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Abstract— An adaptive control architecture for safe per-
formance of a transport aircraft subject to various adverse
conditions is proposed and verified herein. This architecture
combines a nominal controller based on an LQR with integral
action, and an adaptive controller that accommodates for ac-
tuator saturation and bounded disturbances. The effectiveness
of the baseline controller and its adaptive augmentation are
evaluated and compared using a stand-alone control verification
methodology. Several failure modes, where an uncertain param-
eter and a correspondingly critical flight maneuver are paired,
are studied. The resilience of the controllers is determined
by evaluating the degradation in closed-loop performance that
results from increasingly larger uncertainties. Symmetric and
asymmetric actuator failures, flight upsets, and CG movements,
are some of the uncertainties considered.

I. INTRODUCTION

The challenge of achieving safe flight comes into sharp
focus in the face of adverse conditions caused by faults,
damage, or upsets. An appropriate technology that has the
potential for enabling a safe flight under these adverse
conditions is adaptive control. One of the main features of an
adaptive control architecture is its ability to react to changing
characteristics of the underlying aircraft dynamics.

The field of adaptive control is a mature theoretical disci-
pline that has evolved over the past thirty years, embodying
methodologies for controlling uncertain dynamic systems
with parametric uncertainties [1], [2], [3]. Through the efforts
of various researchers over this period, systematic methods
for the control of linear and nonlinear dynamic systems
with parametric and dynamic uncertainties, stability and
robustness properties of these systems in the presence of
disturbances, time-varying parameters, unmodeled dynamics,
time-delays, and various nonlinearities, have been outlined
in several journal and conference papers over the past three
decades. What is needed therefore is a systematic deploy-
ment and evaluation of these methods for the problem of
ensuring safe flight in an aircraft under various adverse
conditions.

In this paper, we consider the control of the C-5 transport
aircraft, which is similar to the Generic Transport Model
[4]. We delineate the underlying nonlinear dynamic model
and introduce various upsets, damages, and failures by rep-
resenting these various adverse conditions in the form of
uncertainties. We consider two different flight conditions that
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focus on the longitudinal and lateral dynamics separately. An
adaptive controller based on the linearized model of the C-
5 is designed, in conjunction with a baseline LQ-controller
with integral action, and anti-windup components to accom-
modate magnitude saturation, similar to that proposed in [5],
[6].

The resilience of the adaptive control architecture to un-
certainty is evaluated for safety using the control verification
methodology proposed in [7]. This methodology enables the
determination of ranges of uncertainty for which a prescribed
set of closed-loop requirements are satisfied.

II. THE GTM-LIKE AIRCRAFT

In this section, we state the problem that will be con-
sidered in this paper. We begin with a description of the
nonlinear dynamic model of C-5, a large transport aircraft
whose aerodynamics data is available in [8]. We consider
rigid body dynamics, aerodynamics, and the effect of the
control inputs and derive the overall nonlinear flight model.
We then discuss adverse conditions such as flight upsets,
damages, and failures, and how they can be represented in
the underlying model.

A. A Nonlinear Dynamic Model

A typical dynamic model of an aircraft consists of the
equations of motion, aerodynamics, actuator dynamics, actu-
ator saturation, and sensor dynamics. These can be compactly
described as

Ẋ = F (X,ΛU) (1)

where

X = [VT α β p q r φ θ ψ x y h]T (2)

U = [e1 e2 a1 a2 r1 r2]T (3)

which denotes the left and right elevator inputs, aileron inputs
and lower and upper rudder inputs, respectively. Four throttle
inputs are present, but are kept constant at their trim values,
and are allowed to fail. Λ describes the control effectiveness,
and is equal to the identity under nominal conditions. For
the purpose of control, Eq. (1) is linearized about a trim
condition (X0, U0) as LTI systems of the form

ẋp = Apxp +Bpu+ g(xp, u) (4)

where

xp = X −X0 , u = U − U0

Ap =
∂F (X,U)

∂X

∣∣∣∣
X0 , U0

, Bp =
∂F (X,U)

∂U

∣∣∣∣
X0 , U0

(5)
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and g(xp, u) is higher order terms.

B. Adverse Conditions

We now describe the three categories of upsets, damages,
and failures that we shall introduce in the above model. In
all three cases, we will assume that the actuators are capable
of magnitude saturation.

a) Flight upsets: The simplest adverse condition is
considered in this section, which consists of a flight upset.
This corresponds to changes in the initial condition of the
state from trim. In particular, the response of the underlying
closed-loop system to changes in α(0) needs to be evaluated.
It is therefore easy to see that if a system is stable, guaran-
tees for a bounded performance are automatically obtained.
Whether the actual responses obtained, even though bounded,
are actually within limits of what is an acceptable and safe
performance remains to be demonstrated.

b) Flight damages leading to CG movement: A more
serious condition that needs to be addressed is damage that
occurs due to wing separation. This causes, among other
things, the CG shift leading to an additional moment.

∆M = −(L cosα+D sinα)∆x
∆L = (L cosα+D sinα)∆y
∆N = (D cosα− L sinα)∆y

(6)

where ∆x and ∆y is the displacement from the CG to
the reference location. The inertia tensor is adjusted ac-
cordingly [9]. These in turn change the aerodynamic forces
and moments as well as the trim points (X0, U0). Unlike
the treatment in [10], we ignore the contribution of the
centripetal component of the acceleration and only cases CG
movements in the x and y directions.

c) Actuator Failures: We now consider a different ad-
verse condition that can occur because of failures in control
surfaces. Similar to [11], we represent these failures as BpΛ
where Λ is a matrix of dimension 6 × 6, whose elements
are zero and one in the nominal case, and take values λi
in (0, 1), where i refers to the specific actuator that has a
loss of effectiveness due to a failure. For a general failure
case when the effectiveness of each actuator is affected, Λ
is denoted as

Λ = diag
[
λe1 λe2 λa1 λa2 λr1 λr2

]
(7)

III. ADAPTIVE CONTROL ARCHITECTURE

The overall adaptive control architecture includes a nomi-
nal controller that is designed so as to meet the Longitudinal
FC and Lateral FC described in Section IV in the absence
of any uncertainties. This is described in Section III-A. An
adaptive controller is added to the nominal one to cope with
various adverse conditions.

A. Nominal Controller

The nominal controller has three different components, an
LQR controller with integral action, wash-out and low-pass
filters to deal with measurement noise, and a hard-limiter to
cope with possible saturation, whose limit is chosen to vary

with the deflection of the elevator. Each of these components
is described in more detail.

1) LQR Controller with Integral Action: We make an
assumption that the pitch, yaw and roll dynamics are weakly
decoupled. In addition, in order to closely follow the com-
manded angle of attach, an integral state eα is added as

eα = ∫(α− αcmd)dt (8)

where δcmd =
[
δe,cmd δa,cmd δr,cmd

]T
, and αcmd = 10δe,cmd.

δcmd is assumed to be generated by the pilot. The augmented
plant dynamics is therefore described as[

ẋp
ėα

]
︸ ︷︷ ︸
ẋ

=
[
Ap 0
H 0

]
︸ ︷︷ ︸

A

[
xp
eα

]
︸ ︷︷ ︸
x

+
[
Bp
0

]
︸ ︷︷ ︸
B1

u+
[

0
−I

]
︸ ︷︷ ︸
B2

αcmd (9)

Since the states of (9) are accessible, an LQR controller is
designed as

δe,n = −
[
Kδeα

Kδeq
Kδeα

]  αq
eα


[
δa,n
δr,n

]
= −

[
Kδap

0
0 Kδrr

] [
p
r

]
+
[
δa,cmd
δr,cmd

]
︸ ︷︷ ︸

Krr

(10)

where the control gains Kδ.s are chosen so as to minimize
the cost function

J = ∫(xTRxxx+ uTRuuu)dt (11)

where Rxx, Ruu are the weighting matrices. Eqs. (8)- (10)
denote the linearized GTM-model dynamics together with
the LQR controller with integral action as the nominal
controller (see [9] for more details).

2) Washout Filters and Low-pass Filters: Since the actual
GTM model includes washout filters Gw(s) and low pass
filters Gl(s) in the system, these filters were included in our
simulation model considered in this paper, and were of the
form

xw = [Gw(s)Gl(s)I]x (12)

with

Gw(s) =
s

s+ c1
, Gl(s) =

c2
s+ c2

. (13)

B. Saturation

In order to ensure that the control input does not exceed
the prescribed limit for the three actuators, a rectangular
saturation component Rs(ui) is included in the simulation
model. This is defined as

Rs(ui) =

{
ui if ‖ui‖ ≤ ui,max,
ui,max sign(ui) if ‖ui‖ > ui,max.

(14)

The bound on the integrated state eα is obtained via an anti-
windup like action as
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Re(eα, δe(t)) =

{
eα if ėα ≥ 0 or eα ≤ eb,

eb if ėα < 0 and eα > eb.
(15)

where the bound eb is computed as

eb = max(0, (RS(δe)− (δe,trim + δe,stab))/Kδeα
)

δe,stab = Kδeα
α+Kδeq

qw
(16)

Defining the saturation errors as

u∆ = u−Rs(u)
eα,∆ = eα −Re(eα, δe(t))

(17)

the closed-loop system with the nominal controller, filters,
and saturation can be expressed as follows.[

ẋp
ėα

]
︸ ︷︷ ︸
ẋ

=
[
Ap −BpKxp −BpKδeα

H 0

]
︸ ︷︷ ︸

Am

[
xp
eα

]
︸ ︷︷ ︸
x

+
[
Bp
0

]
︸ ︷︷ ︸
B1

Krδcmd

+
[

0
−I

]
︸ ︷︷ ︸
B2

αcmd −
[
Bp
0

]
︸ ︷︷ ︸
R1

u∆ −
[
−BpKδeα

0

]
︸ ︷︷ ︸

R2

eα,∆ (18)

The boundedness of the closed-loop system can be estab-
lished for all initial conditions inside a bounded set. This
bound extends to the entire state-space if the open-loop plant
is stable.

C. Reference Model

We choose a reference model as the nonlinear model (1)
together with the nominal controller in (10) and filters (12)
in the loop, without any uncertainties. Let xm be the states
of the reference model. The resulting closed-loop system can
be shown to have bounded solutions in a neighborhood of the
trim condition. As compared to a linear reference model, the
usage of a nonlinear one improves the system performance.

D. Adaptive Controller

We augment the controller in (10) with an adaptive com-
ponent as follows:

u = δn = (K + θx)x+ (Kr + θr)r + f̂ (19)

where θx, θr, and f̂ are adjusted so as to minimize the error
between x and xm. Defining the state error e as

e = x− xm (20)

we choose the adaptive laws for adjusting the adaptive
parameters in (19) as

θ̇x = −Γ1B
T
1 Peux

T − σ1θx

θ̇r = −Γ2B
T
1 Peur − σ2θr

˙̂
f = −Γ3B

T
1 Peu − σ3θf

˙̂
λ = −Γ4diag(∆u)BT1 Peu − σ4λ̂

(21)

where ATmP + PAm = −Q, Q > 0, and Γi is diagonal and
positive definite for i = 1, ...4. Also eu = e− e∆, where the

auxiliary error e∆ is defined as

ė∆ = Ame∆ −R1diag(λ̂)u∆ (22)

e∆ represents the error that occurs due to saturation, and
by subtracting it out from e, we obtain a new error eu which
represents the sum of the error due to uncertainties and the
error due to eα,∆.

E. Stability of the closed-loop system

It should be noted that the stability and boundedness of
the closed-loop system has been established in [5], [12], [6]
where no anti-windup like saturation components are present.
The stability of the adaptive system that is proposed here can
also be guaranteed, the details of which will appear in [13].

IV. CONTROL VERIFICATION

In this section we evaluate the improvements resulting
from augmenting the baseline controller with an adaptive
component. This is attained by determining the largest hyper-
rectangular set in the uncertain parameter space p for which
a set of closed-loop requirements are satisfied by all the set
members. The section that follows presents a brief introduc-
tion to the mathematical framework required to perform this
study. References [7] and [14] cover this material in detail.

A. Mathematical Framework

The parameters which specify the closed-loop system are
grouped into two categories: uncertain parameters, which are
denoted by the vector p, and the control design parameters,
which are denoted by the vector d. While the plant model
depends on p, the controller depends on d. The Nominal
Parameter value, denoted as p̄, is a deterministic estimate of
the true value of p.

Stability and performance requirements for the closed-loop
system will be prescribed by the set of inequality constraints,
g(p, d) < 0. Throughout this paper, it is assumed that vector
inequalities hold component wise. For a fixed d, the larger
the region in p-space where g < 0, the more robust the
controller.

The Failure Domain corresponding to the controller with
parameters d is given by1

F j(d) = {p : gj(p, d) ≥ 0}, (23)

F(d) =
dim(g)⋃
j=1

F j(d). (24)

While Equation (23) describes the failure domain corre-
sponding to the jth requirement, Equation (24) describes
the failure domain for all requirements. The Non-Failure
Domain is the complement set of the failure domain and
will be denoted2 as C(F). The names “failure domain” and
“non-failure domain” are used because in the failure domain

1Throughout this section, super-indices are used to denote a particular
vector or set while numerical sub-indices refer to vector components, e.g.,
pji is the ith component of the vector pj .

2The complement set operator will be denoted as C(·).
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at least one constraint is violated while, in the non-failure
domain, all constraints are satisfied.

Let Ω be a set in p-space, called the Reference Set, whose
geometric center is the nominal parameter p̄. The geometry
of Ω will be prescribed according to the relative levels of
uncertainty in p. One possible choice for the reference set is
the hyper-rectangle

R(p̄, n) = {p : p̄− n ≤ p ≤ p̄+ n} . (25)

where n > 0 is the semi-diagonal of the rectangle. In what
follows we assume that g(p̄, d) < 0. The tasks of interest
is to assign a measure of robustness to a controller based
on measuring how much the reference set can be deformed
before intersecting the failure domain. A homothet of Ω is
given by the set {p̄+α(p− p̄) : p ∈ Ω}, where p̄ is the center
of the rectangle and α >, is the Similitude Ratio. While
expansions of Ω are accomplished when α > 1, contractions
result when 0 ≤ α < 1.

Intuitively, one imagines that a homothet of the reference
set is being deformed until its boundary touches the failure
domain. Any point where the deforming set touches the
failure domain is a Critical Parameter Value (CPV). The
CPV, which will be denoted as p̃, might not be unique. The
deformed set is called the Maximal Set (MS) and will be
denoted as M. The Critical Similitude Ratio, denoted as α̃,
is the similitude ratio of that deformation. While the critical
similitude ratio is a non-dimensional number, the Parametric
Safety Margin (PSM), denoted as ρ and defined later, is its
dimensional equivalent. Both the critical similitude ratio and
the PSM quantify the size of the MS. Details on how to
calculate the CPV p̃ and α̃ are available in [7].

Once the CPV has been found, the MS is uniquely
determined by

M(d) = R(p̄, α̃n). (26)

The size of this set is proportional to the PSM which is
defined as

ρ = α̃‖n‖, (27)

Because the critical similitude ratio and the PSM measure
the size of the MS, their values are proportional to the
degree of robustness of the controller associated with d
to uncertainty in p. The critical similitude ratio is non-
dimensional, but depends on both the shape and the size
of the reference set. The PSM has the same units as the
uncertain parameters, and depends on the shape, but not the
size, of the reference set. If the PSM is zero, the controller’s
robustness is practically nil since there are infinitely small
perturbations of p̄ leading to the violation of at least one of
the requirements. If the PSM is positive, the requirements are
satisfied for parameter points in the vicinity of the the nomi-
nal parameter point. The larger the PSM, the larger the hyper-
rectangular-shaped vicinity. Note that when dim{p} = 1, the
PSM is ρ = |p̃k − p̄| and the MS is M(d) = (p̄− ρ, p̄+ ρ).

B. Analysis Setup

1) Uncertain Parameters: We will consider the following
set of uncertain parameters[

Λele Λail Λthr tl cgx cgy ∆α(0)
]
, (28)

where the first 3 components are the control effectiveness of
elevators, ailerons, and left engine throttle. In particular, Λ.s
are

Λele =
[
λe1 λe2

]
,Λail =

[
λa1 λa2

]
,Λrud =

[
λr1 λr2

]
Λthr =

[
λt1 λt2 λt3 λt4

]
(29)

The term tl is the control surface lock-in-place duration. The
terms cgx and cgy are components of the position vector
on the xy-plain of the body frame of the CG location with
respect to a reference point. The last component, which
models a flight upset, is the initial condition in angle of
attack. The nominal parameter values corresponding to this
vector are [1, 1, 1, 0, 0, 0, 0].

2) Closed-loop Requirements: The following stability and
performance requirements will be considered

g0 = max{[utrim − umax, umin − utrim]}, (30)

g1 = max
t

{
|aCG|
g

}
− 2.5, (31)

g2 =
[
(α− αcmd)2 + kαα̇

2 + (β − βcmd)2 + kβ β̇
2
]
t=tf
− c1,

(32)

g3 = η(p, d)− c2η(p̄, dbase),
η = w1||α− αcmd||2 + w2||p− pcmd||2 + w3||r − rcmd||2.

(33)

The first requirement, g0 < 0, is used to determine if
the vehicle has enough control authority to trim, i.e. if it
satisfies umin < utrim < umax. Note that this requirement is
independent on d and may indicate instability. g1 < 0, where
aCG is the acceleration at the CG, is a structural integrity
requirement enforced by preventing the loading factor from
exceeding 2.5. The requirement g2 < 0, where 0 < c1 � 1,
kα > 0 and kβ > 0, enforces stability and satisfactory
steady state performance. The last requirement, g3 < 0, for
c2 > 1, w1 > 0, w2 > 0 and w3 > 0, is used to measure
satisfactory transient performance. This requirement prevents
the cumulative error from exceeding a prescribed upper limit.
Such a limit is assumed to be larger than the cumulative error
corresponding to the baseline controller dbase for the non-
uncertainty case.

Numerical studies showed that the trim-ability requirement
g0 < 0 is satisfied as long as the other requirements are
satisfied, i.e., F0 ⊂

⋃
{F1,F2,F3}. Therefore, the studies

presented subsequently will only consider g1, g2, and g3.
In practice, control requirements are prescribed in ad-

vance before the control design process even starts. When
such requirements are only described qualitatively several
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TABLE I
CASES ANALYZED. 1-DIMENSION SEARCHES ARE CONDUCTED FOR THE

SHOWN SETS OF A FAILURE/UNCERTAINTY AND AN APPROPRIATE FC.

Case Failure/Uncertainty
Case A Damage 1: CG change along y-axis [cgy flat]

Case B Damage 2: CG change along x-axis [cgx flon]

Case C Flight upset with angle of attack [∆α(0) flon]

Case D Failure 1: Symmetric Aileron failures [Λail flat]

Case E Failure 2: Symmetric Elevator failures [Λele flon]

Case F Failure 3: Asymmetric Aileron failure [λa1 flat]

Case G Failure 4: Asymmetric Throttle failure [λt1 flon]

Case H Failure 5: Lock-in-place failure [tl flon]

g implementations are possible. This creates the additional
challenge of constructing functional forms that capture well
the intent of the requirement while having a minimal amount
of conservatism. This paper does not tackle such a challenge
and assumes that the g above is given.

C. Flight Conditions (FC)

The closed-loop response depends on p and d as well
as in the intended flight maneuver f . This implies that
g(p, d, f). Two flight conditions, namely flon and flat, will
be considered in the analyses that follow. In the former one,
which mostly affects the longitudinal dynamics, the vehicle
starts from level flight and reaches a fixed angle of attack
after a short transient. In the second one, which affects both
the longitudinal and lateral dynamics, the vehicle also starts
from level flight and turns.

V. RESULTS

Aerodynamic data and configuration for C-5 can be found
in [8]. While the trim values of the velocity, angle of attack,
and height are 614 ft/s, 2.2 deg and 20000 ft respectively all
other numerical values used are in [9].

In this section, we evaluate the adaptive controller defined
in eqs. (19)-(22) in the presence of flight upsets, damages
that cause CG movement, and actuator failures.

In Case A we consider the movement of the CG in the
y-direction for the lateral flight condition. Recall that a
positive CG movement denotes movement to the right. The
dependency of g on the CG location for both controllers is
illustrated in Figure 1. The dashed lines and the solid lines
represent results from the baseline and adaptive controllers,
respectively. A comparison of these curves shows that the
non-failure region of the adaptive controller is larger by
virtue of the steady state performance and the transient per-
formance requirements. The baseline controller has a PSM of
0.0029 while the adaptive one attains a PSM of 0.0069. The
curves are asymmetric with respect to the nominal parameter
value, since the flight condition is itself asymmetric.

In Case B we consider the movement of the CG in the
x-direction for the longitudinal flight condition. Recall that
a positive value of the CG movement denotes movement
forwards. The dependency of g on the CG location for both

-0.01 -0.005 0 0.005 0.01
-5

0

5

10

cg movement along y-axis  (/wing span)

g
1
,
 
g 2
,
 
g 3

 

 g
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g
2
 adaptive

g
3
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g
1
 baseline

g
2
 baseline

g
3
 baseline

0 line
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Fig. 1. Case C: g(cgy) for the lateral FC.

controllers is studied with the control verification metric
introduced in Section IV, and it is shown that the system
loses stability when the CG moves backward, while the
tracking performance degrades the faster when the CG moves
forward. The baseline controller has a PSM of 0.175 while
the adaptive one attains a PSM of 0.197.

In Case C we consider a flight upset in the angle of
attack, ∆α(0) about αtrim = 2.20(deg) for the longitudinal
flight condition. The dependency of g on ∆α(0) for both
controllers is again studied. A comparison of the curves
shows that the non-failure region of the adaptive controller
is larger by virtue of the loading factor requirement and the
tracking performance requirement.

In Case D, we consider a symmetric failure in both
ailerons, where λail = λa1 = λa2 , for the lateral FC. While
the resulted PSM for the baseline is 6.6%, the PSM for the
adaptive is 10%. In both cases, the tracking performance is
the critical requirement.

In Case E we consider a symmetric failure in both eleva-
tors, where λele = λe1 = λe2 , for the longitudinal FC. While
the resulted PSM for the baseline is 33%, the PSM for the
adaptive is 42%. In both cases, the tracking performance is
the critical requirement. As before, the adaptive controller
has better robustness characteristics.

Unlike Case C, Case F considers an asymmetric aileron
failure for the lateral FC where λa1 is uncertain and λa2 =
1. While the resulted PSM for the baseline is 14%, the
PSM for the adaptive is 20%. Consistently, the tracking
performance requirement remains being the critical, while
the PSM corresponding to the stability requirement drops.

In Case G we consider a failure in the left outboard engine
λt1 for the longitudinal FC. While the resulted PSM for
the baseline is 1.7%, the PSM for the adaptive is 2.9%. As
before, the tracking performance is the critical requirement.
Note that the margins obtained in this case are considerably
smaller than those found in the others. The non-failure
domains are small since the throttle inputs are not controlled
but rather fixed at their trim values. Similar results were
observed with the Lateral FC.

A lock-in-place failure in the left elevator is considered in
Case H. This is simulated by keeping this control input at
a constant value for a period of tl seconds. The larger the
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TABLE II
SUMMARY FOR THE RESULTS OF ALL CASES

Case
(
ρadap
ρbase

− 1
)
× 100% Critical Requirement

A +133 % g2, g3
B +11.4 % g2, g3
C +4.01 % g1, g3
D +63.6 % g3

E +27.3% g3

F +46.7 % g3

G +70.6 % g3

H +88.9 % g2, g3

tl the more severe the failure. In Case H, there are present
substantial differences in the functional dependencies. It is
seen that the PSM for the baseline is 1.1 while the PSM for
the adaptive is 2.1. Note also that while the tracking perfor-
mance is critical for the baseline, the stability requirement
is critical for the adaptive one.

Table II summarizes the results above by presenting the
relative change in PSM attained by the adaptive controller
and the critical requirement. In all cases, the adaptive con-
troller attains better robustness by a sizable margin.

A. Multi-dimensional Case

In all the studies above uncertainty in a single parameter
has been considered. In this setting, the effect of the de-
pendencies among parameters are not captured. The same
analysis can be conducted for a multi-dimensional vector
p. In such a case, multiple failures and uncertainties occur
simultaneously and the correlation among them may play
a significant role. Studies of this type will be presented
elsewhere. However, Figure 2 presents a time simulation of
the controlled response for a multi-dimensional parameter
realization when 2 pitch doublets are commanded. Therein,
we assume losses in control effectiveness of 30% for the
elevators, 10% for the ailerons, and 10% for the rudders.
Besides, the CG has been moved to the left by 0.004/c,
and a flight upset in the angle of attack of 0.2 degrees is
assumed. It is apparent that the adaptive controller achieves
good tracking performance while the nominal controller can
not recover and becomes unstable.

VI. SUMMARY

This paper presents an adaptive control architecture for
the safe flight of a transport aircraft under adverse operating
conditions and uncertainties. This architecture combines a
nominal controller based on an LQR with integral action,
and an adaptive controller that accommodates for actuator
saturation and disturbances. The resilience of both controllers
to uncertainty is studied using a control verification method-
ology, where flight upsets, CG movements, and actuator
failures are considered. The results of this study show that
the adaptive controller enlarges the region of satisfactory
performance by a sizable margin.

Fig. 2. Time response result with combination of multiple failures and
uncertainties
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