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Abstract— Sliding-mode observers are used to construct
unknown input estimators. Then, these unknown input es-
timators are combined with sensor fault estimation schemes
into one architecture that employs two sliding-mode observers
for simultaneously estimating the plant’s actuator faults (part
of the unknown input) and detecting sensor faults. Closed
form expressions are presented for the estimates of unknown
inputs and sensor faults. A benchmark example of a controlled
inverted pendulum system from the literature is utilized in the
simulation study. The study shows that the observers analyzed
in this paper generate good estimates of the unknown input
and sensor faults signals in noisy environments for nonlinear
plants.

I. INTRODUCTION

Sliding-mode observers for dynamic systems with un-

known inputs have recently found applications in robust

detection and reconstruction of actuator and sensor faults [1],

[2], [3], [4] and fault detection and isolation (FDI) [5]. In

particular, the purpose of the FDI scheme is to generate

an alarm when a fault, such as a component malfunction,

develops in the process being monitored and to identify the

location of the fault.

In almost all of the above referenced papers, the authors

use the Edwards-Spurgeon sliding mode observer to estimate

sensor or actuator faults. One of the objectives of this paper is

to demonstrate the feasibility of other sliding mode unknown

input observation schemes for fault detection. In this paper,

sliding-mode observers are used to construct unknown input

estimators. The unknown input could represent a combina-

tion of actuator faults and unmodeled system dynamics and

uncertainties. The design of sliding-mode observer based

sensor fault estimators is also considered. In the proposed

schemes, Utkin’s [6] sliding-mode observer and the sliding-

mode observer proposed by the authors in [7] are employed.

In Yan and Edwards [3], actuator fault detection schemes

are proposed for nonlinear systems using the Edwards-

Spurgeon sliding-mode observer. Sensor fault detection

schemes are advanced in [1], [4]. In these schemes, when

considering sensor faults, bounded uncertainties can be

present, however, it is assumed that there are no actuator

faults. In [1], the proposed method for estimating sensor

faults is based on filtering the faulty plant output. In [4], the
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fault signal to be estimated is augmented with the plant state

vector. Then, the Edwards-Spurgeon sliding-mode observer

is designed for the augmented system.

In this paper, the proposed unknown input and sensor fault

estimation schemes are combined into one architecture that

employs two sliding-mode observers for simultaneously esti-

mating the plant’s actuator faults (part of the unknown input)

and detecting sensor faults. In this architecture, a designer

can use two of the same type of observers considered in this

paper or their combination. In this scheme, an estimate of the

unknown input is combined with the output of the second

sliding-mode observer to obtain an estimate of the sensor

fault. As in Edwards and Spurgeon [8] and Edwards et al. [9],

the sliding-mode observers used in this study feed back the

output observation error through discontinuous terms that

induce a sliding motion in the state observation error space.

The efficacy of the proposed designs is tested on the

controlled inverted pendulum system from Edwards and

Spurgeon [8]. In the observers’ design, the linearized model

of the above plant is used, however, in the simulations, the

nonlinear model is employed to demonstrate the feasibility of

the proposed architectures. The study includes a demonstra-

tion of the robustness of the methods by using the nonlinear

plant model in the simulations and by adding zero mean

uniform and Gaussian noise to the input and output signals

of the system.

II. DESIGN MODEL

The estimator designs are based on a linearized model of

a given nonlinear plant model. The linear model used in the

design has the form

ẋ = Ax + B1u1 + Bdud + Bafa (1)

y = Cx, (2)

where A ∈ R
n×n

, the input matrix B1 ∈ R
n×m1

, Bd ∈
R

n×md

, Ba ∈ R
n×ma

, and the output matrix C ∈ R
p×n

.

The vector function u1 is the plant’s control input. The vector

function ud = ud(t, x, u1) may model lumped uncertainties

or nonlinearities in the plant, as well as input disturbance.

The vector function fa models the actuator fault. It is

assumed that the model parameters A, B1, Bd, Ba, and

C are known. Note that the plant’s inputs ud and fa

are assumed to be unknown. The two unknown inputs are

combined into one and defined to be u2. That is,

u2 =
[

u⊤
d f⊤

a

]⊤
.

Correspondingly, the unknown input matrix is formed as,

B2 =
[

Bd Ba

]

,
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where B2 ∈ R
n×m2

. Taking the above notation into account,

the design model (1) is represented as

ẋ = Ax + B1u1 + B2u2, (3)

It is also assumed that u2 is bounded, that is, there exists a

nonnegative real number, ρ, such that ‖u2‖ ≤ ρ. Next, it is

also assumed that the pair (A, C) is observable and that the

uncertainty distribution matrix, B2, satisfies the condition

rank CB2 = rank B2 = m2, (4)

that is, CB2 is a full column rank matrix, which implies that

p ≥ m2. Furthermore, it is also assumed that rank C = p.

III. CONSTRUCTION OF UNKNOWN INPUT ESTIMATORS

In this section, the design of two different unknown input

estimators is considered. The unknown input estimates are

obtained by processing the output signal of a nonlinear

component of the observer used to construct the unknown

input estimator.

A. Utkin’s Sliding-Mode Observer Based Unknown Input

Estimator

In [10], Utkin’s sliding-mode observer was applied to

estimate the states of systems with unknown inputs. In

this section, the aforementioned design is used to construct

an unknown input estimator. To proceed, the uncertain

model given by (1) and (2) is transformed into new coordi-

nates. This transformation was suggested by Luenberger [11,

page 305] and it has the form,

x̃ =

[

N

C

]

x = Tx =

[

x̃1

y

]

, (5)

where the submatrix N ∈ R
(n−p)×n

is such that detT 6= 0.

The transformed system has the form
[

˙̃x1

ẏ

]

=

[

A11 A12

A21 A22

] [

x̃1

y

]

+

[

B11

B12

]

u1

+

[

B21

B22

]

u2. (6)

Note that CB2 = B22. Thus, B22 is a full column rank

matrix and therefore there exists a matrix B
†
22 such that

B
†
22B22 = Im2

. Next, the following transformation,
[

x̄1

y

]

=

[

In−p −B21B
†
22

O Ip

] [

x̃1

y

]

, (7)

is applied to the model given by (6) to obtain
[

˙̄x1

ẏ

]

=

[

Ā11 Ā12

Ā21 Ā22

] [

x̄1

y

]

+

[

B̄11

B̄12

]

u1

+

[

O

B̄22

]

u2, (8)

where B̄22 ∈ R
p×m2

. The assumption that the pair (A, C)
is observable implies that the pair (Ā11, Ā21) is also ob-

servable and hence we can select a matrix L̄1 so that the

matrix (Ā11 − L̄1Ā21) has all its eigenvalues in prescribed

locations, symmetric with respect to the real axis, in the open

left-half plane. For systems modeled by (8), an observer of

the form
[

˙̂x1

˙̂y

]

=

[

Ā11 Ā12

Ā21 Ā22

] [

x̂1

ŷ

]

+

[

B̄11

B̄12

]

u1

+

[

L̄1

Ip

]

v, (9)

can be constructed. The nonlinear injection function v is

given by v = Msign (ey), where ey = y − ŷ and the gain

M > 0 is a design parameter. For other forms of the injection

function, the reader is referred to [10]. It is important to

emphasize that the vector ey = y − ŷ is available, so it can

be used in the observer synthesis. Let e1 = x̄1 − x̂1. Then

subtracting (8) from (9), we obtain
[

ė1

ėy

]

=

[

Ā11 Ā12

Ā21 Ā22

] [

e1

ey

]

−

[

L̄1

Ip

]

v

+

[

O

B̄22

]

u2. (10)

The error system is transformed using
[

ẽ1

ey

]

=

[

In−p −L̄1

O Ip

] [

e1

ey

]

. (11)

The error system in the new coordinates takes the form
[

˙̃e1

ėy

]

=

[

Ã11 Ã12

Ã21 Ã22

] [

ẽ1

ey

]

−

[

O

Ip

]

v

+

[

−L̄1B̄22

B̄22

]

u2, (12)

where Ã11 = Ā11−L̄1Ā21, Ã12 = Ā12−L̄1Ā22+Ã11L̄1,

and Ã22 = Ā22 + Ā21L̄1. Note that by design, the matrix

Ã11 is asymptotically stable. To proceed, the equivalent

control method [8, p. 7] is used to obtain an expression for

an estimate of the unknown input. It is assumed that the

error system (12) is in sliding along ey = 0. Therefore,
˙̃e1 = 0 and ėy = 0. Taking the above into account we

obtain, ẽ1 = Ã
−1

11 L̄1B̄22u2 and Ã21ẽ1−veq +B̄22u2 = 0,

where veq is the “equivalent control” that induces a sliding-

mode. Solving the above system of equations for u2 yields

the following estimate for u2,

u2 ≈
((

Ip + Ã21Ã
−1

11 L̄1

)

B̄22

)†

veq (13)

B. A Sliding-Mode Observer [7] Based Unknown Input

Estimator

In [7], a sliding-mode observer was designed to estimate

the states of systems with unknown inputs. In this section, the

aforementioned design is used to construct an unknown input

estimator. A Lyapunov second method approach is taken to

synthesize and analyze the sliding-mode observer for the

system modeled by (1) and (2). Let x̂ be an estimate of

x and let e(t) = x(t) − x̂(t) denote the state estimation

error. The observability of (A, C) implies the existence

of a matrix L ∈ R
n×p

such that the matrix (A − LC)
has prescribed (symmetric with respect to the real axis)

eigenvalues in the open left-half plane. Because (A − LC)
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is asymptotically stable, there is a P = P⊤ > 0 such

that (A − LC)
⊤

P + P (A − LC) < 0, and for some

F ∈ R
m1×p

, FC = B⊤
2 P . The last condition is needed

to ensure the realizability of the state estimator. Necessary

and sufficient conditions for the existence of the triple of

matrices (L, F , P ) such that the above two conditions are

satisfied are given in [7]. To proceed, define the injection

function

E (e, κ) =

{

κ FCe
‖FCe‖2

for FCe 6= 0

0 for FCe = 0,

where κ ≥ 0 is a design parameter. Note that if the plant

is single-input, then E(e, κ) = κ sign (FCe). Using the

arguments from [12], it can be shown that the state x̂ of

the dynamic system

˙̂x = (A − LC) x̂ + B2E(e, κ) + Ly + B1u1, (14)

for κ ≥ ρ, is an asymptotic estimate of the state x of the

system described by (1) and (2), that is,

lim
t→∞

e(t) = lim
t→∞

(x(t) − x̂(t)) = 0.

The differential equation describing the estimation error is

ė = ẋ − ˙̂x = (A − LC)e − B2E(e, κ) + B2u2. (15)

Since B2 has full rank, we have the approximation

u2 ≈ E(e, κ) (16)

IV. ESTIMATING SENSOR FAULTS

In this section, the problem of detecting faults in the output

channels i.e. sensor faults is analyzed. It is assumed that the

plant output has the form

y = Cx + fo, (17)

where the function fo models the sensor fault. The

Utkin sliding-mode observer and the sliding-mode observer

from [7] are used to construct sensor fault detectors.

A. Utkin’s Sliding-Mode Observer Based Sensor Fault Esti-

mator

First, the Utkin’s sliding-mode observer based sensor fault

estimator is designed. Taking into account that now the plant

output contains the fault fo as given by (17), the error

dynamics given by (10) take the form,
[

ė1

ėy

]

=

[

Ā11 Ā12

Ā21 Ā22

] [

e1

ey

]

−

[

Ā12

Ā22

]

fo

−

[

L̄1

Ip

]

v +

[

O

B̄22

]

u2 +

[

O

ḟo

]

. (18)

Using (11), the error dynamics become,
[

˙̃e1

ėy

]

=

[

Ã11 Ã12

Ã21 Ã22

] [

ẽ1

ey

]

−

[

Ã12

Ã22

]

fo

−

[

O

Ip

]

v +

[

−L̄1B̄22

B̄22

]

u2

+

[

−L̄1ḟ o

ḟo

]

. (19)

Fig. 1. A block diagram of combined unknown input estimator and sensor
fault detector.

Assuming that the system is in sliding along ey = 0, we

have ˙̃e1 = 0 and ėy = 0. Taking the above into account we

obtain,

ẽ1 = Ã
−1

11 Ã12fo + Ã
−1

11 L̄1B̄22u2 + Ã
−1

11 L̄1ḟo (20)

and

0 = Ã21ẽ1 − Ã22f o − veq + B̄22u2 + ḟ o. (21)

Let Afeq =
(

Ã22 − Ã21Ã
−1

11 Ã12

)†

. Combining (20)

and (21), and performing some simple manipulations, the

expression for the estimate of the sensor fault in terms of

the “equivalent” error injection term is obtained as,

f o≈−Afeqveq

+ Afeq

(

Ip + Ã21Ã
−1

11 L̄1

) (

ḟo + B̄22u2

)

. (22)

In the above, the generalized inverse is taken instead of the

usual inverse because the matrix
(

Ã22 − Ã21Ã
−1

11 Ã12

)

may

be singular, as it is the case in our numerical experiment

example in the following section.

It should be noted that in (22), we do not have access to

u2 since it is unknown. We can, however, obtain an estimate

of the unknown input, denoted û2, using the architecture

described in Section III. Furthermore we also assume that

fo is slow varying so ḟo ≈ 0.

The proposed unknown input and sensor fault estimation

schemes are combined into one architecture that employs

two sliding-mode observers for simultaneously estimating

the plant’s actuator faults (part of the unknown input) and

detecting sensor faults. The first observer is used to construct

an estimate of the unknown input (containing disturbances

and actuator faults). The second sliding-mode observer is

designed to detect sensor faults and it uses the estimates of

the unknown input. A block diagram of this architecture is

shown in Figure 1. The following estimate is obtained,

fo ≈ −Afeq

(

veq −
(

Ip + Ã21Ã
−1

11 L̄1

)

B̄22û2

)

, (23)

which is adequate for simple disturbances as the simulations

will demonstrate.
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B. A Sliding-Mode Observer [7] Based Sensor Fault Esti-

mator

The design of the sliding-mode observer [7] based sensor

fault estimator is now considered. Using (3), (14) and (17),

we obtain

ėy = Cė + ḟ o = C(A − LC)e

+ CB2(u2 − E(e, κ)) − CLfo + ḟo.

It is assumed that E(e, κ) is selected so that the above

system is in sliding along Fey = 0 and that ‖e‖ is small.

This implies the following expression for the “equivalent”

E,

0 = −FCB2Eeq − FCLfo + FCB2u2 + F ḟ o. (24)

An estimate of the fault f o can be obtained as

f o ≈ − (FCL)† (FCB2)Eeq

+ (FCL)
†
(

FCB2u2 + F ḟo

)

. (25)

It is assumed that fo is slow varying so ḟo ≈ 0. An

estimate of the unknown input u2 using the architecture

from Section III is used to obtain the following sensor fault

estimate,

fo ≈ − (FCL)
†
(FCB2) (Eeq − û2) (26)

V. NUMERICAL EXPERIMENTS

A. Plant and Noise Models

The model used to test the performance of the estimators

is a pendulum-balancer from [9]. The modeling equations

are: (M + m)ẍ + Fxẋ + ml(θ̈ cos θ − θ̇2 sin θ) = u and

Jθ̈+Fθθ̇−mlg sin θ+mlẍ cos θ = 0. The system parameter

values are given in Table I. The state variables are as in [9],

TABLE I

PARAMETERS FOR THE INVERTED PENDULUM SYSTEM [8, P. 119].

M m J l Fx Fθ g

Values 3.2 0.535 0.062 0.365 6.2 0.009 9.807

Units kg kg kg·m2 m kg/s kg·m2 m/s2

that is; x1 = x, x2 = θ, x3 = ẋ, and x4 = θ̇. The system is

linearized about the origin giving

A =









0 0 1 0
0 0 0 1
0 −1.9333 −1.9872 0.0091
0 36.9771 6.2589 −0.1738









,

B1 = Ba = Bd =









0
0

0.3205
−1.0095









,

and

C =





1 0 0 0
0 1 0 0
0 0 1 0



 .
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Fig. 2. Estimation of the unknown input corrupted by the Gaussian noise
using Utkin’s observer.

The linearized plant model is used to construct the un-

known input and sensor fault estimators. However, in the

simulations, our designs are tested on the nonlinear plant

model. Since the plant is unstable, a stabilizing feedback

controller using the state estimates, x̂, is used to stabilize it,

u1 = −kx̂, where

k =
[

−41.2181 −171.6711 −43.1215 −29.3803
]

.

B. Unknown Input Estimation

The unknown input for the system has the form,

u2(t) = 0.1 sin(4t) + max

{

0, 1 −
|t − 10|

5

}

,

where the disturbance is modeled as a sinusoid with fre-

quency 4 radians per second and the actuator fault is the tri-

angle function defined above. A nonzero initial state x(0) =
[0.10, −0.05, 0.15, 0.05]

⊤
is used in all the simulations. A

Gaussian noise model with zero mean and variance 0.01 at

the unknown input and independent zero mean Gaussian with

variance 0.001 is introduced at each measurement channel.

The sample rate of the noise is 0.1 second. The estimated

unknown input is obtained by filtering the signal obtained

from (16) or (13). The filter used is a first order lowpass

filter with the transfer function

H(s) =
1

τs + 1
where τ = 0.15.

It can be seen from Figure 2 that Utkin’s observer yields good

estimates of the unknown input in the presence of Gaussian

noise. This unknown input estimator also performs equally

well in the presence of uniform noise.

Next, the unknown input estimator constructed using the

sliding-mode observer from [7] is used to estimate the

unknown input. This observer also estimates the unknown

input exceptionally well in the presence of Gaussian noise

as can be seen from Figure 3.

C. Sensor Fault Estimation

In this section, simulations involving the response of

sensor fault detectors, constructed using the Utkin and the

observer from [7] are presented. The unknown input for
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Fig. 3. Estimation of the unknown input corrupted by the Gaussian noise
using observer from [7].

our system contains both bounded disturbances and actuator

faults and is given as

u2(t) = 0.1 sin(4t) + max

{

0, 1 −
|t − 10|

5

}

.

The sensor fault is modeled as

fo(t) = 0.5 max

{

0, 1 −
|t − 10|

5

}

. (27)

and is corrupted by noise that is uniform on [−0.05, 0.05].
The sample rate of the noise is 0.1 second. In the estimation

of the sensor fault, the output of the nonlinear injection term

is filtered using a first order lowpass filter with τ = 0.3.

Using Utkin’s observer, when the fault is on output chan-

nel 1, which is also corrupted by uniform measurement noise,

the responses of the three detectors are shown in Figure 4.

It can be seen that the detectors are not able to pick up the

fault since the matrix Afeq in (23) has zero first row, which

makes fo1 = 0. However, it can be seen that the detector on

channel 3 approximates the negative derivative of the fault

signal. It is interesting to note that in a similar experiment

performed by Edwards-Spurgeon in [8], [9], the detector on

channel 3 constructed using their observer also estimated the

negative derivative of the sensor fault.

The detectors are able to easily detect the sensor faults

affecting channel 2 and 3, respectively, as can be seen in

Figures 5 and 6. It can also be seen from the above figures

that the estimates of the unknown input are very close to

the actual signal. In summary, it can be said that the Utkin

observer based fault detector has the ability to detect and

isolate the sensor faults, that is, the fault on channel 2 is

detected by the second detector and the fault on channel 3

is detected by the third detector.

Using the observer from [7], when the fault is on the

first output channel corrupted by uniform noise, the response

of the detectors are shown in Figure 7. It can be seen

that once again the fault affecting channel 1 cannot be

successfully estimated by the detectors. However, the sensor

faults affecting channel 2 and 3, respectively, are picked up in

both cases by the detectors of channel 3 as seen in Figures 8
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Fig. 4. Response of detectors to fault on the first output channel with
uniform noise using Utkin’s observer.
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Fig. 5. Response of detectors to fault on the second output channel with
uniform noise using Utkin’s observer.
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Fig. 6. Response of detectors to fault on the third output channel with
uniform noise using Utkin’s observer.
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Fig. 7. Response of detectors to fault on the first output channel with
uniform noise using observer from [7].
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Fig. 8. Response of detectors to fault on the second output channel with
uniform noise using observer from [7].

and 9. It can also be seen from the above figures that the

estimates of the unknown input are very close to the actual

signal. Since F has the form [0 0 0.3205], the faults are

always picked up by the detectors on channel 3, thereby

making it difficult to distinguish between faults in different

channels as is also noted in [8, p. 153].

VI. CONCLUSIONS

In this paper, unknown input estimators and sensor fault

detectors based on the Utkin observer analyzed in [10] and

the sliding-mode unknown input observer proposed in [7]

were considered. The construction of the observers requires

that the matrix rank condition, rank B2 = rank CB2, be

satisfied. That is, the first Markov parameter from the un-

known input to the output must be full rank. If the above

condition is not satisfied, the methods recently proposed by

Kalsi et al. [13], Tan et al. [2], or by Tan and Edwards [14]

can be used to construct the unknown input and sensor

fault detectors. An interesting open problem is to apply

the architectures presented in this paper to construct robust

sensor and fault isolation schemes proposed by Chen and

Patton [15, pp. 80–81]. Another open problem is to extend

the approach advanced in this paper to uncertain nonlinear

systems.
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Fig. 9. Response of detectors to fault on the third output channel with
uniform noise using observer from [7].
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