. The notation 0 denotes the subset of R
n

containing only the zero vector. The notation co{v1, v2, . . .}
denotes the convex hull of a set of points vi ∈ R

n. Symbol

U represents a control class such as open-loop, continuous

state feedback, affine feedback, etc. For a vector x ∈ R
n,

the notation x ≺ 0 (x � 0) means xi < 0 (xi ≤ 0) for

1 ≤ i ≤ n.

II. BACKGROUND

Consider an n-dimensional simplex S with vertex set V :=
{v0, v1, . . . , vn} and facets F0, . . . ,Fn (the facet is indexed
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by the vertex not contained). Let hi, i = 0, . . . , n be the

unit normal vector to each facet Fi pointing outside of the

simplex. Let F0 be the target set in S. Define the index

sets I := {1, . . . , n} and Ii := I \ {i} (note I0 = I). For

i ∈ I ∪ {0}, define the closed, convex cone

Ci :=
{
y ∈ R

n : hj · y ≤ 0, j ∈ Ii
}
.

We’ll write cone(S) := C0, since C0 is the tangent cone to

S at v0. We consider the affine control system on S:

ẋ = Ax+ a+Bu , x ∈ S, (1)

where A ∈ R
n×n, a ∈ R

n, B ∈ R
n×m, and rank(B) = m.

Let φu(t, x) denote the solution of (1) starting from x0 under

a control law u.

Definition 2.1: We say the invariance conditions are solv-

able if there exist u0, . . . , un ∈ R
m such that Avi+a+Bui ∈

Ci. Equivalently,

hj · (Avi + a+Bui) ≤ 0 , i ∈ {0, . . . , n} , j ∈ Ii . (2)

Definition 2.2: We say a state feedback u(x) satisfies the

invariance conditions if for all j ∈ I and x ∈ Fj ,

hj · (Ax+Bu(x) + a) ≤ 0 . (3)

Problem 2.1 (Reach Control Problem (RCP)): Consider

system (1) defined on S. Find a feedback control u(x) such

that:

(i) For every x0 ∈ S there exist T ≥ 0 and γ > 0 such

that φu(t, x0) ∈ S for all t ∈ [0, T ], φu(T, x0) ∈ F0,

and φu(t, x0) /∈ S for all t ∈ (T, T + γ).
(ii) There exists ε > 0 such that for all x ∈ S, ‖Ax +

a+Bu(x)‖ > ε.

(iii) Feedback u(x) satisfies the invariance conditions (3)

on F0.

Definition 2.3: A point x0 ∈ S can reach F0 with

constraint in S with control class U, denoted by x0

S
−→ F0,

if there exists a control u of class U such that properties

(i)-(iii) of Problem 2.1 hold. We write S
S

−→ F0 by control

class U if for every x0 ∈ S, x0

S
−→ F0 with control of class

U.

Theorem 2.1: [7], [10] Given the system (1) and an affine

feedback u(x) = Kx + g, where K ∈ R
m×n, g ∈ R

m,

and u0 = u(v0), . . . , un = u(vn), the closed-loop system

satisfies S
S

−→ F0 if and only if

(a) The invariance conditions (2) hold.

(b) There is no equilibrium in S.

Let B = Im(B), the image of B. Define

O := { x ∈ R
n : Ax+ a ∈ B} .
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Notice that the vector field Ax + Bu + a on O can vanish

for an appropriate choice of u, so O is the set of all possible

equilibrium points of the system. Define

G := S ∩ O .

Associated with G is its vertex index set IG :=
{i | vi ∈ V ∩ G}. We make an important assumption con-

cerning the placement of O with respect to S. The reader

is referred to [3] for the motivation for and a method of

triangulation of the state space that achieves it.

Assumption 2.1: Simplex S and system (1) satisfy the

following condition: if G 6= ∅, then G is a κ-dimensional

face of S, where 0 ≤ κ ≤ n.

Theorem 2.2 ( [3]): Suppose G = ∅. If the invariance

conditions (2) are solvable, then S
S

−→ F0 by affine

feedback.

Theorem 2.3 ( [3]): Suppose Assumption 2.1 holds and

G 6= ∅. If the invariance conditions (2) are solvable and

B ∩ cone(S) 6= 0, then S
S

−→ F0 by affine feedback.

The primary conclusion of [3] is that RCP is solvable by

affine feedback if and only if it is solvable by continuous

state feedback. The goal of this paper is to solve RCP in

cases where continuous state feedback cannot be used. We

consider the following assumptions.

Assumption 2.2: Simplex S and system (1) satisfy the

following conditions.

(A1) G = co{v1, . . . , vκ+1}, with 0 ≤ κ < n.

(A2) B ∩ cone(S) = 0.

(A3) The maximum number of linearly independent vectors

in any set {b1, . . . , bκ+1 | bi ∈ B ∩Ci} (with only one

vector for each B ∩ Ci) is m̂ with 1 ≤ m̂ ≤ κ+ 1.

Assumption (A1) rules out the application of Theorem 2.2,

and it enforces that v0 6∈ O. The latter requirement is because

when v0 ∈ O and (A2) holds, then RCP is not solvable.

Assumption (A2) rules out the application of Theorem 2.3.

Finally, (A3) introduces a new condition in terms of the

variable m̂, which necessarily satisfies m̂ ≤ κ + 1. When

κ = m̂− 1, an affine feedback solves RCP, as stated below.

The remaining cases when κ ≥ m̂ are the topic of this paper.

Theorem 2.4 ( [3]): Suppose Assumption 2.2 holds. If the

invariance conditions (2) are solvable and m̂ = κ + 1, then

S
S

−→ F0 by affine feedback.

III. NECESSARY CONDITIONS

In this section we summarize necessary conditions for

solvability of RCP using open-loop controls. (Some proofs

in the paper are supressed due to space constraints). We say

that a function u : [0,∞) → R
m is an open-loop control if

it is bounded on any compact interval and it is measurable.

By Caratheodory’s theorem solutions of (1) using open-loop

controls exist and are unique.

Theorem 3.1: Suppose there exist open-loop controls such

that condition (i) of RCP holds. Then the invariance condi-

tions (2) are solvable.

Theorem 3.2: If S
S

−→ F0 by open-loop controls, then

B ∩ Ci 6= 0 , i ∈ IG .

IV. PIECEWISE AFFINE FEEDBACK

In this section we investigate the extent to which piecewise

affine feedback can solve RCP, in cases when continuous

state feedback cannot. We construct a triangulation of the

simplex S comprised of sub-simplices such that a sub-RCP

is solvable for each sub-simplex. Noteworthy is the way we

exploit the reach control indices. According to [4], the reach

control indices are defined under the following assumptions.

Assumption 4.1: Simplex S and system (1) satisfy the

following conditions.

(P1) G = co{v1, . . . , vκ+1}, where 0 ≤ κ < n.

(P2) B ∩ cone(S) = 0.

(P3) B̂ := sp{b1, . . . , bm̂ | bi ∈ B ∩ Ci}, where m̂ < κ+ 1.

(P4) B ∩ Ci 6= 0 , i ∈ IG .

Condition (P3) encodes the fact that there is a preferred ba-

sis that is maximal with respect to G in the sense of (A3). By

condition (P1), we have κ+1 = m̂+p for some p ≥ 1. Using

(P4), if we select any set {bm̂+1, . . . , bκ+1 | bi ∈ B∩Ci} and

we use {b1, . . . , bm̂} as in (P3), then p denotes the number

of linearly dependent vectors in the set {b1, . . . , bκ+1}.
Theorem 4.1 ( [4]): Suppose Assumption 4.1 hold. Then

there exist integers r1, . . . , rp ≥ 0 and a decomposition of
B into p subsets such that w.l.o.g. (reordering indices)

B ∩ Ci ⊂ B1 := sp{bm1
, . . . , bm1+r1−1} , i = m1, . . . , m1 + r1 − 1 ,

(4)

B ∩ Ci ⊂ B2 := sp{bm2
, . . . , bm2+r2−1} , i = m2, . . . , m2 + r2 − 1 (5)

.

.

.

B ∩ Ci ⊂ Bp := sp{bmp , bmp+rp−1} , i = mp, . . . ,mp + rp − 1 . (6)

where mk := r1 + · · · + rk−1 + 1 for k = 1, . . . , p and

r := r1 + · · ·+ rp.

The importance of the reach control indices stems from

their ability to isolate closed-loop equilibria when using

continuous state feedback. Define for k = 1, . . . , p

Ŝk := co
{
vmk

, . . . , vmk+rk−1

}
.

In [4] it was shown that each Ŝk contains a closed-loop

equilibrium when using continuous state feedback. We now

show a control method that breaks up the dependencies in B
to remove these equilibria.

Assumption 4.2: Simplex S and system (1) satisfy (P1)-

(P4) and also the following conditions.

(P5) ∃ {r1, . . . , rp} such that (4)-(6) hold.

(P6) Bk 6⊂ H0 := {y ∈ R
n | h0 · y = 0} , k = 1, . . . , p.

Condition (P5) comes directly from Theorem 4.1 while the

necessity of (P6) is stated below.

Lemma 4.1: If S
S

−→ F0 by open-loop controls, then

Bk 6⊂ H0 for each k = 1, . . . , p.

Definition 4.1: Given a state feedback u(x), we say u is a

piecewise affine feedback if there exists a triangulation T of

S such that for each (full-dimensional) Si ∈ T, there exist

Ki ∈ R
m×n and gi ∈ R

m such that u(x) = Kix + gi,
x ∈ Si.

This definition of piecewise affine feedback allows for dis-

continuities at boundaries of simplices. A discrete super-

visory controller will be introduced later to resolve which
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control value must be used at points lying in more than one

simplex, thus ensuring the feedback is well-defined.

We now explain in general terms an inductive procedure

for subdividing S in order that RCP can be solved by

piecewise affine feedback. First, an immediate consequence

of (P6) stated in Lemma 4.2 is that each subsimplex Ŝk, for

k = 1, . . . , p, has a vertex (among {vmk
, . . . , vmk+rk−1})

with bi ∈ B ∩ Ci pointing out of S. By convention, we

reorder indices so this vertex is the first one in each list

{vmk
, . . . , vmk+rk−1}. We make a subdivision of S by plac-

ing a new vertex v′ along the edge (v0, vmk
). In particular, at

the first iteration we would have v′ ∈ (v0, v1), and we form

two sub-simplices S1 and S ′ as in Figure 1. Lemma 4.4

shows that because bmk
∈ B ∩ Cmk

points out of S at vmk

and because the invariance conditions for S are solvable at

v0, a convexity argument gives that v′ can be placed along

(v0, vmk
) so that B∩cone(S1) 6= 0. Then in Lemma 4.5 one

applies Theorem 2.3 to obtain that RCP is solved for S1.

Essentially S1 can be removed from further consideration,

and the induction step is repeated with S replaced by the

remainder S ′. To guarantee that the induction is sound, one

must show that S ′ inherits the relevant properties of S,

especially condition (P6). This is done in Lemma 4.6.

Lemma 4.2: Suppose Assumption 4.2 holds. Then w.l.o.g.

(by reordering indices) h0 · bmk
> 0 for k = 1, . . . , p.

Proof: We prove the result for k = 1. If for any j ∈
{1, . . . , r1}, h0 · bj > 0, then the proof is finished. Instead

suppose that for all i ∈ {1, . . . , r1}, h0 · bi ≤ 0. Using (P6)

and by reordering the indices 1, . . . , r1, assume h0 · br1 < 0.

By Lemma 18 of [4] there exists b1 ∈ B ∩ C1 such that

b1 = c2b2 + · · ·+ cr1br1 , ci 6= 0, i = 2, . . . , r1 ,

and {b2, . . . , br1} are linearly independent. Let c :=
(c2, . . . , cr1). Define matrices H := [h2 · · ·hr1 ] and Y :=
[b2 · · · br1 ]. Since b1 ∈ C1, it satisfies the invariance condi-

tions:

HT b1 = HTY c � 0 .

By (P2) and Lemma 6.4 of [3], HTY is a non-singular M -

matrix. By Theorem 2.3 (case N39) of [1], this implies c � 0.

Since ci 6= 0, we have moreover c ≺ 0. Thus we obtain

h0 · b1 = h0 · (c2b2 + · · ·+ cr1br1) ≥ cr1h0 · br1 > 0 .

�

Following Lemma 4.2, suppose that b1 satisfies h0 ·b1 > 0.

We consider any point v′ in the open segment (v0, v1). That

is, let λ ∈ (0, 1) and define

v′ = λv1 + (1− λ)v0 . (7)

Now define the following sub-simplices of S:

S ′ = co{v0, v
′, v2, . . . , vn}

S1 = co{v′, v1, v2, . . . , vn} .

Also define the new exit facet for S ′ by

F ′
0 := co{v′, v2, . . . , vn} .

v0

v1v2

v′

h0

h1
h2

h′

S ′

S1

O

B

Fig. 1. Subdivision into two simplices S′ and S1.

See Figure 1. The following lemma provides a formula for

the normal vector h′ of F ′
0.

Lemma 4.3: Suppose h0 = −γ1h1−. . .−γnhn with γi >
0. Then the normal vector to F ′

0 pointing out of S1 is

h′ = γ1(1− λ)h1 − λh0 . (8)

Lemma 4.4: Suppose Assumption 4.2 holds. There exists

v′ ∈ (v0, v1), such that B ∩ cone(S1) 6= 0. Moreover, one

can choose b′ ∈ B ∩ cone(S1) such that h′ · b′ < 0.

Proof: Observe that cone(S1) = {y ∈ R
n | h′ · y ≤

0 , hj·y ≤ 0, j ∈ {2, · · · , n}}. We show there is an interval

of values for λ such that 0 6= b1 ∈ B ∩ cone(S1), where b1
is provided by Lemma 4.2. First, since b1 ∈ B∩C1 we know

hj ·b1 ≤ 0 for j ∈ {2, . . . , n}. We must only show that there

exists λ ∈ (0, 1) such that h′ · b1 < 0. From Lemma 4.3 we

have

h′ · b1 = γ1(1− λ)h1 · b1 − λh0 · b1 . (9)

Since h1 · b1 > 0 (because B ∩ cone(S) = 0) and h0 · b1 >
0 (by Lemma 4.2), it is clear from (9) that we can select

λ = λ′ sufficiently close to 1 such that h′ · b1 < 0. Setting

v′ = λ′v1 + (1− λ′)v0, we get b1 ∈ B ∩ cone(S1). �

Lemma 4.5: Suppose Assumption 4.2 holds. If the invari-

ance conditions for S are solvable, then S1 S1

−→ F0 by affine

feedback.

Proof: By Lemma 4.4, we have B ∩ cone(S1) 6= 0. We

show that the invariance conditions are solvable for S1. First,

consider the vertex v′. By assumption there exist control

inputs u0, u1 ∈ R
m such that the invariance conditions for

S at v0 and v1 are satisfied, i.e.

y0 := Av0 +Bu0 + a ∈ cone(S)

y1 := Av1 +Bu1 + a ∈ B ∩ C1 .

In particular, hj · yi ≤ 0 for i = 0, 1 and j = 2, . . . , n.

Now by Lemma 4.4, there exists λ ∈ (0, 1) such that with

v′ := λv1 + (1 − λ)v0, h′ · b1 < 0 and hj · b1 ≤ 0 for

j = 2, . . . , n. Let w1 be such that b1 = Bw1. Set ǫ1 > 0
and let u′ := λu1 + (1 − λ)u0 + ǫ1w1. Then

y′ := Av′ + Bu′ + a = λy1 + (1 − λ)y0 + ǫ1b1 .

Thus, hj ·y′ ≤ 0 for j = 2, . . . , n and for ǫ1 > 0 sufficiently

large, h′ · y′ < 0. That is, the invariance conditions for S1
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are solvable at v′.

Next consider v1. Since the invariance conditions for S1 at

v1 are identical to those for S at v1, and since the latter are

by assumption solvable, the former are also solvable. Finally,

consider vertices vi, i = 2, . . . , n. There exist control inputs

ui ∈ R
m such that

yi := Avi +Bui + a

satisfy hj · yi ≤ 0 for j = 2, . . . , i − 1, i + 1, . . . , n. As

above let w1 be such that b1 = Bw1. Set ǫ1 > 0 and let

u′
i := ui+ ǫ1w1. Then the closed-loop vector field for S1 at

vi is

y′i = Avi +Bu′
i + a = yi + ǫ1b1 .

Thus, hj · y′i ≤ 0 for j = 2, . . . , i − 1, i + 1, . . . , n and for

ǫ1 > 0 sufficiently large, h′ · y′i < 0. That is, the invariance

conditions for S1 are solvable at vi. In sum, we can apply

Theorem 2.3 to obtain that S1 S1

−→ F0 by affine feedback.

�

Lemma 4.6: Suppose Assumption 4.2 holds. If the invari-

ance conditions for S are solvable then

(i) The invariance conditions for S ′ are solvable.

(ii) (−h′) · bmk
> 0 , k = 2, . . . , p.

Proof: First we prove (i). By assumption the invariance

conditions are solvable for S, and since the invariance

conditions for S ′ are identical (the only facet that changed

for S ′ is F0, which plays no role in invariance conditions),

they are also solvable for S ′.

Next we prove (ii). Since bmk
∈ B ∩ Cmk

, we have h1 ·
bmk

≤ 0, for k = 2, . . . , p. Also by Lemma 4.2, h0 ·bmk
> 0,

for k = 2, . . . , p. Thus, using (8), for k = 2, . . . , p we have

(−h′) · bmk
= −γ1(1− λ)h1 · bmk

+ λh0 · bmk
> 0 .

�

We have demonstrated the first step of a triangulation

procedure that partitions S into sub-simplices on which

sub-reach control problems are solvable. Now we present

a triangulation algorithm that iterates on the presented

subdivision method. It consists of p iterations, one for

each set {vmk
, . . . , vmk+rk−1}, k = 1, . . . , p. The nota-

tion Sk := co{v′, v1, . . . , vn} is understood to mean that

all n + 1 vertices of Sk are assigned simultaneously in

the order presented. The vertices of Sk are later identi-

fied as {vk0 , . . . , v
k
n}. The algorithm generates subsimplices

S1, . . . ,Sp+1 starting from the given simplex S. At the kth

iteration, the current declaration of S is split into a lower

simplex Sk and an upper simplex. The lower simplex is then

“thrown away” and the remainder is declared to be S with

vertices called {v0, . . . , vn} (overloading the vertices of the

previous S).

Subdivision Algorithm:

1) Set k := 1.

2) Select v′ ∈ (v0, vmk
) such that B ∩ cone(Sk) 6= 0,

where Sk := co{v′, v1, . . . , vn}.

3) Set S := co{v0, v1, . . . , vmk−1, v
′, vmk+1, . . . , vn}.

4) If k < p, set k := k + 1 and go to step 2.

5) Set Sp+1 := S.

Let Fk
0 = co{vk1 , . . . , v

k
n} denote the exit facet of Sk . The

triangulation generated by the algorithm has the property that

Sk ∩ Sk−1 = Fk
0 , k = 2, . . . , p+ 1 ,

and closed-loop trajectories follow paths through sub-

simplices with decreasing indices. Thus, S
S

−→ F0 is

achieved by implementing affine controllers that achieve

Sk Sk

−→ Fk
0 for k = 1, . . . , p+ 1. In order to guarantee that

switching occurs in the proper sequence (with decreasing

simplex indices), and to avoid chattering caused by mea-

surement errors, a supervisor should accompany the imple-

mentation of the piecewise affine feedback. The supervisor

has two functions:

(i) Once the piecewise affine controller has switched to

simplex Sk, then all affine controllers for Sj , j > k,

are disabled.

(ii) The affine controller for Sj is released to Sj−1 only

after the closed-loop trajectory exits Sj . Thus, at a

point x ∈ Sj ∩ Sj−1, the controller for the simplex

with the higher index is used.

Theorem 4.2: Suppose Assumption 4.2 holds. If the in-

variance conditions for S are solvable, then S
S

−→ F0 by

piecewise affine feedback.

Proof: Form the triangulation {S1, . . . ,Sp+1} of S based

on the Subdivision Algorithm. To show that S
S

−→ F0 by

piecewise affine feedback, we first show that Sk Sk

−→ Fk
0 by

affine feedback for k = 1, . . . , p+ 1.

Lemmas 4.4 and 4.5 depend on two properties of S:

condition (P6) and solvability of its invariance conditions.

Let

S̃k := co{v0, v
k
1 , . . . , v

k
n} .

Then Sk ⊂ S̃k and S̃k takes the role of S in Lemmas 4.2,

4.4, and 4.5. Thus, we must verify that S̃k inherits the

needed properties of S. However, Lemma 4.6 guarantees

by an inductive argument that for each successor S̃k, the

invariance conditions remain solvable and (−hk) · bmk
> 0

for k = 2, . . . , p. The latter statement means that Lemma 4.2

applies to each Sk (with hk representing the kth iterate of

h′); and this, in turn, means Lemmas 4.4 and 4.5 also apply

to Sk ⊂ S̃k . We conclude Sk Sk

−→ Fk
0 by affine feedback

for k = 1, . . . , p.

Next consider Sp+1. By Lemma 4.6, the invariance con-
ditions for Sp+1 are solvable (Sp+1 and S share the same
invariance conditions since they only differ in their exit
facets). Now let Gp+1 := Sp+1 ∩O. Then by the algorithm,

Gp+1 = co{v2, . . . , vm2−1, vm2+1, . . . , vmp−1, vmp+1, . . . , vκ+1} .

We can see that the algorithm has removed the p vertices
v1, vm2

, . . . , vmp
and this has the effect to break up the

dependencies of B associated with G. There remain m̂
linearly indepedent vectors in B associated with Gp+1 (an
(m̂− 1)-dimensional simplex) given by

{b2, . . . , bm2−1, bm2+1, . . . , bmp−1, bmp+1, . . . , bκ+1} .
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Therefore, we can apply Theorem 2.4 to obtain Sp+1 Sp+1

−→
Fp+1

0 .

Next we verify conditions (ii) and (iii) of RCP. Condition

(ii) follows immediately because there are a finite number

of affine feedbacks uk(x) each defined on a compact

set Sk that does not contain an equilibrium. For (iii) we

must verify that the invariance conditions for S hold on

the vertices of F0. The exit facet of Sp+1 is Fp+1

0 =
co{v10 , vm1+1, . . . , vm1+r1−1, . . . , v

p
0 , vmp+1, . . . , vr, vr+1,

. . . , vn}. The invariance conditions for Sp+1 are identical

to those for S and the controller for Sp+1 takes precedence

over controllers for simplices with lower index. This implies

that the invariance conditions of S hold at all vertices of

Fp+1

0 . The only vertices of F0 that are not in Fp+1

0 are

vm1
, vm2

, . . . , vmp
. For these vertices we have: vm1

∈ S1,

vm2
∈ S1∩S2,...,vmp

∈ S1∩· · ·∩Sp. We use the controller

for the simplex with the highest index. Now the invariance

conditions for Sk at vmk
are precisely those for S. We can

see this because the invariances conditions for vmk
do not

include the normal vector hk.

Finally, we must prove that trajectories progress through

sub-simplices with decreasing indices (thereby guaranteeing

that the supervisor cannot block). Consider w.l.og. the bound-

ary between S1 and S2 given by F1
0 = co{v′, v2, . . . , vn},

and let u = K1x + g1 be the affine feedback obtained for

S1. We must show that for any x0 ∈ S1 \ F1
0 , closed-loop

trajectories do not reach F1
0 . This can be deduced from the

proof of Lemma 4.5 where it is shown that the controls

{u′, u2, . . . , un} can be selected so that

h′ · (Av′ +Bu′ + a) < 0

h′ · (Avi +Bui + a) < 0 , i = 2, . . . , n .

By convexity, h′ ·(Ax+B(K1x+g1)+a) < 0 for all x ∈ F1
0 ,

from which the result easily follows. �

V. MAIN RESULT

Theorem 5.1: Suppose Assumption 2.1 holds. Then the

following statements are equivalent:

1) S
S

−→ F0 by piecewise affine feedback.

2) S
S

−→ F0 by open-loop controls.

Proof: (1) =⇒ (2) is obvious.

(2) =⇒ (1) Suppose S
S

−→ F0 by open-loop controls.

By Theorem 3.1, the invariance conditions are solvable. Let

G := S ∩ O. If G = ∅, then by Theorem 2.2, S
S

−→ F0 by

affine feedback. Suppose instead G 6= ∅. If B∩cone(S) 6= 0,

then by Theorem 2.3, S
S

−→ F0 by affine feedback. Suppose

instead B ∩ cone(S) = 0. From Theorem 3.2, v0 6∈ G,

so by reordering indices, G = co{v1, . . . , vκ+1}, where

0 ≤ κ < n. Define B̂ = sp{b1, . . . , bm̂ | bi ∈ B ∩ Ci}
where {b1, . . . , bm̂} is a maximal set with respect to G. By

Theorem 3.2, B ∩ Ci 6= 0 for i ∈ IG . If κ < m̂, then

by Theorem 2.4, S
S

−→ F0 by affine feedback. Suppose

instead κ ≥ m̂. Then Assumption 4.1 holds. The reach

control indices can be defined, yielding a decomposition

of B̂ into B̂1, . . . , B̂p. Lemma 4.1 gives Bk 6⊂ H0 for
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Fig. 2. Closed-loop vector field using affine feedback.

k = 1, . . . , p. Thus, all conditions of Assumption 4.2 hold.

By Theorem 4.2, S
S

−→ F0 by piecewise affine feedback. �

VI. EXAMPLES

A. Example 1

Consider a simplex S determined by vertices v0 =
(−1, 1), v1 = (1, 0) and v2 = (0, 0), and consider the affine

system

ẋ =

[
0 1
0 0

]
x+

[
0
1

]
u+

[
0
0

]
.

We have

O = {x | x2 = 0} .

Hence S∩O = G = co{v1, v2}, κ = 1, and m = 1. Also we

note that B∩cone(S) = 0. By the results of [3] the problem

is not solvable by continuous state feedback. For example,

suppose we choose control values at the vertices to satisfy

the invariance conditions: u0 = − 3

4
, u1 = −1, and u2 = 1.

This yields an affine feedback

u =
[
−2 −3.75

]
x+ 1 .

Simulation of the closed-loop system is shown in Figure 2.

The vector field satisfies the invariance conditions; however,

there exists an equilibrium point on G = co{v1, v2}. Now we

show the problem is solvable by piecewise affine feedback.

According to the Subdivision Algorithm, we choose v′ =
(0.5, 0.25) so that B ∩ cone(S1) 6= 0. Then S2 :=
co{v0, v

′, v2}, S1 := co{v′, v1, v2}, F ′
0 = co{v′, v2}, and

h′ = (−0.25, 0.5). To satisfy the invariance conditions for

S2 we choose control inputs at the vertices to be u0 = − 3

4
,

u′ = −1, and u22 = 1. To satisfy invariance conditions for

S1 we choose control inputs at the vertices to be u′ = −1,

u1 = −1, and u12 = −1. The piecewise affine feedback is

u =

{ [
0 0

]
x− 1 , x ∈ S1

[
−2.0833 −3.833

]
x+ 1 , x ∈ S2 .

The closed-loop vector field is shown in Figure 3, where it

is clear that RCP is solved.

B. Example 2

Consider the simplex S in R
4 defined by the vertices

v0 = (0, 0, 0, 0), v1 = (1, 0, 0, 0), v2 = (0, 1, 0, 0), v3 =

2637
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Fig. 3. Closed-loop vector field using piecewise affine feedback.

(0, 0, 1, 0), and v4 = (0, 0, 0, 1). Consider also the affine

dynamics on S

ẋ =




−3 −3 −3 1
0 0 0 −2

−3 −3 −3 1
0 0 0 −2


x+




0 −2
0 1

−2 0
1 0


u+




1
1
1
1


 .

We have

O = {x | x1 + x2 + x3 + x4 − 1 = 0} .

Thus, G = F0, and we note that κ = 3, m = 2, and B ∩
cone(S) = 0. By the results of [3], RCP is not solvable by

continuous state feedback. Now we show it is solvable by

piecewise affine feedback.

First we examine the structure of B to reveal the reach

control indices (note indices are not reordered). We find by

inspect that b1 := (−2, 1, 0, 0) ∈ B∩C1, b3 := (0, 0,−2, 1) ∈
B ∩ C3, and B = sp{b1, b3}. Therefore, B splits into two

dependent cycles with respect to G. In particular, b2 :=
−b1 ∈ B ∩ C2, b4 := −b3 ∈ B ∩ C4, r1 = 2 and r2 = 2.

1) First subdivision: In the first iteration S is subdivided

into subsimplices S1 and S ′. Since b2 · h0 > 0, we choose

v′ = (0, 0.75, 0, 0) ∈ (v0, v2) such that we obtain the condi-

tion B ∩ cone(S1) 6= 0. Hence S ′ = conv{v0, v1, v′, v3, v4}
and S1 = conv{v′, v1, v2, v3, v4}.

In order to satisfy the invariance conditions for S1 the con-

trol inputs at the vertices of S1 are chosen as u′ = (−1,−2),
u11 = (−1,−2), u12 = (−1,−2), u13 = (−1,−2), and

u14 = (1, 0). This yields an affine feedback

u =

[
0 0 0 2
0 0 0 2

]
x+

[
−1
−2

]
, x ∈ S1 .

For S1 the invariance conditions are solvable and B ∩
cone(S1) 6= 0, so RCP on S1 is solvable. For S ′ we have

G′ := S ′ ∩ O = co{v1, v3, v4}. Since κ′ = 2 and m = 2,

RCP is not solvable by continuous state feedback on S ′, and

further subdivision of S ′ is required.

2) Second subdivision: Consider the subsimplex S ′ =
co{v0, v1, v′, v3, v4}, where v′ ∈ (v0, v2) = (0, 0.75, 0, 0)
and the exit facet is F ′

0 =conv{v1, v′, v3, v4}. We subdivide

S ′ into subsimplices S3 and S2 and use a piecewise affine

feedback law to solve RCP on S ′. It is clear that b4 · h
′
0 >

0 and therefore we can choose v′′ ∈ (v0, v4) such that

B ∩ cone(S2) 6= 0. One choice is v′′ := (0, 0, 0, 0.8). Let

S3 = co{v0, v1, v
′, v3, v

′′} and S2 = co{v′′, v1, v
′, v3, v4}.

It can be verified that B ∩ cone(S2) 6= 0. In order to satisfy

the invariance conditions for S2 the control inputs at the

vertices of S2 can be chosen as follows: u′′ = (−4, 0.6),
u21 = (−5,−1), u′ = (−1,−2), u23 = (−5,−1), u24 =
(−3, 1). In order to satisfy the invariance conditions for

S3 the control inputs at the vertices of S3 can be chosen

as follows: u0 = (0, 0), u31 = (−1, 0), u′ = (−1,−2),
u33 = (0,−1), and u′′ = (−4, 0.6). This yields a piecewise

affine feedback

u =





[
−1 −1.33 0 −5
0 −2.66 −1 0.75

]
x , x ∈ S3

[
3 9.33 3 5
0 −1.33 0 2

]
x+

[
−8
−1

]
, x ∈ S2 .

For S2 the invariance conditions are solvable and B ∩
cone(S2) 6= 0, so RCP on S2 is solvable. For S3 we have

G3 = S3 ∩ O = co{v1, v3}. Since κ3 = 1 and m = 2, RCP

is solvable by affine feedback. Indeed, {b1, b3 | bi ∈ B ∩Ci}
is a linearly independent set associated with G3.

VII. CONCLUSION

The paper studies the reach control problem on simplices,

and we investigate cases when the problem is not solvable

by continuous state feedback. It is shown that the class of

piecewise affine feedbacks is sufficient to solve the problem

in all cases of interest; namely, those cases when the problem

is solvable by open-loop controls.
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