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Computationally Implementable Sufficient Conditions for the
Synchronisation of Coupled Dynamical Systems with Time Delays in
the Coupling

Elias August, Yonggiang Wang, Francis J. Doyle, III, James Lu and Heinz Koeppl

Abstract— Understanding the mechanisms behind synchro-
nisation of coupled systems is important in biology, chemistry,
physics and engineering. For example, research on the synchro-
nisation of coupled circadian clocks is of much importance to
better understand many different disease states. Or, different
applications in engineering require certificates for synchronised
behaviour between the different coupled subsystems. Such
systems could correspond to tethered space vehicles or to
vehicles in formation flight. In this paper, we provide sufficient
conditions for the synchronisation of coupled identical nonlinear
dynamical systems with time delays in the coupling, which
makes the modelling more realistic. Importantly, the conditions
can be efficiently checked using semi-definite programming
techniques, which we illustrate through applications.

NOTATION

R, R™*™ real numbers, m X n real matrices

e ,---,1%

A;j (4,7)th entry of matrix A € R™*"

1 the identity matrix

diag(A) a vector of length n if A € R™"*™,
where diag(A); = Aj;

diag(z) a diagonal matrix € R"*™ if z € R",
where diag(z);; = x;

AT transpose of matrix A € R™*"

T derivative of x w. r. t. the time variable ¢

® Kronecker product

A>0 positive definite matrix: 27 Az > 0 Va
ifx#0,zeR"”, AecR""

trace(A)  trace of matrix A: > | A;;, A€ R™¥"

I. INTRODUCTION

Synchronisation of behaviour plays an important role
in many fields, for example, in decentralised control of
automatic space or underwater vehicles, where cohort mem-
bers communicate only with close neighbours [1]. Another
example is the spread of epidemics [2], [3], where the
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dynamics are governed by major cities with a constant
outflow and inflow of infected, who travel between them.
Generally speaking, in biology, on the one hand, identifying
the conditions that lead to synchronisation is often important
for the understanding of many systems [4], [5], [6]. In
engineering, on the other hand, for many connected systems
synchronisation has to be guaranteed [7], [8].

A numerical approach to check whether coupled identical
dynamical systems synchronise locally was introduced by
Pecora and Carroll in [9]. Sufficient conditions that guar-
antee global complete synchronisation (or, in other word,
asymptotic stability of the synchronised state) of a system
of coupled identical oscillators and that can be checked
analytically, albeit not easily, were developed independently
of each other by Wu [10], [11], Belykh and colleagues [12],
[13] and Slotine and colleagues [14], [15]. The approaches
are different but related and based on graph theory and
Lyapunov stability theory (or contraction theory). Signifi-
cantly, these sufficent conditions can be efficiently checked
computationally for systems involving trigonometric, polyno-
mial or rational functions using semi-definite programming
techniques, which we demonstrated in [16].

Clearly, including delays in the coupling makes the models
much more realistic, as often responses to signals, that are
sent from each subsystem, arrive with delay. In this paper,
we provide novel sufficient conditions for synchronisation
of coupled identical nonlinear systems with time delays in
the coupling. These conditions are independent of the time
delays and — if fulfilled — hold also for strong coupling albeit
the delay in the coupling between subsystems. Importantly,
they can also be efficiently checked computationally for
systems involving trigonometric, polynomial or rational func-
tions. Others have investigated synchronisation in systems
with time lags in the coupling. However, their work differs
notably from ours. Wu’s approach in [17] requires that the
time-delayed coupling is relatively weak as opposed to the
results presented here. In [18], the systems considered consist
only of a delayed linear coupling protocol, while in [19] only
two coupled identical systems are considered. Our approach
is more general and considers /N coupled nonlinear systems,
where N can be arbitrarily large.

Section II provides novel sufficient conditions for synchro-
nisation of coupled dynamical systems with time delays in
the coupling. In Section II-A, we first present a theorem on
boundedness of solutions, since this is required by the main
results of this paper, the conditions for synchronisation of



Section II-B and Section II-C. In Section II-B, we consider
an arbitrary coupling topology, while in Section II-C, we
investigate all-to-all coupling with equal strength between
subsystems. The latter allows us to solve problems of larger
size when using the computational approach presented in
Section III to check whether our sufficient conditions for
synchronisation are fulfilled. In Section IV, we apply our
method to different systems. Section V concludes the paper.

II. SUFFICIENT CONDITIONS FOR SYNCHRONISATION OF
COUPLED DYNAMICAL SYSTEMS WITH TIME DELAYS IN
THE COUPLING

Consider N coupled identical n-dimensional oscillators
given by z; € R", i = 1,..., N, such that the behaviour
of the coupled system is described by

i = f(z) + #(C® D)x

where (=T, . %) and f(z)T
(f(x1)Y, ..., f(zn)T). The dynamics of each individual
system is determined by function f(-). The second summand
in the right hand side of Eq. (1) is the coupling term. The
positive constant k corresponds to the coupling strength.
Matrix D € R™*™ is the nonnegative output matrix (that
is, D;; > 0 Vi,j) for each oscillator; in other words, it
denotes the variables that are used in the coupling. Matrix
C € RV*¥ is the Laplacian matrix of the coupling topology.
Its off-diagonal entries are nonnegative and diagonal ones are
nonpositive, moreover, e C = 0 and Ce = 0. It follows from
GerSgorin’s theorem that the real part of the eigenvalues of
C' is nonpositive.

Consider the following system that has delays in the
coupling

a(t)

where Cy diag(diag(C)) and A C — Cy. In the
following sections, we provide conditions for solution tra-
jectories of each individual system in Eq. (2) to approach
with time those of any other subsystem and, thus, for
asymptotic stability of the synchronisation manifold. These
conditions require that the solution trajectories are bounded
(otherwise, they might diverge while approaching each other)
or, formally, that z(t) € D C R™™ V¢, For this reason, in
the next section, we first provide a methodology to check
for boundedness of solutions, before proceeding to the main
results. For brevity, we denote z(t) by = and z:(t —7) by z”.

(D

T

ey

)

f(z(t) — k(Cq® D)x(t) + K(A® D)z(t —7) (2)

A. Boundedness of solutions of coupled dynamical systems
with delay

The following two theorems provide a methodology to
check for boundedness of solutions. They make use of the
following Lyapunov function and its time derivative

t

1 -
~2T P —|—/
2 t—T1

S>0, P,>0

V(x) z(s)TPySx(s)ds  (3)
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V(JZ) = xTPb/J:Jr:UTPbef:ETTPbeT
T
= xTﬁbf($)+|:§T:| Q|:£Zix7:|
P,S — kPy(Cq® D) kPy)(A® D)
o - [P-ehcm o],

Theorem 1: Consider the system given by Eq. (2). Let
function V' (z) be given by Eq. (3) and S = «l, where
constant o > 0. If there exists a constant v > 0 such that

(&)

and the initial conditions are such that V(z) < =, for 0 <
t < 7, then g(x) <+ for all time.

Proof: We will prove the theorem by showing that for
initial conditions such that V(z*) < v, 0 < ¢* < 7, which
implies that g(z*) < =y, g(x) > ~ at a later time point only if
V > 0, which contradicts Eq. (5) and, thus, is not possible.
For instance, let us assume that g(x(tg)) = 7, to > 7, and
g(x(t1)) =7 +e€ where 0 < t; —tp < 1land 0 < e < 1.
Let AV =V (z(t1)) — V(x(to)). Then,

" gtatoas 20 [

€+ 2a/
t1—7 to—T

t1 th—T
€+ Qa/ g(z(s))ds — 2a/
to to—T

Furthermore, with At = ¢ — tg,

. 1 ;s
V(z) <0if g(x) = imTPbm >y

to

AV

g(z(s))ds

g(x(s))ds

/t Cg)ds < max(g(alto — 7). glalts — T)AY
i < At
/t Cg(a(s)ds > min(g(z(to)), glz(t)) At

min(y, g(x(t1)))At

It follows that AV > 0 and, thus, V(:E) > 0, which
contradicts Eq. (5). Hence, g(z) < -y for all time. [ |
Note that Theorem 1 implies that if Eq. (5) holds then
solutions of the system given by Eq. (2) are bounded. Eq. (5)
is a test for boundedness that can also be computationally
implemented efficiently (Section III). However, while P, and
~ can be searched for, we must define v a priori. Usually,
a small « suffices. For D = I and symmetric C, we can
circumnavigate this problem as the following theorem shows.
Theorem 2: Let D = I and C = CT. If there exists a
matrix P, > 0, P, € R™, such that, for all 7 and all x;, if
1al Py < 4 then 2l Pof(x;) < B and if Jzf Py > v
then x} Pyf(z;) < —MpB < 0, where M = N — 1, then
solutions of the system given by Eq. (2) are bounded.
Proof: Let P, = I ® P,. Then, the requirements on
matrix P, imply that
| <o

n T
. _ T ' x
V)= Do a A + L e
if g(x) > ~. Thus, solutions are bounded if additionally
@ < 0, which we prove next. Let S = §(Cyq ® I). Then,

Ci®P, A®P, | K| Cy A
AP, Cy® P, 92 A Cy

x
T

Q:I'i

P,
) :|®b



0, Ce = 0 and C = CT, it follows from

c; A
<
A C, ] < 0. Moreover,

the eigenvalues of C® B, are given by all possible products
of the eigenvalues of C' and P,, which implies that Q) < 0
and completes the proof. [ ]

Since eTC =

GerSgorin’s theorem that C=

B. Synchronisation of coupled dynamical systems with delay

Let the Laplacian matrix of the completely connected
graph be given by U € R¥*N_ That is,

U=FE—-NI, E=ee’

Theorem 3: Consider the Lyapunov function given by

V(z)

1 t
= —ixT(U ® P)x —/ z(s)"(U @ S)x(s)ds
t—T
where S > 0 and P > 0. Then, V(z) > 0 if a; # «; for
any i,j, i # j, and V(z) = 0 if x; = x; for all 4, 5. Let
T — T € D for all i ,J, D C R™, and D is convex. Let
J W 1y e D If
(y) = ay Y .

PW+WTP <0Vy (6)

where W = J(y)+ k1 max(Cq)D, k = K1+ Ko, K1, k2 > 0,
then the system given by Eq. (2) synchronises in the sense
that ||x; — z;|| — 0, Vi, j, as t — occ.

Proof: Note that

U®P”3—ZZ i — ;)" P(a; — )
i=1 i<j
Moreover,
ZZ — )T P(f(w:) — f2) +
i=1 i<j
N . T .
;w KICZzPD$z+|:IT:| Q[mr}m
where
0=— UCy®@kePD+U®S UA®KPD
B 0 —U®S

It follows from the mean value theorem (for a description of
the tgeorem see [20]) that, for any x; and x;, there exists a
y € D such that

(i — 2;) T P(f (23) — f(x))) = (2 — 25) " PJ(y) (s — x;)
Thus, if z; # x; for any ¢, j,  # j, and Eq. (6) holds, and

Q+QT <0 (8)

then V(z) < 0 and V(z) = 0 only if z; = =x; for all
1, 7. This implies that Eq. (2) synchronises in the sense that
lz; — x;|| = 0, Vi, j, as t — oo, and completes the proof.
|
Note that, given ;1 and kg, checking directly, whether
(i) there exists matrix P s. t. Eq. (7) is negative if z; # x;,
is harder than checking, whether
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(ii) there exists matrix P s. t. Eq. (6) and Eq. (8) hold.

However, the latter (simpler) check, given by (ii), comes
at a cost. It is more conservative in the sense that there
might exist a positive definite matrix P such that V(z) < 0
if x; # x;, while such a matrix satisfying Eq. (6) and
Eq. (8) might not exist. Nevertheless, we recommend check
(i1). Next, for all-to-all coupling, only a problem of even
smaller size that lacks the conservativeness mentioned, needs
to be solved to check for synchronisation, as we show in the
following section.

C. Synchronisation of all-to-all coupled dynamical systems
with delay

Consider the system given by Eq. (2) with an all-to-all
coupling topology; that is, C' =U. Let X; = x; —z1, X =
X(t), and X™ = X(t — 7). Then, it follows from the mean
value theorem in its integral form as presented in [13] that

X =Jy)X —kMDX —kDX", yeD

where M = N — 1, z; € D C D C R” for all 4, and D is
convex. We say that the system given by Eq. (2) synchronises
if X =+ 0ast— oo. Note that X =0 and X™ = 0 imply
X = 0. This corresponds to the synchronised state if solution
trajectories of (2) are bounded. In the following, we provide
conditions for asymptotic stability of this state.
Theorem 4: Consider the Lyapunov function given by

t

V(X)= %XTPSX + X (s)TSX(s)ds
t—7
where S > 0, P, > 0. Then, V(X) > 0 if X # 0 and
V(0)=0.1If B
Q+QT<0vVyeD )
where
Q- S+ Ps(J(y) — kMD) —,%_PSD (10)
0 S
then V(X) < 0if X #0 and V(0) =0 .
Proof: The following proves the theorem: V(X) =
x 1" ol X .
X X™ |

Interestingly, above implies that when compared to the
case of systems without delay in the coupling, for which @) =
Py(J(y) — kND) [16], the number of coupled subsystems
N plays a much more important role in guaranteeing syn-
chronisation for systems with delay. Indeed, we can observe
this in the examples presented in Section IV. Moreover,
although the assumption of all-to-all coupling might seem
restrictive, at times, it can be quite realistic. For example,
for centralised control, the control might be such that signals
from each subsystem are transmitted to a central receiver,
where they are collected before they are forwarded to all
other individual members. This is the case for automatic
vehicle cohorts, when each vehicle transmits signals to a
satellite first, before they are forwarded to the others at the
next passing of the satellite [21], [8]. For the spread of



epidemics, it is conceivable that, for many cases, travel time
(corresponding to the delay) can be assumed independent of
distance because of different means of transportation. Finally,
note that the result presented in this section is a general
stability result for systems with delay, which we present next,
for completeness.
1) Stability of coupled dynamical systems with delay:

Consider the following dynamical system with time delays

in some of the linear components
&= f(x)+ Agx™, z € R" (11)

and the Lyapunov function given by

t

I

Viz)=2TP,f(z) + [

1
= _a"Pa+

V(zx) 5

z(s)TSz(s)ds, S >0, P, >0

J15 ][]

Let the origin be the unique equilibrium point of the system
given by Eq. (11). Then,

It follows that

S P,Aq
0o -5

€T
xT

x
zT

V(z) <0Vz, z#0, V(0)=0 (12)

implies asymptotic stability of the system given by Eq. (11)
with respect to the origin [20]. Finally, note that this stability
result can be easily extended to systems with different time
delays, which are of the form given by:

i(t) = fla(t) + Z azilt - 7)

III. COMPUTATIONAL IMPLEMENTATION

In this section, we provide some mathematical background
on the computational tools we use to efficiently check the
different requirements given in this paper. That is, the follow-
ing can be efficiently checked using the MATLAB toolboxes
YALMIP [22] and SOSTOOLS [23] for systems involving
bounded (for example, trigonometric) functions, polynomial
or rational functions:

e given «, whether there exist a constant v > 0 and a
matrix 151) > 0 such that Eq. (5) holds,

given k1 and ko, whether there exist a matrix P > 0
and a matrix .S > 0 such that Eq. (6) and Eq. (8) hold,
whether there exist a matrices S, Ps > 0 such that
Eq. (9) holds (note that, often, J(y) will not be a
constant matrix),

or whether there exist a matrices S, P, > 0 such that
Eq. (12) holds.

A. Semidefinite programming and the sum of squares decom-
position

The main computational tool used in this paper is semidef-
inite programming. Programmes of this type can be solved
efficiently using interior-point methods. In semidefinite pro-
gramming, we replace the nonnegative orthant constraint
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of linear programming by the cone of positive semidefinite
matrices and pose the following minimisation problem:

CTCC

F(z) > 0, where

=1

minimise

subject to

13)

Here, x € R" is the free variable. The so called problem
data, which are given, are the vector ¢ € R™ and the matrices
F; e R™*™, j = 0,...,n. Note that convexity of the set
of symmetric positive semidefinite matrices in (13) implies
that the minimisation problem has a global minimum.

B. Sum of squares decomposition

For problem data that consists of polynomials of any
degree the requirement of positivity can be relaxed to the
condition that the polynomial function is a sum of squares.
On one hand, this is only a sufficient condition for positivity
and it can, at times, be quite conservative; in other words,
a function can be positive without being a sum of squares.
On the other hand, testing positivity of a polynomial is NP-
hard [24].

Consider the real-valued polynomial function F(z) of
degree 2d, x € R™. A sufficient condition for F(z) to
be nonnegative is that it can be decomposed into a sum
of squares [25]: F(z) = Y, f2(z) > 0, where f; are
polynomial functions. Now, F'(x) is a sum of squares if and
only if there exists a positive semidefinite matrix R and

F(iL’) :XTRX7 X = [1, L1y T2yeevy Ty T1L2y ..y l’i]

The length of vector y is ¢ ("F9). Note that R is
not necessarily unique. However, >, f?(z) = xT Ry poses
certain constraints on R of the form trace(4;R) = c¢;j,
where A; and c; are appropriate matrices and constants,
respectively (for an illustration, see Example 3.5 in [25]).
In general, in order to find R, we solve the optimisation
problem associated with the following semidefinite program:

minimise trace(AopR)
subject to trace(A;R) =¢;, j=1,...,m
R>0 (14)

Here are some additional remarks on how to check positivity
of rational functions and when functions are restricted to a
specific region of the state or/and parameter space.

« Consider a rational function F'(z); that is, F'(z) = g Ef; ,
where f(x) and g(x) are polynomial functions. Then,
F(z) > 0 if (14) is feasible with xT Ry = F(z)¢?(x)
or with xTRy = F(z)g(z) if g(z) > 0.

If

F(z) + p(e)h(z) = ng(x) >0, p(z) >0,

@)=

then F(z) > 0 if a; < z; < b; for all i, where
a;, b; are constants. This can be used to show that F'(x)

SOlfCLzS.TZSblVZ

h > (0 otherwise



is nonnegative in a specific region of the state or/and
parameter space.

Next, as an example, we provide the sum of squares pro-
gramme used in Section IV-B to check for synchronisability
and solved using SOSTOOLS.

given J(), N, D, k, §>0
search for P, e R? S cR? pv)
s. t. Yy, Vo vT (P — 61w, vT(S - 6I)v, p(v) are SOS

p() (Y7 + 5 + (38 — y3)® — 1540.3N)
—vT(Q + 6I)v is SOS

where (@ is given by Eq. (10).

IV. APPLICATIONS

A. A system of coupled simple oscillators

Consider the following simple system, describing N cou-
pled oscillators

s [0L 01 ] [ 0
! -1 —02 | sin(x;,)

al 0
o Z [$;2—1‘i2:|

J=1,5#i

15)

Here, D = diag([0 1]T). Using YALMIP, we can prove
boundedness and guarantee synchronisation for all 7 if N =
3 (or N =4,5,12) and k = 0.8, which is close to the value
of x below which synchronisation was not always observed
in numerical simulations; that is, for k < k* = 0.5. On
the other hand, while we can easily show boundedness for
N = 2, we can not obtain a certificate for synchronisation.
Indeed, as Figure 1 indicates the system does not necessarily
synchronise for N = 2. However, using the approach pre-
sented in this paper, we can show that increasing N reduces
the coupling strength required to guarantee synchronisation
(for example, kK = 0.4 for N =4 and « = 0.1 for N = 10).

Note that above configuration corresponds to all-to-all
coupling; that is, C' = U. For N = 3, a coupling constant
given by K =4 and

-2 05 15
C=|05 -2 15
1 1 -2

we prove boundedness of solutions and guarantee synchro-
nisation for all 7 by checking Eq. (6) and Eq. (8). However,
numerical simulations seem to indicate that synchronisation
occurs already if the coupling strength « is such that x >
k* = 0.8. The larger gap between k and x* is due to the
conservativeness (discussed above) of Eq. (6) and Eq. (8).

B. Coupled Lorenz systems

We show the applicability of our approach to coupled
chaotic systems by considering a network of N coupled
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N=2
T

i Y\VV\> MDAV IVAVAVIN VAVAVAVAVA

. . . . . A . I .
0 20 40 60 80 100 120 140 160 180 200
time

Fig. 1. The behaviour of the system consisting of N coupled systems
of the form given by Eq. (15) for x = 0.8 and 7 = 5. The different lines
show the behaviour of x;;, 7 = 1,2 and j = 1,..., N. For N = 3, we
observe synchronisation of the coupled system but not for N = 2.

identical Lorenz systems. The set of equations for each

individual system is given by, where ¢ = 1,..., N,
N
‘@il = 10(1'1'2 - xil) +K Z (x;—l - xil)
J=1,j#i
Ty, = 28z — — T Ty + K Z — i)
J=1,j7#i
iy = @i - xm + Z —x,)  (16)
J=Lj#i
Here, D = I. Using SOSTOOLS, we show boundedness

of solutions for N = 2,3 (or N = 4,5,10) and all 7.
However, while we can guarantee synchronisation for N = 3
(or N = 4,5,10), all 7, and, for example, x = 46.5,
we cannot guarantee it for N = 2 (Figure 2). To check
for synchronisation if N = 3, k = 46.5, we use the
fact that >0, T P,7; < 1540.3N [16], where, for all i,
T = [Ty Tiy Tig — 38]T and P, = I. This example shows
that synchronisation of coupled chaotic oscillators is possible
even with time delays in the coupling.

V. CONCLUSIONS AND DISCUSSION

In this paper, we provided sufficient conditions for the
synchronisation of coupled identical nonlinear dynamical
systems with time delays in the coupling, which makes
the modelling of the coupling more realistic. Importantly,
we showed how these conditions can be efficiently checked
using semi-definite programming techniques. Understand-
ing the mechanisms behind synchronisation in biology and
physiology is an important research field. For example,
research on the synchronisation of coupled circadian clocks
is of importance to better understand many different disease
states [26]. Similarly, providing certificates for synchronised
behaviour of the different infection states between connected



Fig. 2. The behaviour of the system consisting of N coupled systems
of the form given by Eq. (16) for x = 46.5 and 7 = 1. The different
lines show the behaviour of x;;,7=1,2,3andj = 1,..., N. For N = 3,
we observe synchronisation of the coupled system but not for N = 2.

populations during an epidemic can be of high importance.
Whether we observe anti-phase synchronisation or in-phase
synchronisation (which corresponds to synchronisation in the
sense of this paper) in the numbers of infected of the different
populations, has an important implication for the progress of
an epidemic. In-phase synchronisation tends to lead to global
extinction of the disease, while anti-phase synchronisation
tends to promote it [3]. Thus, being able to guarantee in-
phase synchronisation, for example, through the design of
pulse vaccination [3], is of great significance. Moreover,
for applications in engineering that require synchronised
behaviour, consensus or so called stable flocking behaviour,
it is often necessary to be able to provide certificates for syn-
chronised behaviour between the different subsystems [27],
[28]. Such systems correspond to tethered space vehicles or,
more generally, vehicles in formation flight [1], [21].
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