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Abstract

A method of determining stability of 2-dimensional

switched linear systems is developed. Specifically, given

available system matrices and switching rules, we show

that the mode sequence eventually become periodic. To

determine stability, we show that it suffices to examine

the behavior of the system after the mode sequence

has become periodic. Finally, we show a couple of

illustrative examples to demonstrate efficacy of the

proposed approach.

1. Introduction

In a recent paper [1], we developed a novel framework

of determining stability for piecewise linear planar sys-

tems. The approach is based on the uniformity of the

radial growth rate of linear systems and provide neces-

sary and sufficient conditions for stability of the zero so-

lution of such systems. Stabilization of piecewise linear

and affine systems have been attracting much attention

in the literature (see, for example, [2–5]). In particular,

even 2-dimensional piecewise linear systems have rich

characteristics.

Based on the results given in [1], in this paper we de-

velop a method of determining stability of 2-dimensional

switched linear systems. Specifically, first we derive the

discrete dynamics representing the mode transition of

the system and describe the mode transition as a graph.

Next, we consider the graph Laplacian matrix associ-

ated with the graph and show that the eigenvectors of

the Laplacian associated with the zero eigenvalue play

an important role in our framework. To determine sta-

bility, we show that it suffices to examine the behavior

of the system after the mode sequence has become peri-

odic. Finally, we show a couple of illustrative examples

to demonstrate efficacy of the proposed approach.

The notation used in this paper is fairly standard.

Specifically, R denotes the set of real numbers, R
n de-

notes the set of n×1 real column vectors, and N denotes
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the set of natural numbers. Furthermore, we write (·)T

for transpose and I for identity matrix.

2. Switched Systems

In this section, we introduce general multi-

dimensional switched nonlinear systems for the descrip-

tion of switched linear systems that we deal with in this

paper and derive a difference equation in terms of mode

switching times. Specifically, consider the state-driven

switched nonlinear system GNL given by the continuous-

state dynamics

ẋ(t) = f(σ(t), x(t)), x(0) = x0, t ≥ 0, (1)

and discrete state dynamics which govern the mode se-

quence given by

σ(t) = h(σ(t−), x(t−)), σ(0) = σ0, (2)

where x(t) ∈ R
n is the continuous-state vector, σ(t) ∈ Q

is the discrete state which represents the operation mode

of the system, Q = {1, 2, . . . ,m}, fσ : Q × R
n → R

n,

and h : Q×R
n → Q is a function that shows transition

of the modes. We assume that σ(t) is right continuous

and there is no Zeno type phenomenon so that infinitely

many switching times do not occur in finite time.

In this paper, we assume that the mode of the system

GNL jumps to another mode when the state (σ, x) sat-

isfies a switching condition. In particular, for i 6= j, we

call the set of x the switching set from mode i to j if x

satisfies j = h(i, x).

Now, for the state-driven switched system GNL, let

κ ∈ N ∪ {∞} be the number of mode switches that

occur for a particular initial condition (σ0, x0) and let

ti, i = 1, . . . , κ, be the corresponding switching instants.

If κ is finite, there is no mode switch after tκ so that the

stability of the state-driven switched system GNL can be

determined by examining the stability of the continuous-

state dynamics (1) for the mode σ(tκ) fixed. On the

contrary, if κ = ∞, then the stability analysis is likely

to become much more complex since the mode sequence

should be properly taken into account.

Suppose that for any initial condition (σ0, x0) of GNL

the number of switches κ is infinite and consider the
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state at the switching times, i.e., (σ(ti), x(ti)), i ∈
N. Now, letting t0 , 0 and defining (σd[k], xd[k]) ,

(x(tk), σ(tk)), k ∈ N0 , {0}∪N, the difference equation

in terms of the switching instants tk, k ∈ N0, is given by

xd[k + 1] = fd(σd[k], xd[k]), xd[0] = x0, k ∈ N0,

(3)

σd[k + 1] = hd(σd[k], xd[k]), σd[0] = σ0, (4)

where hd : Q × R
n → Q describes the mode sequence

and fd : Q × R
n → R

n represents the impact map [6]

that maps the continuous state x(tk) on a switching set

to x(tk+1) at the next switching set. For convenience, in

the case of k = 0, the functions fd and hd map the initial

state (σ0, x0) to the state (σd[1], xd[1]) which locates at

the first switching set from (σ0, x0).

As previously mentioned, it is important to analyze

the mode sequence σd[k] in determining stability of the

state-driven switched system GNL. However, it is ex-

tremely difficult to obtain the explicit mode sequence

σd[k] for general high-dimensional nonlinear switched

systems. In the case of switched linear system with di-

mension 2, it is possible to obtain the sequence σd[k] as

shown in the following sections.

3. Two-Dimensional Switched Linear System

Based on the characterization presented in Section 2,

in this section we specialize GNL to the case where the

continuous-state dynamics are given as linear functions

of x for each fixed σ ∈ Q and n = 2. Specifically, con-

sider the switched linear planar system G given by

ẋ(t) = Aσ(t)x(t), x(0) = x0, t ≥ 0, (5)

σ(t) =

{

σ(t−), if cσ(t−),jx(t
−) 6= 0, j ∈ Qσ(t−),

j, if cσ(t−),jx(t
−) = 0,

σ(0) = σ0, (6)

where x(t) ∈ R
2 is the continuous-state vector, σ(t) ∈ Q

is the discrete state, Ai ∈ R
2×2 is the system matrix for

mode i ∈ Q, ci,j ∈ R
1×2 is the unit row vector that

characterizes the switching surface from mode i ∈ Q to

mode j ∈ Q (if the current mode is i, then the mode

changes to j (6= i) as soon as the continuous state x(t)

satisfies ci,jx(t) = 0 (see Figure 3.1)), Q = {1, 2, . . . ,m},
m is the possible number of the modes, and Qi ⊂ Q is

the set of modes to which the mode can jump from mode

i.

As mentioned in Section 2, stability analysis for the

case where κ < ∞ is straightforward. Henceforth, we

assume that there are infinitely many switching instants.

This case can be assured if, for example, Ai has complex

conjugate eigenvalues and Qi 6= ∅ for all i ∈ Q.

x1

x2

σ = 2

σ = 4

σ = 3

c2,4x=0

c1,2x = 0

c4,3x = 0

Figure 3.1: Example of a continuous-state trajectory
and switching surfaces

3.1. Automata of Mode Transition

In this section, we derive an automata that shows the

mode transition of the switched linear planar system G.

Specifically, we consider the difference equations (3), (4)

for the switched linear planar system G. Note that in

this case xd[k] at the switching instants tk satisfies

xd[k]

‖xd[k]‖
∈

{

GcTσd[k−1],σd[k],−Gc
T
σd[k−1],σd[k]

}

, k ∈ N,

(7)

where G ,

[

0 −1
1 0

]

represents the rotation matrix

with the rotation angle 90 degrees in counterclockwise

direction. Using this fact, we obtain the following result.

Lemma 3.1. Consider the switched linear planar

system G given by (5), (6) and the associated differ-

ence equations (3), (4) for G. Then, for k ≥ 1, σd[k+ 1]

is uniquely determined from σd[k] and σd[k − 1].

Proof. The proof is immediate from (7) and the fact

that hd(σ, ax) = hd(σ, x), a ∈ R. �

From Lemma 3.1 it follows that the existence of a

function s : Q×Q → Q such that

σd[k + 1] = s(σd[k], σd[k − 1]), (8)

is guaranteed. This function returns the next mode from

the current mode and the one before, without using the

variable xd[·]. In particular, in the case where Ai, i ∈ Q,

have complex conjugate eigenvalues, the function s(·, ·)
is given by

s(i, j) ,











arg min
k∈Qi

ci,kcT
j,i

ci,kGcT
j,i

if rot(Ai, Gc
T
j,i) = −1,

arg max
k∈Qi

ci,kcT
j,i

ci,kGcT
j,i

if rot(Ai, Gc
T
j,i) = 1,

(9)
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where rot(A, x) denotes the rotational direction of Ax

at the point of x ∈ R
2 such that

rot(A, x) ,











1, if det
([

x,Ax
])

> 0,

−1, if det
([

x,Ax
])

< 0,

0, otherwise.

(10)

Even though s(i, i) is not well defined since ci,i is not

defined, we set s(i, i) = d, where d 6= i is an arbitrary

scalar, for simplicity of exposition.

For developing a special class of automata expressing

the mode transition described by (8), we define the bi-

nary variables δ[k] ∈ B
m and δ̃[k] ∈ B

m2

at the time

instant tk, where B
e =

{

z ∈ {0, 1}e : zTz = 1
}

. Specifi-

cally, let δ[k] be defined as the binary variable describing

the current mode σd[k] such that

δ[k] , ζ(σd[k]), (11)

where ζ : Q → B
m is the function given by

ζ(φ) ,







ζ1(φ)
...

ζm(φ)






, ζi(φ) ,

{

1, if φ = i,

0, otherwise,
(12)

φ ∈ Q. Note that the σd[k]th element of δ[k] ∈ B
m is 1

and the other elements are 0. Furthermore, ζ has the

inverse function ζ−1 : B
m → Q since ζ has one-to-one

correspondence with φ. In addition, let δ̃[k] be defined

by the tensor product of the current mode δ[k] and the

previous mode δ[k − 1] such that

δ̃[k] , ξ(δ[k], δ[k − 1]), (13)

where ξ : B
m × B

m → B
m2

is given by

ξ(ψ1, ψ2) , ψ1 ⊗ ψ2, (14)

ψ1, ψ2 ∈ B
m. Note that δ̃[k] ∈ B

m2

also has only

one element that is 1. The binary variable δ̃[k] holds

the information of both the current and the previous

modes. Furthermore, ξ also has the inverse function

ξ−1 : B
m2

→ B
m ×B

m. Hence, we can obtain σd[k] and

σd[k − 1] from δ̃[k] using the inverse functions ζ−1 and

ξ−1.

Now, viewing δ̃[k] as a node of automata, the mode

transition (8) is described by the one-step difference

equation

δ̃[k + 1] = Eδ̃[k], δ̃[1] = δ̃0, k ∈ N, (15)

where E ∈ R
m2

×m2

has elements Ei,j given by

E(a1−1)m+a2,(b1−1)m+b2

=

{

1, if s(b1, b2) = a1 and b1 = a2,

0, otherwise,

a1, a2, b1, b2 = 1, . . . ,m, (16)

and the initial state δ̃0 is uniquely determined from σ0

and σd[1].

With respect to the automata (15), in the sense of

digraph, there is only one arrow emanating from each

node. From this fact, it follows that there exists at least

one closed path in (15) and that no node is shared by two

or more different closed paths. Hence, each connected

graph possesses only one closed path so that the state

δ̃[k] of the automata (15) reaches one of the closed paths

in finite switch depending on the initial state δ̃0.

It is important to note that given the initial state

δ̃0 corresponding to σ0 and σd[1], the discrete dynam-

ics (15) is implied by (4) of the switched linear planar

system G. Hence, it is possible to obtain the mode se-

quence σd[k], k ∈ N, of the original system G by analyz-

ing the trajectory δ̃[k] given by (15) and then analyzing

the trajectory x(·) governed by (5). Furthermore, since

each connected graph yielded by (15) has only one closed

path, the closed path reached in finite switch is uniquely

determined by the initial state δ̃0. This fact is elucidated

in the following section.

4. Detection of Closed Path

As mentioned in the previous section, trajectory of

the automata (15) reaches one of the closed paths in fi-

nite switch and remains in the closed path for all time

onwards. Furthermore, since the switched linear pla-

nar system G is piecewise linear in time, the trajectory

of the planar continuous state does not converge or di-

verge in finite time. For these reasons, if we can show

that the trajectory of continuous state x(t) converges

to zero for each initial condition (σ0, x0) (and hence for

each closed path of the directed graph), it follows that

the zero solution of (5) is globally asymptotically stable.

Hence, the number of closed paths and the information

of nodes constituting the closed paths are extremely im-

portant to analyze stability of the zero solution x(t) ≡ 0

of the continuous-state dynamics of G. In this section,

we present a way of obtaining the closed paths.

To this end, consider the discrete dynamics (15) as

a digraph and the associated graph Laplacian matrix

given by

L , D − E, (17)

where D ∈ R
m2

×m2

is the degree matrix which is iden-

tity in the case of (15) where there is only one arrow from

one node and E ∈ R
m2

×m2

is the adjacency matrix de-

fined by (16). Now, using this graph Laplacian matrix

L, the following lemma provides a way of characterizing

the closed paths contained in (15).

Lemma 4.1. The number of the closed paths with
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respect to (15) is equal to the geometric multiplicity µ

of the zero eigenvalue of L given by (17). Furthermore,

there exist eigenvectors vp ∈ {0, 1}m2

, p = 1, . . . , µ, sat-

isfying Lvp = 0, and lp ∈ N such that each vp is given

by

vp = δ̃1p + δ̃2p + · · · + δ̃lp
p , (18)

and satisfies
∑µ

p=1 vp ∈ {0, 1}m2

, where δ̃q
p, q = 1, . . . , lp,

are the elements of the standard basis of R
m2

. In addi-

tion,

Np ,

{

δ̃1p, δ̃
2
p, . . . , δ̃

lp
p

}

, (19)

is the set of the nodes that constitute the pth closed

path.

Proof. The proof is immediate. �

From this lemma, we can obtain the information of the

number of the closed paths and the nodes that constitute

each closed path from the graph Laplacian L. In fact,

the order of the nodes forming each closed path can

also be identified by the information of the adjacency

matrix E. Specifically, for each p = 1, . . . , µ, the circular

permutation Dp arranged in order of passing the nodes

from δ̃1p ∈ Np is given by

Dp ,

{

E0δ̃1p, . . . , E
lp−1δ̃1p

}

. (20)

Note that the nodes contained in Np are identical to the

ones in Dp. Furthermore, since Dp is a circular permu-

tation, it follows that Dp satisfies

Dp =
{

E0δ̃q
p, . . . , E

lp−1δ̃q
p

}

, q = 1, . . . , lp. (21)

5. Stability Analysis

In this section, we characterize a way of analyzing

stability of the switched linear planar system G with

respect to the origin. We begin by introducing key re-

sults concerning 2-dimensional linear dynamical systems

that are necessary for developing the method of stability

analysis.

5.1. Radial Growth Rate of Trajectories of Linear
Planar Systems [1]

Consider the linear planar dynamical system given by

ẋ(t) = Ax(t), x(0) = x0, t ≥ 0, (22)

where x(t) = [x1(t), x2(t)]
T ∈ R

2 and A ∈ R
2×2. Fur-

thermore, consider the polar form (r, θ) as shown in Fig-

ure 5.1. Then, the radial growth rate of the trajectories

of (22) at x is characterized by

dr

dθ
=

dr
dt
dθ
dt

=
rηT(θ)Aη(θ)

det[η(θ), Aη(θ)]
. (23)

Trajectory

x1

x2

θ

r

Figure 5.1: Polar form

Since the rate of radial growth with respect to θ is pro-

portional to the distance r from the origin, it follows

that the ‘normalized’ radial growth rate with respect to

θ defined by

ρ(θ) ,
1

r

dr

dθ
=

ηT(θ)Aη(θ)

det[η(θ), Aη(θ)]
, (24)

depends solely on θ but r. Note that the function ρ(θ)

is periodic of period π, that is, ρ(θ + π) = ρ(θ).

By integrating the radial growth rate given by (24)

from θ0 to θf , it can be examined how the distance of

the trajectory of (22) is changed over θf − θ0. Specif-

ically, suppose that the matrix A in (22) has complex

conjugate eigenvalues and that the rotational direction

of the trajectories is in the counterclockwise direction.

In this case, assuming the initial distance of the trajecto-

ries is given by r0, it follows from (24) that the distance

rf when the trajectory first intersects the semi-infinite

straight line with phase θf satisfies

∫ θf

θ0

ρ(θ)dθ = log
rf
r0
. (25)

If this value is positive (resp., negative), then it implies

log rf > log r0 (resp., log rf < log r0) and hence the dis-

tance rf from the origin is larger (resp., smaller) than

the original distance r0.

5.2. Global Stability Analysis for Switched Linear
Planar Systems

In this section, we propose a method of analyzing sta-

bility properties for the switched linear planar system

G. As mentioned in Section 4, if the trajectory of the

continuous state x(t) converges to zero for each closed

path with respect to (15), then the zero solution of (5)

is globally asymptotically stable. Now, we consider the

convergence of xd[k] given by (3) which is the sequence

of the continuous state x(t) at the switching instants tk
because if xd[k] converges to zero then so does x(t). To

obtain the change of the norm from xd[k] to xd[k + 1],
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we can use (25) with θ0 as the phase of xd[k], θf as the

phase of xd[k + 1], and A in (24) replaced by Aσd[k].

Lemma 5.1. Consider the switched linear planar

system G given by (5), (6). If the initial state (σ0, x0)

of the system G satisfies δ̃0 ∈ Np, where Np is given by

(19), then there exists a period Tp such that

‖x(t+ Tp)‖= eγp ‖x(t)‖, t ≥ 0. (26)

where γp is defined by

γp ,

lp
∑

w=1

∫ θ
σw

p ,σ
w+1
p

θ
σ

w−1
p ,σw

p

ρσw
p
(θ)dθ, (27)

ρi(·) is the normalized radial growth rate (24) with A

replaced by Ai, {σ1
p, . . . , σ

lp
p } is the periodic mode se-

quence associated with Dp given by (20) and θi,j is the

phase of switching surface from mode i to mode j.

Proof. The proof is omitted due to space limita-

tions. �

From this lemma, we can determine the convergence

(divergence) rate of the trajectory x(·) when the initial

state (σ0, x0) is given such that δ̃0 is on the closed path

Np. Thus, if γp given by (27) is negative (resp., pos-

itive), then the trajectory of the continuous state x(·)

associated with the initial condition δ̃0 ∈ Np is conver-

gent (resp., divergent). Due to the fact that for any

initial state (σ0, x0), the trajectory δ̃[·] reaches a closed

path in finite switch and remains in it, we can deter-

mine stability of the switched linear planar system G
from the convergence properties of the trajectory x(·)
for all closed paths. Furthermore, (26) shows that if the

initial state (σ0, x0) satisfies δ̃0 ∈ Np and γp < 0, then

the norm of the trajectory x(·) exponentially converges

to zero with the exponent γp/Tp. Now, we are ready to

state the main result of this paper.

Theorem 5.1. Consider the switched linear planar

system G given by (5), (6). Then the zero solution x(t) ≡

0 of (5) is globally exponentially stable if and only if γp,

p = 1, . . . , µ, given by (27) are negative.

Proof. The proof is omitted due to space limita-

tions. �

6. Illustrative Numerical Examples

In this section we present several numerical examples

to demonstrate the utility of the proposed framework.

Example 6.1 Simple Switched System. Assume

that we are given the following system matrices

A1 =

[

0 8
−2 3

]

, A2 =

[

0.2 −1.5
3 0.2

]

, (28)

θ2,1 θ1,2 θ2,1 θ1,2

θ [rad]

ρi(θ)
i = 1 i = 2

Figure 6.1: Radial growth rate versus phase. The tra-
jectory x(·) rotates counterclockwise for mode i = 2 and
clockwise for mode i = 1.

and switching surfaces

c1,2 =
[

1, 0
]

, c2,1 =
[

0, 1
]

, (29)

where Ai, i = 1, 2, have unstable eigenvalues.

The graph Laplacian matrix of the system is

L =









−1 0 0 0
0 −1 1 0
0 1 −1 0
0 0 0 −1









, (30)

and the geometric multiplicity µ of the zero eigenvalue

of L is 1 so that there is only one closed path. The nodes

of the closed path are obtained by the binary eigenvector

of the zero eigenvalue as

v1 =









0
1
1
0









=









0
1
0
0









+









0
0
1
0









, (31)

that is constructed by the vector [0, 1, 0, 0]T representing

the transition from 2 to 1 and the vector [0, 0, 1, 0]T

representing the transition from 1 to 2. From this fact,

the mode sequence of the closed path is {1, 2, 1, 2, . . .}.

Now, we apply Lemma 5.1 to the closed path. The

initial phase and the terminal phase on the each mode of

the closed path are uniquely determined by c1,2 and c2,1

so that ρi(·) on the closed path can be plotted in Fig-

ure 6.1 (where θi,j means the phase of switching surface

from mode i to mode j) . Hence, since

γ1 =

∫ θ1,2

θ2,1

ρ1(θ)dθ +

∫ θ2,1

θ1,2

ρ2(θ)dθ = −0.4115, (32)

it follows from Theorem 5.1 that the zero solution of

the switched linear planar system shown is globally ex-

ponentially stable (Figure 6.2).
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x1

x2

Figure 6.2: Phase portrait

Example 6.2 Large Switched System. Consider the

switched linear planar system which has more than 2

modes. Specifically, assume that we are given the system

matrices Ai, i = 1, . . . , 10, described by

[

−0.09 −1.10
1.10 −0.68

]

,

[

0.69 3.36
−3.36 0.33

]

,

[

−0.02 −0.22
0.22 −0.04

]

,

[

0.01 0.29
−0.29 0.00

]

,

[

−0.49 −3.01
3.01 −0.61

]

,

[

0.01 0.81
−0.81 0.06

]

,

[

−0.55 −2.71
2.71 −0.09

]

,

[

−0.42 3.46
−3.46 −0.50

]

,

[

−0.73 −1.16
1.12 −0.38

]

,

[

0.58 0.65
−0.65 0.45

]

, (33)

and 50 switching surfaces (actual values are omitted in

this paper). In this case, the size of the graph Lapla-

cian matrix L is 100 × 100 and the geometric multi-

plicity µ of the zero eigenvalue of L is 2. Taking the

similar approach to the previous section, the mode se-

quences of the closed paths are {2, 3, 4, 5, 2, 3, 4, 5, . . .}
and {4, 9, 4, 9, . . .}. For instance, the ρi(·) on the closed

path of the former can be plotted in Figure 6.3. Now,

since γ1 is negative, and γ2 is also negative, it follows

from Theorem 5.1 that the zero solution is globally ex-

ponentially stable (Figure 6.4).

7. Conclusion

We developed a way of determining global exponen-

tial stability for the switched linear planar systems. It is

important to note that the piecewise linear planar sys-

tem considered in [1] is a special class of the switched

linear system considered in this paper. Specifically, The-

orem 5.1 reduces to Theorem 4.1 of [1] in the case where

m = 1 in G given by (5), (6). Future research of this

approach includes the extension to the case of switched

homogeneous planar systems.

θ5,2 θ2,3 θ3,4 θ2,3 θ3,4 θ4,5 θ5,2 θ4,5

θ [rad]

ρi(θ) i = 2 i = 3 i = 4 i = 5

Figure 6.3: Radial growth rate versus phase. The tra-
jectory x(·) rotates counterclockwise for mode i = 2, 4
and clockwise for mode i = 3, 5.

0

Initial state

x1

x2 θ4,5

θ5,2

θ2,3

θ3,4

Figure 6.4: Phase portrait
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