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Abstract— We explore the use of option contracts as a means
of managing and controlling inventories in a retail market.
Specifically, merchants can buy option contracts on unsold
inventories of retail goods in an effort to hedge, pool, or
transfer risk. We propose a new kind of European put option
on an inventory where the holder is allowed to freely adjust
the original sale price of the underlying good throughout the
contract period as a means of controlling demand. Assuming
the retailer will chose the profit maximizing pricing policy, we
can price the option accordingly.

I. INTRODUCTION

The capital markets have been recently scrutinized in

the press, congressional hearings, talk shows, etc., due in

part to the active trading of highly complex and yet poorly

understood over-the-couter derivatives and other investment

vehicles used to transfer cash flows and risks in the consumer

debt and mortgage industries. The recent financial crisis

and global recession caused by large-scale holdings of toxic

paper involving collateralized debt obligations, mortgage-

backed securities, and subprime mortgages, demonstrates

that we still have much to learn about financial engineering

and the proper quantification of risk and reward. Nonethe-

less, despite the ever-growing list of blunders and debacles,

businesses in the aggregate enjoy increasingly greater access

to investment capital, less exposure to market risk, increased

liquidity, and higher productivity as a result of derivative

securities and investment banking [5], [7].

In the retail markets, merchants hold inventories of goods

and services in a manner not terribly different than investors

holding portfolios of investment securities. Indeed an in-

vestment portfolio can be viewed as an inventory and vice

versa. Our goal is to identify the commonalities between

these two areas and help tie these two industries together, at

least mathematically, under the common umbrella of systems

theory.

There are some obvious differences between the cap-

ital and retail markets. One notable example is that the

former is highly instrumented and transactions are usually

cleared centrally by financial intermediaries on a trading

floor, whereas the latter has wildly varying trading practices

and corresponding risks, thus resulting in relatively high

transaction costs, brand effects, and geographically localized

points of sale. Nonetheless as the information age continues

to evolve and consumer purchases become more electronic,

we may expect to see a similar commoditization in the retail

markets over time. There are already web services such
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as Paypal/eBay, PriceGrabber, and Amazon that centralize

and/or clear numerous retail storefronts thus removing the

need for a direct relationship between the consumer and the

retailer. Similar transaction clearinghouses likewise exist in

the wholesale and shipping industries.

The idea of an option in retail can be mathematically

motivated by the classical newsvendor problem, which we

review in Section II. In this problem, the retailer seeks

to determine the optimal inventory needed to maximize

expected profit when the demand is uncertain, the sale price

is fixed, and the inventory is perishable so that any remaining

items at the end of the day (or whatever the timeframe) are

sold for scrap at some known salvage value; see for example

[8]. Typical examples of perishable goods include bakery

items in a grocery store and magazines on a newsstand,

but electric power, theater tickets, and airplane seats also

fit this description. In fact one could extend this to virtually

any good by using perishability as a proxy for depreciation,

where the future depreciated value of the item is its “salvage

value” under the newsvendor paradigm. We remark that the

solution of the newsvendor problem has many similarities to

the Black-Scholes pricing of an option in the stock market.

Recall that a put option contract gives the owner the right,

but not the obligation, to sell a particular underlying asset at

a given price and at a specified instance (or period) of time.

Hence, the value of a put option depends on the (expected)

future value of the underlying asset. If the asset price rises

beyond a certain level, called the strike price, the put option

becomes worthless. If it goes below the strike price, the put

option can be exercised and the writer pays the buyer the

difference between the strike price and the asset price. In

the case of a retail option, the merchant buys the option

from the writer who then, at the end of the period, pays the

difference between the strike price and the salvage value on

any remaining inventory, or alternatively the contract could

allow or require the writer to pay the strike price and take

physical possession of the unsold inventory; see [2], [3].

One can price such options using the risk-neutral valuation,

where the premium paid by the buyer at the beginning of the

contract period is the future value of the writer’s expected

payout.

In an effort to make retail options more useful, we relax

the constraint on a fixed sale price u, thus allowing the

retailer to freely adjust the sale price of the underlying good

throughout the contract period in order to control demand,

and thus maximize profit. In Section III, we formulate this by

considering demand as a non-homogenous Poisson process

where the expected arrival rate depends on the sale price

of the underlying good. We model our inventory state as
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a continuous Markov process, which can be described as a

system of ordinary differential equations (ODEs) that depend

in part on the retailers pricing policy, which if known gives

the risk-neutral valuation of the option contract. In Section

IV, we determine the optimal pricing policy by solving a

dynamic program; see for example [1]. We consider specifi-

cally linear and log-linear demand rates, although our method

is quite general. We likewise reduce our dynamic program

to a system of ODEs, which can be solved to provide the

optimal pricing policy. We assume that the retailer will use

the optimal pricing policy, and hence we set the option price

accordingly. Finally, we perform some simulations in Section

V and discuss future directions and offer additional ideas for

using portfolio optimization tools in retail in Section VI.

II. MOTIVATING EXAMPLE

In this section we review the classic newsvendor problem.

We consider the task of determining the inventory policy

(or production policy) that will maximize expected profit,

given that one has a good forecast of future demand. More

precisely, we want to know how much inventory I0 our re-

tailer should buy from the wholesaler at cost C0 to maximize

expected profit, knowing that at the end of the sales period

[0, T ] the remaining inventory IT will be salvaged at a price

of CT per unit. We assume a fixed sale price u and that the

demand X is a random variable with known statistics. Since

the demand may exceed the available inventory, we relate

the quantity sold as the random variable

Q = min(X, I0).

Hence, the profit Π is the revenue minus the cost of inventory

plus the salvage, or rather

Π = Qu − I0C0 + IT CT .

where IT is the remaining inventory, that is, the amount of

product that does not sell and is thus salvaged at a price of

CT at the end of the sale period. This is given by

IT = I0 − Q = max(I0 − X, 0) := (I0 − X)+. (1)

The profit Π is then expressible as the return one would

get from selling out, minus the lost revenue from excess

inventory that is only partially recovered from salvage. This

yields

Π = I0(u − C0) − (u − CT )IT . (2)

Hence, the expected profit is

E[Π] = I0(u − C0) − (u − CT )E[IT ]. (3)

We remark that in (2), the only random variable in computing

the profit is IT . Hence it suffices in much of our analysis to

compute E[IT ].

A. Optimal Inventory Policy

In the classical newsvendor problem, we seek to determine

the optimal initial inventory I∗0 that maximizes profit, given

a retail price u and marginal (or wholesale) cost C0.

For convenience, we assume X is a continuous random

variable. Let F (x) be the (usually strictly monotone) cumu-

lative distribution function (cdf) and f(x) := F ′(x) be the

probability density function (pdf) for the demand X . To find

local extrema of E[Π], we take its derivative with respect to

I0 and set it to zero. Hence

d

dI0

E[Π] = u − C0 − (u − CT )
d

dI0

E[IT ] = 0,

or equivalently,

d

dI0

E[IT ] =
u − C0

u − CT

. (4)

It is easy to show that the initial inventory I0 that satisfies

(4) is profit maximizing. To compute E[IT ], we define the

indicator random variable

J =

{

1 X ≤ I0

0 X > I0.
(5)

Then IT = J(I0 − X) and

E[IT ] = I0 E[J ] − E[JX]. (6)

Hence, the expected remaining inventory takes the general

form

E[IT ] = I0

∫

x≤I0

f(x) dx −

∫

x≤I0

xf(x) dx. (7)

Taking the derivative yields

d

dI0

E[IT ] = E[J ] + I0

d

dI0

E[J ] −
d

dI0

E[JX].

It is relatively straightforward to show that E[J ] = F (I0),

d

dI0

E[J ] = f(I0) and
d

dI0

E[JX] = I0 f(I0).

Hence

d

dI0

E[IT ] = F (I0).

Combining with (4), the optimal inventory policy is

I∗0 = F−1

(

u − C0

u − CT

)

. (8)

This is the solution to the classic newsvendor Problem. We

remark that mathematically, the above analysis is very similar

to the derivation of the Black-Scholes pricing of a European

call option; see for example [10].
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Fig. 1. Option value at expiration of (a) a stock option and (b) a retail
option.

B. Fixed-Price Retail Option

We now explore the newsvendor Problem from the point

of view of an option contract; see also [2], [3]. Recall that

a European put option gives the holder the right, but not the

obligation to sell an underlying good at a specified price and

time.

Consider a European put option on the remaining inven-

tory IT with strike price K ≥ CT , initial inventory I0,

and fixed sale price u. In other words, we have a derivative

contract where the retailer pays p dollars to the option writer

at the beginning of the contract period and then receives

payment of KIT in return for the remaining inventory. If

the retailer sells out, the retailer pays nothing, and the net

option value is −p corresponding to the initial payment at the

beginning of the contract period; see Figure 1. According to

the risk-neutral valuation of the contract, the option is valued

at

p = (K − CT )E[IT ] (9)

dollars (modulo interest). Moreover the profit for the retailer

is given by

Π = I0(u − C0) − (u − K)IT − KE[IT ]. (10)

We remark that the expected profit in (10) is the same as

that of (2). Indeed options that are based on the risk-neutral

valuation do not improve the expected outcome, but they

do reduce the uncertainty of the outcome. Specifically, the

variance of (10) is given by (u−K)2V ar(IT ), whereas the

variance of (2) is larger and given by (u − CT )2V ar(IT ).
The problem with fixed-price retail options is that retailers

may want to change prices throughout the contract period.

If the underlying product is selling faster than expected, the

retailer may be able to increase profits by raising prices.

If the retailer is over stocked, he or she may be better off

lowering prices to stimulate demand. In the next section, we

introduce a new type of European put option that will allow

for dynamic pricing.

III. A NEW KIND OF EUROPEAN PUT OPTION

We present a new type of European put option for retail,

which allows the option holder to adjust prices throughout

the contract period [0, T ] in an attempt to maximize profits.

We present a method for computing the risk-neutral valua-

tion of this retail option, where the initial inventory is m
units. We assume that the demand is a nonhomogeneous

Poisson process, where customer purchases arrive at the rate

λ(u(t)), which depends on the time-dependent sale price

u(t) set by the merchant. Let Ij(t) be the probability that

the inventory level is j units at time t. Then the vector

I(t) = (I0(t), . . . , Im(t)) is a continuous-time Markov

process, where the transition probabilities likewise depend

on λ(u(t)).

Ii,j+1

Ii,j Ii+1,j

λ(ui,j+1)∆t

1 − λ(ui,j)∆t

Fig. 2. Single period branch describing (11).

A. Discrete-Time Formulation

We discretize the time interval [0, T ]. Let ui,j denote the

sales price when the inventory is at j units at time i∆t,
where i = 0, . . . , n, j = 0, 1, . . . ,m, and ∆t = T/n. For

small intervals of time [t, t + ∆t), we assume that an item

sells with probability λ(ui,j)∆t. Let Ii,j = Ij(i∆t) denote

the probability that the inventory level is j units at time i∆t.
Clearly

∑m

j=0
Ii,j = 1, Ii,j ≥ 0 for all i, j. Hence, following

Figure 2, the transition probabilities satisfy

Ii+1,j = λ(ui,j+1)∆tIi,j+1 + (1 − λ(ui,j)∆t)Ii,j . (11)

Hence, given a pricing policy {ui,j}, we can determine

the expected remaining inventory by computing the finite-

difference equations forward to time t = T . Then the

expected remaining inventory is given by

E[IT ] =

m
∑

j=1

jIj(T ).

Then the option valuation comes from (9), yielding

p = (K − CT )

m
∑

j=1

jIj(T ). (12)

This is the risk-neutral valuation of the option.

B. Continuous-Time Formulation

We can now take the limit at ∆t goes to zero, thus turning

this problem into a system of ODEs. Simplifying (11), yields

Ii+1,j − Ii,j

∆t
= λ(ui,j+1)Ii,j+1 − λ(ui,j)Ii,j ,
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which, as ∆t → 0, gives the ODE

d

dt
Ij(t) = λ(uj+1(t))Ij+1(t) − λ(uj(t))Ij(t), (13)

where Ij(0) is the initial probability distribution.

Hence, given the pricing policy {uj(t)}
m
j=0, we can com-

pute the state vector I(t) at time T , by integrating the system

of ODEs in (13) on the interval [0, T ]. Figure 3 shows

a sample solution to this differential equation for initial

inventory I10 = 1, and I9 = I8 = · · · = I0 = 0.

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

P
ro

b
a
b
ili

ty

I=7 I=3

I=0
I=10

Fig. 3. Inventory probabilities over time.

Ei,j Ei+1,j

Ei+1,j−1 + ui,j

λ(ui,j)∆t

1 − λ(ui,j)∆t

Fig. 4. Single period branch describing (14).

IV. OPTIMAL PRICING

In the previous section, we showed how to price an option

for a given pricing policy. We now show how to compute

the optimal pricing policy given a known demand rate λ(u).
We first compute the optimal price by solving a dynamic

program, and then, as in the section above, demonstrate that

the problem can be computed as a solution to a system of

ODEs by taking the subinterval length to zero. We assume

that the retailer will choose the profit maximizing pricing

policy, so that we can give the (Nash optimal) risk-neutral

valuation of the option.

A. Pricing as a Dynamic Program

By partitioning the contract period [0, T ] into n equal

subintervals, as above, we can design a dynamic program

to determine the optimal pricing policy for the underlying

inventory. On each subinterval, the retailer chooses the price

u∗ that will maximize expected remaining revenue on that

subinterval, given the inventory level j. We proceed by

the principle of optimality. Let Ei,j denote the expected

remaining revenue earned during the ith subinterval of time

when the inventory level is j units. If an arrival occurs, the

expected remaining revenue is Ei+1,j−1 + ui,j , and if no

arrival occurs, the expected remaining revenue is Ei+1,j ; see

Figure 4. Thus at each point, we have

Ei,j = (1−λi,j∆t)Ei+1,j +λi,j∆t(Ei+1,j−1 +ui,j), (14)

where λi,j = λ(ui,j). By taking a derivative with respect to

u, we find that the expected remaining revenue is maximized

when u∗
i,j satisfies

0 = λ′(u∗
i,j)(Ei+1,j−1 − Ei+1,j + u∗

i,j) + λ(u∗
i,j). (15)

Hence, by solving (15) for u∗
i,j , we can compute the optimal

prices and the expected remaining revenues at time i∆t by

using the optimal prices and expected remaining revenues

at time (i + 1)∆t; see Figure 5. This gives us a complete

description of the optimal pricing policy and expected re-

maining revenues for all subintervals of time and for all

inventory levels.

j = 0

j = 1

j = 2

T

{

2K

K

0

∆t

Fig. 5. Multiple periods for computing the expected remaining revenue.
The rightmost column corresponds to the final period, where the option pays
out K times the remaining inventory. By iterating backwards in time, we
can determine the rest of the grid values for both the optimal price u

∗ and
the corresponding expected remaining revenue values.

B. Linear and Loglinear Demand Rates

To more directly connect the expected remaining revenues

and optimal prices, we compute optimal pricing policies for

linear and log-linear demand rates.

1) Linear Demand: If the parameter of demand λ(u) is

linear with respect to price, that is λ(u) = b − au for some

a, b > 0, then (15) gives

u∗
i,j =

Ei+1,j − Ei+1,j−1

2
+

b

2a
.

2) Loglinear Demand: We repeat the process described

above but with a different demand rate. We let λ(u) = au−b,

b > 1. Then (15) gives

u∗
i,j =

b

b − 1
(Ei+1,j − Ei+1,j−1).
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Fig. 6. Realization of (a) the optimal price of the underlying asset
throughout contract period and (b) the option price throughout the contract
period.

C. Pricing in Continuous Time

We conclude this section by showing that the optimal

prices and expected remaining revenues can be computed

by solving a certain system of ODEs much as we did in the

previous section. By simplifying (14), we get

Ei+1,j − Ei,j

∆t
= λ(ui,j)(Ei+1,j − Ei+1,j−1 − ui,j),

which, by letting ∆t → 0, yields the ODE

d

dt
Ej(t) = λ(uj(t))(Ej(t) − Ej−1(t) − uj(t)), (16)

where E0(t) = 0 and Ej(T ) = jK.

V. SIMULATIONS

We can code up our two systems of ODEs in MATLAB

in just a few lines of code. For the integration, we use

ode45. This variable-step routine allows for large steps

when the errors are small, thus significantly speeding up

computation time. Most of our runs executed in under a

second. For large inventories or contract periods, the runtime

increased proportionately. In the case that the inventory

becomes very large, one could treat inventory levels as a

continuous variable, and resort to stochastic PDEs, as is done

with option pricing in the stock market (despite the fact that

the underlying also takes on discrete prices).

As a check, we generated simulations to realize consumer

purchases and examine how the price of both the underlying

and the option move over time; see Figure 6. We randomly

generated numbers on the unit interval at each time step, and

then dropped the inventory by one if the number generated

was less than λ(ui,j). We then computed the option price at

that moment. Notice that both images seem to behave like a

random walk, and look similar to stock-market data.

Finally, we describe how the option price varies as we

toggle parameters. In Figure 7 we plot the option price

against the initial inventory and the strike price, respectively.

These vary in a monotonic, nonlinear fashion, as expected,

growing linearly in the infinite limit and converging to zero

for small values. We remark that the option price for varying

contract periods has an inverse relationship to how the option

price varies with initial inventory, that is, small contract

periods price as if the initial inventory were large, and large

contract periods price as if the initial inventory were small.
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Fig. 7. Option price as we vary (a) the initial inventory and (b) strike
price.
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VI. INVENTORY VS. PORTFOLIO MANAGEMENT

From an inventory manager’s point of view, it can be

difficult, when looking at raw transactions data, to know

whether low sales are due to low demand (e.g., nobody is

buying) or low supply (e.g., retailer is out of stock). A retail

option allows one to easily differentiate between low sales

and low supply. Indeed the price of the option goes to zero

when the inventory runs out whereas low sales would result

in the option value being high. By using options and other

financial instruments in a retail environment, merchants can

better understand their markets by treating their inventories

as money managers do portfolios. However in retail, there

is the added advantage of being able to dynamically control

the price of the underlying goods in an attempt to maximize

profits.

There are many directions to take this portfolio view of

inventory theory and control. Several recent results exist for

managing portfolios of stock options over multiple periods;

see for example [9]. We could also explore risk-management

strategies ranging from a myriad of techniques including

value-at-risk, cash-flow-at-risk, etc. Another direction is the

further use of more exotic options. Variations on floors,

caps, Asian options, Bermuda options, etc., should all be

considered to see if there are “retail possibilities”.

Another area of interest is how to price an option when

dealing with an incompetent retailer. Note that the price of

the option proposed here requires that the retailer continually

adjust prices to maximize profits. However, if the retailer

isn’t adjusting them optimally, then the writer will be forced

to buy more unsold inventory than necessary at the end of the

contract period. While the existence of a Nash equilibrium

should preclude such events theoretically assuming symmet-

ric information, market efficiency, etc., in practice prices may

be set badly. Room for such incompetence may need to be

priced in the option.

We remark that options have been around for centuries

in the financial markets [11] (most notably over the past

30 years), and they have only recently been suggested for

use in a retail environment [2], [3]. There is, however, an

extensive supply chain contracts literature going back for

decades; see [12] for a review, as well as a real options

literature in business strategy; see [6] and references within.

It would be worthwhile to pull all of this literature together

under the common umbrella of systems theory. Indeed recent

events demand better analysis of financial modeling and a

deeper understanding of the dynamics of the markets.

Finally, it is unclear whether retail option contracts could

ever materialize into exchange-traded instruments like op-

tions on stocks, futures, etc. Surely some could find a natural

home in certain niche retail markets, but overall the lack of

standards, trust, third-party or government regulation, and/or

difficulties in instrumentation may make it difficult to reliably

create an active market for retail options in a general setting.

We remark, however, that the use of retail options as a

means of centralized inventory management and control in

a retail chain, or more generally an organized network of

manufactures, wholesalers, distributors, retailers, speculators,

and financiers, may prove to be valuable. Indeed, retailers

can essentially operate as portfolio managers. Retail chains

can buy and sell options internally, between their distribution

centers, individual stores, and their own corporate finance

department can act as the hedge fund for the company by

pooling risks much like an insurance company. Moreover, by

using the put option proposed in this paper, where the prices

can be adjusted dynamically, the retailers can then use the

price to control the returns in their portfolio, both for an

individual store and in the aggregate.

VII. FUTURE WORK

We are currently considering variations on this work. To

make our retail option viable, we need to further explore

the degree to which the option price is sensitive to input

parameters. We also need to flesh out the details about the

variance in the option payoff.

We are also interested in seeing if a set of options can

be written on an underlying collection of inventory, whether

is is reasonable to have variable payoffs depending on how

much inventory is remaining, and how the option might work

with multiple periods and multiple echelons. Other issues

include state estimation of the arrival rate, the effects of

substitutes and complements, and the effects of coupons and

other manufacturer-based promotions on the option price.
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