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Abstract— This paper suggests control algorithm for a robot
manipulator which has biarticular muscle torque input in
addition to the conventional two monoarticular muscle torques.
Using a modified Jacobian matrix which is based on the absolute
angle of two joints, we derive simple relationship between an
endpoint force/position and three muscle torques. Based on
this relationship a feedback controller is developed to design
endpoint stiffness. The proposed control realizes the endpoint
stiffness with arbitrary major axis, minor axis, and tilt angle
with simple gain decision. As for the feedforward control, the
dynamics of three muscles torque are derived and used as
inverse dynamics in the control. It is found that with this
biarticular muscle torque, the inertia matrix can be decoupled
and has only diagonal elements. Simulation result shows the
effectiveness of the proposed control.

I. INTRODUCTION

Development of a robot manipulator that mimics hu-

man musculo-skeletal system and analysis of human mus-

cle system have been researched for more than several

years. Some researches focus on the measurement of human

impedance/stiffness characteristic [1],[2],[3], others focus on

the relationship between the stiffness and actual muscle

[4],[5].

However, there has been a big distance between these

analysis of human muscle system and its application to the

control of robot manipulators [6],[7],[8]. This paper develops

an analysis methodology and control algorithm that will

connect these two systems.

In Section II, the absolute angle Jacobian matrix is

shown to be efficient to define the relationship between

position/force at the endpoint and three muscle torques. In

Section III, the dynamics for three muscles are derived based

on the manipulator dynamics. Taking consideration of these

two analyses and the characteristic of the pair of muscles,

two-degree-of-freedom control is designed for a manipulator

with biarticular muscle. Simulation result in Section IV

verifies the effectiveness of the proposal.

II. MODIFICATION OF JACOBIAN MATRIX BASED ON

BIARTICULAR MUSCLE MODEL

Figure 1 is the configuration of a two degree-of-freedom

planar robot manipulator. In order to control the position of

the end-effector, the relation between small changes in the

position of end-effector and joint angles needs to be defined

using the Jacobian matrix described in Equation (1).

Using this Jacobian, the balance between the force ap-

plied on the end-effector and the joint torques also can be
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Fig. 1. Configuration of Two Degree-of-freedom Planar Manipulator

described based on the virtual work principle. Equation (2)

is the relationship between the force F e on the end-effector

in Figure 1 and the joint torques (T j
1
, T

j
2
); the force F e in

Figure 1 is described as F e = (fx, fy)T .

J =

(

−l1 sin θ1 − l2 sin(θ1 + θ2) −l2 sin(θ1 + θ2)
l1 cos θ1 + l2 cos(θ1 + θ2) l2 cos(θ1 + θ2)

)

(1)
(

T
j
1

T
j
2

)

= JT

(

fx

fy

)

(2)

A. Jacobian Matrix based on Biarticular Muscle Model

Now, the configuration of a novel manipulator illustrated

in Figure 2 is taken into consideration. Biarticular muscle

which produces linear force Fm that leads to a torque τm
3

in

two joints is included in this configuration.
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Fig. 2. Configuration of Two Degree-of-freedom Planar Manipulator with
Biarticular Muscle

Actual muscle model has pairs of flexor and extensor

muscles; each muscle has its own tension so that two muscles

work as a agonistic/antagonistic system. Since the difference

between tensions of flexor and extensor muscles work as a
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torque at a joint, the outputs of muscles are considered as

torques in this paper. τm
1

, τm
2

are the torques generated by

monoarticular muscles of two joints, and τm
3

is the torque

generated by a biarticular muscle tension Fm. There also is

the sum mode in a pair of tensions generated by flexor and

extensor muscles. It is true that this conversion to torque

cannot reflect this sum mode. The sum mode, however, will

be reflected in the feedback control design in the following

sections.

The torques generated by these two monoarticular muscles

and one biarticular muscle can be projected into the joint

torques illustrated in Figure 1. Equation (3) is the relation-

ship.
(

T
j
1

T
j
2

)

=

(

τm
1

+ τm
3

τm
2

+ τm
3

)

(3)

Note that the torque by the biarticular muscle is added to

two joints at the same time.

In order to develop the relationship between the force at

the end-effector and the muscle torques, the Jacobian needs

to be modified. To this end, we use the relationship between

τm
3

and the absolute angle θ12; the absolute angle θ12 = θ1+
θ2 in Figure 2 can be defined as the output of the biarticular

muscle. The point that τm
3

affects both joints supports this

definition, and the dynamics of τm
3

derived in the following

sections also shows this output definition is appropriate.

B. Relationship between Joint/Biarticular Torque and End-

point Force

The joint torques related to the end-effector force Fe is

distributed to τm
1

, τm
2

, τm
3

in this section. Equation (2) can

be divided into two parts like the following equation.

JT

(

fx

fy

)

=

(

−l1 sin θ1fx + l1 cos θ1fy

0

)

(4)

+

(

−l2 sin θ12fx + l2 cos θ12fy

−l2 sin θ12fx + l2 cos θ12fy

)

Considering this, three muscle torques τm
1

, τm
2

, τm
3

which

cope with the external force Fe can be defined as follows.

τm
1

= −l1 sin θ1fx + l1 cos θ1fy, τm
2

= 0 (5)

τm
3

= −l2 sin θ12fx + l2 cos θ12fy (6)

The muscle torques τm
1

, τm
2

, τm
3

cannot be decided

uniquely from the joint torques T
j
1
, T

j
2

. If, however, we

remove τm
2

intentionally, the relationship can be simplified

and it will provide a new relationship between Fe and muscle

torques as the following equation.
(

τm
1

τm
3

)

=

(

1 −1
0 1

)(

T
j
1

T
j
2

)

=

(

1 −1
0 1

)

JT

(

fx

fy

)

= (Jabs)
T

(

fx

fy

)

,(7)

where Jabs stands for the absolute angle Jacobian described

as the following equation.

Jabs =

(

−l1 sin θ1 −l2 sin θ12

l1 cos θ1 l2 cos θ12

)

= J

(

1 0
−1 1

)

(8)

We found that, with the biarticular muscle, the kinematics

can be described by the absolute Jacobian and since the Jabs

is fit for rotation transformation, the relationship between F e

and τm
1

, τm
2

, τm
3

can be more simplified when F e are given

as F e = (F cos θf , F sin θf ).
(

τm
1

τm
3

)

=(Jabs)
T

(

F cos θf

F sin θf

)

=

(

Fl1 sin(θf −θ1)
Fl2 sin(θf −θ12)

)

(9)

Equation (9) is the equation which relates τm
1

, τm
3

to the

characteristics of the external forces: F and θf . With the

biarticular muscle torque coordinate, the endpoint force can

be designed in a more simple way; two muscle torques are

just two functions of θf , θ1, θ12 and F .

III. TWO DEGREE OF FREEDOM CONTROL FOR

BIARTICULAR MUSCLE MODEL MANIPULATOR

As mentioned previously, there is the sum mode in a

muscle pair of flexor and extensor. This section proposes

a control design which can realize the difference mode and

sum mode of a muscle pair in a robot manipulator, and an

impedance control based on a biarticular muscle is suggested.

A. Two Degree of Freedom Control Corresponding to Two

Modes of Muscle Pair
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Fig. 3. Two-Joint Manipulator with Muscle Model

Figure 3 shows the 3 pairs of muscles: flexors and ex-

tensors of two monoarticular muscles and one biarticular

muscle. Tension of each flexor and extensor is described as

f in this figure. The tensions of flexors and extensors are

widely modeled as

ff = uf − Kufrθ, fe = ue + Kuerθ, (10)

where u is the contractile force [11]. The sign of the

second term changes with regard to the direction a muscle

is attached. This tension is reflected to the joint torques as

T
j
1

= r1(f
f
1
− fe

1
) + r1(f

f
3
− fe

3
) (11)

= r1(u
f
1
− ue

1
) + r1(u

f
3
− ue

3
)−K1r1(u

f
1

+ ue
1
)θ1

−K3r1(u
f
3

+ ue
3
)θ1

T
j
2

= r2(f
f
2
− fe

2
) + r2(f

f
3
− fe

3
) (12)

= r2(u
f
2
− ue

2
) + r2(u

f
3
− ue

3
)−K2r2(u

f
2

+ ue
2
)θ2

−K3r2(u
f
3

+ ue
3
)θ2,
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where ri is the radius of the joint i. In Equations (11)

and (12), the first two terms are the difference mode which

generates torques to rotate the joints, while the last two terms

are the sum mode that is related to the stiffness around the

joints.
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Fig. 4. Illustration of Muscle Input System in a Joint

Figure 4 is the illustration of these roles of two modes in

muscle torque; the difference mode working as a torque and

the sum mode which adjusts the stiffness.

The virtual trajectory control, which uses the equilibrium

point to control the joint angle, also can be represented

in this figure. θref is the equilibrium point in the virtual

trajectory algorithm to control the angle θ.With this designed

equilibrium angle θref and the designed stiffness K, the

angle will converge to θref ; this is the virtual mode algorithm

[9], [10].

Figure 4 provides another insight to the muscle torque

input; the difference mode works as feedforward torque input

and the sum mode works as feedback gain design, so-called

two degree of freedom control. With this new insight, we

can recognize that the previous research on muscle driving

system focuses more on the feedback characteristics than

feedforward characteristics.

u

+-

-

plant (arm)
dynamics

K

θ
ref

+

f-ue

uf  ue+

r
θinverse

dynamics

Fig. 5. Feedforward Control for the Difference Mode

For this feedforward torque input design, we suggest

an algorithm in Figure 5. Inverse dynamics is adopted to

increase the tracking performance. This is old technology

in the manipulator control; there have been a number of

feedforward controls such as computed torque method so that

the suggestion is not new as a control method of manipulator.

However this is a new concept as a muscle torque input

design. Moreover, we find out that the inverse dynamics can

be simplified by diagonalizing the inertia matrix when the

biarticular muscle is adopted.

B. Dynamics of Manipulator with Biarticular Muscle Torque

Input

Equation (13) shows the dynamics of a robot manipulator,

where g is the acceleration of gravity, di is the distance from

the center of a joint i to the center of the gravity point of the

link i, mi is the weight of the link i, Ji = mid
2

i + Ii, and

Ii is the moment of inertia about an axis through the center

of mass of link i.
(

J1+J2+m2l
2

1
+2m2l1d2 cos θ2 J2+m2l1d2 cos θ2

J2 + m2l1d2 cos θ2 J2

)(

θ̈1

θ̈2

)

+

(

−m2l1d2 sin θ2(θ̇
2

2
+ 2θ̇1θ̇2)

m2l1d2 sin θ2θ̇
2

1

)

+

(

g(m1d1+m2l1) cos θ1+gm2d2 cos(θ1+θ2)
gm2d2 cos(θ1 + θ2)

)

=

(

T
j
1

T
j
2

)

(13)

Taking the relationship of Equation (3) into consideration,

the dynamics of three muscle torques can be derived. We

suggest that the dynamics of the biarticular muscle torque is

defined as

τm
3

=

(J2+m2l1d2 cos θ2)(θ̈1+θ̈2)−m2l1d2 sin θ2(θ̇
2

2
+2θ̇1θ̇2)

+gm2d2 cos(θ1 + θ2). (14)

With this dynamics definition, the dynamics for two monoar-

ticular muscle torque is made independent with each other

as the following equations.

τm
1

= (J1+m2l
2

1
+m2l1d2 cos θ2)θ̈1 +g(m1d1+m2l1) cos θ1

(15)

τm
2

= −m2l1d2 cos θ2θ̈2 + m2l1d2 sin θ2(θ̇1+θ̇2)
2 (16)

Focusing only on the inertia force terms, we can find that

the inertia for each torque is defined without any co-relation

with other torques in this dynamics, which means the newly-

defined inertia matrix M bia is diagonalized as Equation (17).

M bia = (17)
(

J1+m2l2
1
+m2l1d2 cos θ2 0 0

0 −m2l1d2 cos θ2 0
0 0 J2+m2l1d2 cos θ2

)

Note that the last line of the matrix corresponds to the

relationship between the torque τm
3

and the angle θ12, as we

stated previously the angle θ12 is the output of the torque τm
3

.

Although the dynamics of τm
1

, τm
2

, τm
3

cannot be determined

uniquely, the proposed dynamics can be quite efficient in

decoupling the co-relation of joint torques.

We propose to use this dynamics as the inverse dynamics

for the feedforward control of each muscle torque so that it

can be designed independently. Equations (18) to (20) are the

designed feedforward control input for three muscle torques.

τ
m.ff
1

= (18)

(J1+m2l
2

1
+m2l1d2 cos θ2)θ̈

ref
1

+g(m1d1+m2l1) cos θ1

τ
m.ff
2

= (19)

−m2l1d2 cos θ2θ̈
ref
2

+ m2l1d2 sin θ2(θ̇1+θ̇2)
2

τ
m.ff
3

= (20)

(J2+m2l1d2 cos θ2)θ̈
ref
12

−m2l1d2 sin θ2(θ̇
2

2
+2θ̇1θ̇2)

+gm2d2 cos θ12
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For the disturbance terms, there may be other distribution

to τ
m.ff
1

, τ
m.ff
2

, τ
m.ff
3

. The proposed feedforward control

focuses on decoupling of disturbance; τ
m.ff
1

deals with the

gravity due to θ1, τ
m.ff
2

deals with the Coriolis force, and

disturbance terms assigned on τ
m.ff
3

enables this decoupling.

C. Gain Design to Make Arbitrary Endpoint Stiffness

The proposed inverse dynamics will be used for the

difference mode of the muscle forces, and as for the design

of the sum mode, this section proposes an algorithm to

determine the feedback gain K in Figure 5.

The velocity feedback PID control is identified with the

impedance force control [12]. The impedance or stiffness

control explored in the muscle model researches uses this

point as well; with the adjustment of muscle stiffness or

position gain in Figure 5, the impedance at the end-effector

can be controlled.

With the proposed feedforward position control, this

impedance control by feedback gain decision can achieve an

excellent hybrid control: feedforward control for a position

control and feedback control for force control.

As this feedback force control design, we develop a

stiffness ellipse control by determining an appropriate gain

of K for muscles. Equation (21) is the stiffness ellipse at the

endpoint we want to realize.
(

fe
x

fe
y

)

=

(

k1 cos θe −k1 sin θe

k2 sin θe k2 cos θe

)(

∆x

∆y

)

(21)

When the force F
e = (fe

x, fe
y ) is applied to the endpoint,

the position of the endpoint will change as much as (∆x,∆y)
with this stiffness ellipse design. The tuning parameters in

this stiffness ellipse design are k1, k2, the major axis and the

minor axis, and θe, the tilt angle of the ellipse.

The discussion in Section II-A reveals the relationship

between this stiffness ellipse and the elasticity, i.e. , the po-

sition gain of muscle torques. As with the torque conversion

in Section II-A, we design the torque τm
2

as 0 to make

the relationship simple, which simplifies the relationship

between the stiffness ellipse matrix in Equation (21) and the

gain matrix in Equation (22).
(

τ
m.fb
1

τ
m.fb
3

)

=

(

Kbia
1

Kbia
2

Kbia
3

Kbia
4

)(

∆θ1

∆θ12

)

(22)

In order to derive this gain, F
e = (fe

x, fe
y ) and (∆x,∆y)

are converted to τm
1

, τm
2

, τm
3

and ∆θ1, ∆θ12 using the abso-

lute angle Jacobian Jabs. Putting the stiffness ellipse in the

workspace in Equation (21) as a matrix Kws and using the

relationship of Equation (7),the relationship in Equation (22)

is represented as follows.
(

τ
m.fb
1

τ
m.fb
3

)

= J
T
absKwsJabs

(

∆θ1

∆θ12

)

(23)

Here we assumed the deviation in the position (∆x, ∆y)T

can be approximated as Jabs(∆θ1, ∆θ12)
T , which means the

amount of deviation is small.

One interesting point is that if we divide the workspace

stiffness matrix Kws into an axis matrix and a rotation

matrix in Equation (24), the rotation angle θe can be included

in the Jacobian Jabs.

KwsJabs

=

(

k1 0
0 k2

)(

cos θe − sin θe

sin θe cos θe

)(

−l1 sin θ1 −l2 sin θ12

l1 cos θ1 l2 cos θ12

)

=

(

k1 0
0 k2

)(

−l1 sin(θ1 + θe) −l2 sin(θ12 + θe)
l1 cos(θ1 + θe) l2 cos(θ12 + θe)

)

(24)

This rotation in the absolute angle Jacobian results in the

following gain decision.

Kbia
1

= l2
1
(k1sinθ1sin(θ1+θe)+k2cosθ1cos(θ1+θe)) (25)

Kbia
2

= l1l2(k1sinθ1sin(θ12+θe)+k2cosθ1cos(θ12+θe))(26)

Kbia
3

= l1l2(k1sinθ12sin(θ1+θe)+k2cosθ12cos(θ1+θe))(27)

Kbia
4

= l2
2
(k1sinθ12sin(θ12+θe)+k2cosθ12cos(θ12+θe))(28)

This is the proposed gain decision to achieve the stiffness

characteristics at the end-effector. If k1, k2, θe are specified

the gains to realize the stiffness ellipse are determined as

above.

Note that the non-diagonal matrix elements Kbia
2

,Kbia
3

are

not zero in this gain, which means muscle torques τm
1

, τm
3

need the angle information of other torque output in order

to make the arbitrary stiffness ellipse at the endpoint.

Muscles are said to do a local feedback for its stiffness

control; this sharing of the angle information is impossible.

To represent this restriction, Equation (29) can be used. This

kind of algebraic restriction will result in the directivity of

force output at the endpoint in actual muscle.

k1sinθ1sin(θ12+θe)+k2cosθ1cos(θ12+θe)

= k1sinθ12sin(θ1+θe)+k2cosθ12cos(θ1+θe) = 0 (29)

To derive more simple condition for this restriction and

its comparison with the actual human muscle activity is to

be researched.

IV. SIMULATION RESULT

Performance of the proposed muscle torque control is

validated by simulations. The proposed control has two

degrees of freedom: feedforward control using the proposed

inverse dynamics, feedback control using the proposed gain

decision algorithm. Equations (18) to (20) are feedforward

control input and Equation (23) is feedback control input. For

τm
2

, we only use a feedforward control to keep the stiffness

ellipse.

Simulation is performed on a planar manipulator, and

the effect of the gravity is ignored. For this reason, the

feedforward compensation for the gravity in Equation (18)

and (20) are removed.

Figure 6 is the block diagram of simulation. Red line

represents the feedforward control, and blue line represents

the feedback control. Connection without any sign means

the signals are added. Three muscle torques are projected

to two joint torque based on Equation (3) and applied to

a planar manipulator. Inverse dynamics.1 to 3 adopt the

inverse dynamics in Equations (18) to (20). Kbia is the gain
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Fig. 6. Control Block Diagram for Simulation

we designed in Equations (25) to (28). In addition to the

feedback position gain, the velocity of θ̇1, θ̇12 is fed back to

increase damping. The damping gains are set as double of

the gain Kbia.

In order to validate the fundamental property of the

proposed method, no modeling error is considered in this

simulation.

A. Tracking Performance by Feedforward Control

First, a sinusoidal wave is added as a reference angle of

θ1. The frequency of the wave will show the performance

of reference tracking. 1Hz and 5Hz waves are added. Initial

angles of θ1 and θ2 is θ0

1
= 0, θ0

2
= π

4
. Figure 7,8 are the

results of θ1. With high frequency reference, there come
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)

 

 

θ
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Fig. 7. Tracking Performance of θ1 with 1Hz wave
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Fig. 8. Tracking Performance of θ1 with 5Hz wave

some errors due to the low pass filter in differentiation in

the feedforward control.

In actual manipulator control, this kind of time delay

is not a problem since the trajectory is designed in a

more detailed way. Modeling errors, however, produce these

tracking errors. In any case, activated by these errors, the

second link also becomes to have errors. Although π
4

rad is

set as a reference angle of θ2, the actual angle shows the

errors in Figures 9 to 10. These errors in θ1, θ2 will be

0 2 4 6 8 10
0.7

0.72

0.74

0.76

0.78

0.8

Time (sec)

θ 2
(r

ad
)

Fig. 9. Tracking Performance of θ2 with 1Hz wave
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Fig. 10. Tracking Performance of θ2 with 5Hz wave

changed according to the gain Kbia design.

B. Stiffness Characteristic by Feedback Control

Here, the stiffness characteristic by the proposed feedback

control is validated. We will check whether the stiffness in

Equation (21) is achieved by the feedback control. Forces

(fe
x , fe

y ) will be applied to the end-effector from various

direction, and the derivation of the position (∆x,∆y) is

measured. If the relationship between applied (fe
x, fe

y ) and

measured (∆x,∆y) is close to Equation (21), the proposed

control is proved to be efficient.

Two kinds of (∆x,∆y) are compared: one is measured

(∆xs, ∆ys) and the other (∆xc, ∆yc) is the values calcu-

lated from Equation (21). Simulations are done changing the

angle θe and the initial angle of θ2. k1 and k2 are set to 10

and 1. The amplitude of the external force F is set constant

as |Fe| = 0.1, with the angle θf in Figure 2 changing. Table

I is the simulation result.

The results shows that the stiffness characteristics per-

formed by the proposed feedback control fits well with

the stiffness specification given by Equation (21). The

errors are caused by the approximation (∆x,∆y)T ≃
Jabs(∆θ1, ∆θ12)

T we used to derive the gain.
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TABLE I

COMPARISON OF (∆x, ∆y)

Condition Comparison of Values

θ0

2
= π

4
, θe = 0, θf = 0

∆xs = 0.0091, ∆ys = 0.0019
∆xc = 0.01, ∆yc = 0.0

θ0

2
= π

4
, θe = 0, θf = π

6

∆xs = 0.0043, ∆ys = 0.403
∆xc = 0.0087, ∆yc = 0.050

θ0

2
= π

4
, θe = 0, θf = π

3

∆xs = −0.0042, ∆ys = 0.0750
∆xc = 0.005, ∆yc = 0.0866

θ0

2
= π

4
, θe = 0, θf = π

2

∆xs = −0.0115, ∆ys = 0.0940
∆xc = 0.0000, ∆yc = 0.1000

θ0

2
= π

4
, θe = π

6
, θf = 0

∆xs = 0.0078, ∆ys = −0.0055
∆xc = 0.0087, ∆yc = −0.0050

θ0

2
= π

4
, θe = π

6
, θf = π

6

∆xs = 0.0191, ∆ys = 0.0286
∆xc = 0.0325, ∆yc = 0.0390

θ0

2
= π

4
, θe = π

6
, θf = π

3

∆xs = 0.0213, ∆ys = 0.0565
∆xc = 0.0476, ∆yc = 0.0725

θ0

2
= π

4
, θe = π

6
, θf = π

2

∆xs = 0.0196, ∆ys = 0.0736
∆xc = 0.0500, ∆yc = 0.0866

θ0

2
= π

4
, θe = π

3
, θf = 0

∆xs = 0.0053, ∆ys = −0.0083
∆xc = 0.0050, ∆yc = −0.0087

θ0

2
= π

4
, θe = π

3
, θf = π

6

∆xs = 0.0301, ∆ys = 0.0121
∆xc = 0.0476, ∆yc = 0.0175

θ0

2
= π

4
, θe = π

3
, θf = π

3

∆xs = 0.0402, ∆ys = 0.0270
∆xc = 0.0775, ∆yc = 0.0390

θ0

2
= π

4
, θe = π

3
, θf = π

2

∆xs = 0.0422, ∆ys = 0.0350
∆xc = 0.0866, ∆yc = 0.0500

θ0

2
= π

2
, θe = 0, θf = 0

∆xs = 0.0100, ∆ys = −0.0002
∆xc = 0.0100, ∆yc = 0.0000

θ0

2
= π

2
, θe = 0, θf = π

6

∆xs = 0.0064, ∆ys = 0.0407
∆xc = 0.0087, ∆yc = 0.0500

θ0

2
= π

2
, θe = 0, θf = π

3

∆xs = −0.0023∆ys = 0.0752
∆xc = 0.0050, ∆yc = 0.0866

θ0

2
= π

2
, θe = 0, θf = π

2

∆xs = −0.0117, ∆ys = 0.0962
∆xc = 0.0000, ∆yc = 0.1000

θ0

2
= π

2
, θe = π

6
, θf = 0

∆xs = 0.0091, ∆ys = −0.0042
∆xc = 0.0087, ∆yc = −0.0050

θ0

2
= π

2
, θe = π

6
, θf = π

6

∆xs = 0.0270, ∆ys = 0.0315
∆xc = 0.0325, ∆yc = 0.0390

θ0

2
= π

2
, θe = π

6
, θf = π

3

∆xs = 0.0365, ∆ys = 0.0476
∆xc = 0.0476, ∆yc = 0.0725

θ0

2
= π

2
, θe = π

6
, θf = π

2

∆xs = 0.0382, ∆ys = 0.0810
∆xc = 0.0500, ∆yc = 0.0866

θ0

2
= π

2
, θe = π

3
, θf = 0

∆xs = 0.0066, ∆ys = −0.0078
∆xc = 0.0050, ∆yc = −0.0087

θ0

2
= π

2
, θe = π

3
, θf = π

6

∆xs = 0.0436, ∆ys = 0.0132
∆xc = 0.0476, ∆yc = 0.0175

θ0

2
= π

2
, θe = π

3
, θf = π

3

∆xs = 0.0694, ∆ys = 0.0297
∆xc = 0.0775, ∆yc = 0.0390

θ0

2
= π

2
, θe = π

3
, θf = π

2

∆xs = 0.0800, ∆ys = 0.0400
∆xc = 0.0866, ∆yc = 0.0500

V. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

This paper proposed a feedforward control and feedback

control for a manipulator which has a biarticular muscle

torque. For this development, we showed that the absolute

angle Jacobian matrix is efficient in deriving the relationship

between the position/force at the endpoint and the three

muscle torques.

We also focused on two modes of agonistic/antagonistic

muscles: the sum mode and the difference mode in a pair

of muscles, and developed a feedforward control for the

difference mode and a feedback control for the sum mode.

We derived inverse dynamics for three muscle torques and

used it for the feedforward control of three muscle torques.

The proposed dynamics has a diagonalized inertia matrix; the

biarticular muscle decouples the conventional inertia matrix.

As for the feedback control, a methodology to determine

the gain based on the stiffness ellipse at the workspace was

suggested. Simulation result verified the performance of the

proposed control design: fast position tracking and stiffness

ellipse characteristics were achieved successfully.

B. Future Works

The proposed control design still needs angle information

of other joint, and thus it requires some modification to

be independent control of muscles; the diagonalized inertia

matrix still has the angle θ2 in all elements, which can be

solved if θ2 is given in a feedforward way, not feedback from

the real angle. Restriction of the stiffness ellipse specification

in Equation (21) is necessary for the independent control.

Equation (29) can be a hint to this restriction.

The proposed control does not include a feedback control

of τm
2

. If we can design a feedback control that is quite robust

to external forces such as the disturbance observer, the errors

of θ2 in Figure 9 and 10 can be attenuated. Development a

robot that has a biarticular muscle torque and experiment

using the robot is our future work.
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