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Abstract— This article focuses on dynamic output feedback
and robust control of quasi linear parabolic partial differential
equations (PDE) systems with time-varying uncertain variables.
Especially processes that are described by dissipative PDEs are
considered. The states of the process required for designing
controllers are dynamically estimated from limited number of
noisy process measurements employing an Extended Kalman
filter. The issue of utilizing these estimated states in a robust
controller to achieve the desired process objective is inves-
tigated. The controller design needs to address both model
uncertainty and sensor noise. The methodology is employed
on an representative example wherein the desired objective
is to stabilize an unstable operating point in a catalytic rod,
where an exothermic reaction occurs. A finite dimensional
robust controller, utilizing dynamically estimated states, is used
to successfully stabilize the process to an open-loop unstable
steady-state.

I. INTRODUCTION

Transport reaction process are characterized by the cou-
pling of chemical reactions with significant convection, dif-
fusion and dispersion phenomena. Examples include plug
flow reactors, packed bed reactors, rapid thermal chem-
ical vapor deposition reactors, metallorganic vapor phase
epitaxy in semiconductor manufacturing and various other
fluid dynamic systems. Mathematical descriptions of these
transport-reaction processes [8] can be derived from dynamic
conservation equations and usually involve highly dissipative
(typically parabolic) partial differential equation (PDEs) sys-
tems.

The feedback control issue of such processes is nontrivial
owing to the spatially distributed mathematical descriptions
of their dynamics; as a result the state in the corresponding
control problem is infinite dimensional (when presented in
appropriate functional spaces). A traditional approach to
feedback control of these PDE systems involves finding
a finite dimensional approximation of the original infinite
dimensional system by finite discretization of the underly-
ing PDEs to yield a set of ordinary differential equations
(ODEs) which are subsequently used in designing feedback
controllers for the processes [5], [6]. This method typically
requires a high dimensionality in the resulting ODE system
in order to capture the PDE dynamics accurately, thus leading
to high dimensionality in the resulting controllers.
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Other model reduction techniques recognize the fact that
the eigenspectrum of the spatial differential operators in
the parabolic PDE systems can be partitioned into a finite-
dimensional slow subspace and a infinite-dimensional fast
subspace [20]. In other words, the long-term dynamics of the
dissipative PDEs are finite-dimensional and therefore a finite
dimensional model would accurately capture the dynamics of
the original infinite dimensional problem. One such approach
is to use Galerkin’s method, wherein the solution of the
system is expanded using the eigenfunctions of the spatial
differential operator. This approach yields a system of ODEs
that accurately describes the dominant (slow) modes of the
PDEs, which can be subsequently used in the design of
feedback controllers [2], [1], [4], [18], [17].

The concepts of inertial manifold [20], [12] and approxi-
mate inertial manifold [3], [9], [21] were also used to derive
lower order differential algebraic equation (DAE) systems
which capture the dominant dynamics of quasi-linear PDEs.
The derived DAE systems were then used for the synthesis
of nonlinear low-dimensional output feedback controllers
which enforced stability and output tracking in the closed-
loop system. However these results do not consider process
uncertainty during the design of the feedback controllers.
To address this issue adaptive state-feedback controllers
for these PDE systems were also developed [10]. In [7]
a robust feedback controller was designed based on static
output feedback for processes described by quasi-linear PDE
systems with slowly varying uncertain parameters. The de-
signed controllers enforced feedback stability and robustness
to the system. However, this and other related results [8],
[11] do not utilize the available process model for better
estimation of the state of the reduced order model (computed
using Galerkin’s method) by designing a dynamic observer
due to limitations in the proof of closed-loop behavior
guarantees. Moreover, for situations wherein the available
process measurements are corrupted by sensor noise, the
used static observer may yield an inaccurate prediction of the
states of the reduced order model. In these situations dynamic
estimation of the system states yield better results, as they
utilize the closed loop system outputs while estimating the
states of the system, even if only local results can be
guaranteed.

As the above model reduction methodologies transform
PDE systems in to ODE system, a wealth of available
resources [19] in dynamic estimation of these ODE system
states can be utilized. Kalman filter (KF) [15] is one such
dynamic state estimation tool that provides an optimal esti-
mate of the system states of a linear system by propagating
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the mean & covariance of the system states through time.
For nonlinear systems, various other formulations of non-
linear Kalman filters are available [14]. Extended Kalman
filter (EKF), a straightforward extension of KF, is one such
formulation that has been heavily used as a nonlinear filtering
tool in the literature. However, this estimation tool and other
such methods are not known to work well in presence of
model uncertainties.

In the present work the problem of dynamic estimation and
control of a PDE system with slowly varying uncertainties
using limited noisy measurement data, is investigated. The
proposed method employs Galerkin’s method and a combina-
tion of feedback linearization and Lyapunov methods along
with an EKF. The quality of state estimates that results when
using EKF along with a robust controller is investigated.
We present an application of the above approach to control
temperature in a catalytic rod where an exothermic reaction is
taking place. A finite dimensional robust controller is coupled
with dynamic output feedback to stabilize the process to an
open-loop unstable steady-state. This work is at the investi-
gation stage of such combinations, without presentations of
formal guarantee of closed-loop behavior.

II. MATHEMATICAL PRELIMINARIES

We focus on the problem of feedback control of spatially
distributed processes described by highly dissipative PDEs
with the following state-space description:

∂x
∂t

= Ax+b(z)u+ f (x)+W (x,r(z)θ(t)),

yc =
∫

Ω
c(z) x dz,

ym =
∫

Ω
s(z) x dz+ v(t).

(1)

subject to the mixed-type boundary conditions:

C1x(α, t)+D1
∂x
∂z

(α, t)−R1 = 0

C2x(β, t)+D1
∂x
∂z

(β, t)−R2 = 0
(2)

and the following initial condition

x(z,0) = x0(z). (3)

In the above PDE system, x(z, t) ∈ Rn denotes the vector
of state variables, yc ∈ Rk denotes the vector of controlled
outputs, t is the time, ym ∈ Rnmo denotes the vector of
measured outputs, z∈ Ω ⊂ R is the spatial coordinate and
Ω = [α,β] is the domain of definition of the process. A
is a highly dissipative, linear spatial differential operator,
f (x) is a nonlinear vector function which is assumed to be
sufficiently smooth with respect to its arguments, c(z) is a
known smooth vector function of z which is determined by
the desired performance specifications in the domain Ω and
s(z) is a known smooth vector function of z which is deter-
mined by the location and type of measurement sensors (e.g.,
point or distributed sensing). W (x,r(z)θ(t)) is a nonlinear
vector function, θ(t) denotes uncertain process parameters or
exogenous disturbances, r(z) is a known smooth function of z
that specifies the position of action of the uncertain variables

Fig. 1. Process operation block diagram under proposed methodology

on Ω, v ∼ N (0,R) is a gaussian white noise sequence of
intensity Q. u = [u1,u2, · · · ,uk] ∈ Rk denotes the vector of
manipulated inputs, b(z) ∈ Rn×k is a known smooth matrix
function of z of the form [b1(z),b2(z), · · · ,bk(z)], where bi(z)
describes how the ith control action ui(t) is distributed in the
spatial domain Ω. C1, D1, C2, D2, R1,R2 are nonlinear vector
functions which are assumed to be sufficiently smooth and
x0(z) is a smooth vector function of z. We assume that for
a given set of initial and boundary conditions the system of
Eqs. 1-3 has a unique solution. We formulate the problem in
the space of square integrable functions L2[Ω] and employ
the following definition for the norm:

(φ1,φ2) =
∫

Ω

φ
∗
1(z)φ2(z)dz, ||φ1||2 = (φ1,φ1)1/2 (4)

where φ1,φ2 ∈ L2[Ω] and ∗ denotes the complex conjugate
transpose.

III. PROBLEM FORMULATION AND SOLUTION
METHODOLOGY

In this section our objective is to present an outline of
the steps of the proposed dynamic output feedback control
methodology for processes that are described by the system
of Eqs.1-3. The control problem is formulated as the one
of deriving a feedback control law u(t) = G(x̂(t)), where
G(x̂(t)) is any nonlinear function of an estimate of x(t), such
that the closed-loop system is stabilized within a neighbor-
hood of the desired set point. Without loss of generality, we
assume the setpoint is x(z, t) = 0. The steps of the proposed
methodology to achieve the above task are:

1) We use the eigenfunctions of the spatial differential
operator A to derive finite-dimensional approximations
of the infinite-dimensional PDE system of Eqs.1-3 by
using Galerkin’s method.

2) Employ Extended Kalman Filter to provide estimates
of the states of the resulting finite-dimensional approx-
imation, using information obtained from limited noisy
measurement sensors.

3) Design a robust controller using the state estimates to
drive the PDE system Eqs.1-3 within a neighborhood
of the desired setpoint.
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A block diagram elucidating the above steps is presented in
Fig. 1. The following subsections briefly describe each of
the above steps.

A. Derivation of finite dimensional approximations using
Galerkin’s method

We employ the spectral eigenfunctions of the operator A
to derive finite-dimensional approximations of the original
infinite-dimensional PDE system of Eq.1 by using Galerkin’s
method. To simplify the notation, without loss of generality
we consider the system of Eq.1 with n = 1. In principle,
x(z, t) can be represented as an infinite weighted sum of
a complete set of eigenfunctions φk(z). We can obtain an
approximation xN(z, t), by truncating the series expansion of
x(z, t) up to order N, as follows:

xN(z, t) =
N

∑
k=1

ak(t)φk(z)
N→∞−→ x(z, t) =

∞

∑
k=1

ak(t)φk(z) (5)

where ak(t) is a time-varying coefficient called the mode
of the system. The eigenfunctions are obtained from the
solution of the eigenfunction eigenvalue problem of the
operator A

Aφ = λφ. (6)

We assume that the eigenfunction problem can be solved ana-
lytically. Furthermore, we order the eigenfunction-eigenvalue
pairs such that

λ1 ≥ λ2 ≥ ·· ·λn ≥ ·· ·

A known property of highly dissipative PDEs is that the
eigenspectrum of the operator A can be partitioned into a
finite size of ones that are close to the imaginary axis and
an infinite size set of eigenvalues that lies in the left half
plane. Furthermore there is a separation between the “slow”
and “fast” eigenvalues

λN/λN+1 = O(ε)

where ε is small number. This implies that the long term
dynamics of the process can be accurately described by a
finite dimensional approximation and there is a time-scale
separation between the slow dynamics and the fast highly-
stable ones. Thus substituting the expansion of Eq.5 into
Eq.1, multiplying the PDE with the eigenfunctions, φ(z), and
integrating over the entire spatial domain (i.e., taking inner
product in L2[Ω] with the eigenfunctions), the following N-th
order system of ODEs is obtained.

−
N

∑
k=1

ȧk(
∫

Ω

φ
∗(z)φk(z)dz)+

∫
Ω

φ
∗(z)A

N

∑
k=1

ak(t)φk(z)dz

+
∫

Ω

φ
∗(z)b(z)udz+

∫
Ω

φ
∗(z) f (

N

∑
k=1

ak(t)φk(z))dz

+
∫

Ω

φ
∗(z)W (

N

∑
k=1

akφk(z),r(z)θ(t))dz = 0,

ym =
∫

Ω

s(z)(
N

∑
k=1

akφk(z),r(z)θ(t))dz.

The resulting ODE system along with the measurement
equation is written in the following compact form

ȧ = F (a)+Gu+Ws(a,θ)
ym = Φ a+ v (7)

where F , Ws are vector functions of appropriate dimensions
and G , Φ are matrix functions of appropriate dimensions. We
note that the only information assumed to be available about
the model uncertainty term, Ws, is a time varying bounding
function c0(t) that captures the size of uncertain terms.

The availability of measurement sensors are often re-
stricted and the measurement available from them tend to be
noisy; estimation techniques to predict the system states in
Eq.7 are required. Since the state equation (Eq.7) is nonlinear
we use a nonlinear filtering tool called Extended Kalman
filter to estimate the system states.

IV. EXTENDED KALMAN FILTER

Given a linear model of the system along with noisy
output measurements, the Kalman filter (KF) [15] provides
an optimal estimate of the system states. KF operates by
propagating the mean & covariance of the system states
through time. For nonlinear systems, various formulations
of nonlinear Kalman filters are available [14]. Extended
Kalman filter (EKF) is one such formulation which has been
heavily used as a nonlinear filtering tool in the literature. In
EKF, the state equations of the system (Eq.7) are linearized
at each time step and the states are estimated by using
these linearized state equations in the KF. The relevant state
equation and measurement equation from the above section
is

ȧ = F (a)+Gu+w
ym = Φa+ v (8)

w∼N (0,Q);v∼N (0,R) (9)

Where w, v are Gaussian zero-mean white noise sequences
with intensities Q and R; represent process noise and mea-
surement noise, respectively. We note that the process noise
is introduced in the above equation to act as a cover for
model uncertainty, as EKF doesn’t accommodate model
uncertainty directly; rather the issue is implicitly addressed
through the definitions of process noise and measurement
noise. Because, in this work we employed a continuous time
version of EKF we present a brief outline of the EKF; a
detailed overview can be found elsewhere [19].

1) Initialize the state estimates â and the error covariance
P.

2) Linearize the state equation at the current state estimate
to obtain the following partial derivative matrix.

A =
∂F (a)

∂a

∣∣∣∣
â

And solve the following Riccati equation for the error
covariance matrix,

Ṗ = AP+PAT +Q−PΦ
T R−1

ΦP
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and compute the Kalman gain matrix: K = PΦT R−1.
Use the computed Kalman gain matrix to get an revised
estimate of the states a, by solving the following
equation.

˙̂x = F (â)+Gu+K[y−Φâ] (10)

Remark 4.1: We note that EKF is not known to produce
accurate estimates for systems with model uncertainties.
Since we are using EKF in combination with a robust
controller, which explicitly accounts for model uncertainty,
we can expect the effect of model uncertainty on the state
estimates obtained from EKF to be minimal.

Remark 4.2: To further refine our assumption concerning
w term so that it more accurately reflects Ws(a,θ), in the fu-
ture we will consider sigma-point filter [14] for the proposed
controller design.

V. DESIGN OF ROBUST CONTROLLER USING EKF STATE
ESTIMATES

We employ a robust feedback controller to design a
dynamic output feedback controller for the system of Eqs.1-3
using the state estimates of Eq.7 obtained using EKF. In [7]
robust state & output feedback controllers were synthesized
via Lyapunov’s direct method for quasi linear parabolic
PDEs with slowly varying uncertain variables. Under certain
assumptions, the designed controllers enforced closed loop
stability and attenuated (asymptotically) the effect of process
uncertainties on the output. In their work the authors have
not utilized the available process model to provide better
state estimates; the issue of measurement noise was not
considered. We are currently investigating the impact of a
combination of dynamic output feedback (using the state
estimates obtained from EKF) and the robust controller on
the closed loop performance of the system. We will briefly
present the structure of the employed robust controller; a
detailed overview can be found in [7]. The dynamic robust
feedback control law used is of the following generic form:

u = d(q)+Q(q)v̂+ r(q, t), (11)

where d(q), r(q, t) are vector functions, Q(q) is a matrix, q
is the vector of measured outputs and v̂ is a vector function
of the external reference inputs and their time derivatives.
The component d(q)+Q(q)v̂ in the controller is responsible
for output tracking and is based on differential geometry; the
component r(q, t) is responsible for the asymptotic attenua-
tion of the effect of the uncertain variables on the outputs of
the closed-loop slow system and is designed using Lyapunov
arguments. Note that for r≡ 0, the controller of Eq.11 attains
the form of feedback linearizing controllers of [13], [16].

VI. APPLICATION TO DIFFUSION REACTION PROCESS

In this section, we use the above methodology to stabi-
lize an unstable steady state of a typical diffusion-reaction
process with a time varying uncertainty. Specifically, we
consider a zero-th order exothermic reaction A→ B taking
place on a thin catalytic rod. The temperature of the rod is
adjusted by means of an actuator (by cooling the rod) located

along the length of the rod. Assuming that the reactant A
is present in excess, the spatial profile of the dimensionless
temperature of the rod is described by the following parabolic
PDE.

∂x
∂t

=
∂2x
∂z2 +βT,n(e−γ/(1+x)− e−γ)+ . . .

+βU (b(z)u(t)− x)+ e−γ/(1+x)
θ(t)

(12)

Subject to the following boundary condition and initial
conditions:

x(0, t) = 0, x(π, t) = 0, x(z,0) = 0.05 (13)

The dimensionless rod temperature is given as x = T−T0
T0

,
where T is the temperature of the reactor in 0K and T0 is
the reference temperature used. The domain of this process
is Ω = [0,π]; z is the spatial coordinate along the axis
of the rod, βT,n denotes the nominal dimensionless heat
of reaction, γ denotes the dimensionless activation energy,
βU denotes the dimensionless heat transfer coefficient, u(t)
denotes the magnitude of actuation, θ(t) denotes a time
varying uncertainty in the dimensionless heat of reaction
and b(z) accounts for the spatial profile of the actuator.
A spatially distributed actuation with b(z) =

√
(2/pi)sin(z)

was considered. The nominal values of the parameters were
βT,n = 50, γ = 4, and βU = 2. In this numerical study, the
slowly varying uncertainty in the process model (Eqs.12-13)
is assigned to be θ(t) = βT,nsin(0.524t).

A. Estimator implementation

We now present the effectiveness of EKF by estimating the
open loop profile of Eq.12 with no process uncertainty under
a Gaussian white measurement noise v∼ N(0,0.03) and the
process is simulated until time t f inal = 15. The value of
the parameters used are: initial error covariance P0 = 0.15I,
where I is an identity matrix of appropriate dimensions. We
assume the availability of two noisy measurement sensors
at positions L/4 and 3L/4 on the catalytic rod of length
L. The performance of the estimator was evaluated by
calculating the 2-norm of the estimation error (between the
states predicted using EKF and actual states evaluated from
numerical simulation of Eqs.12-13) and trace of the error
covariance matrix P, using Monte-Carlo simulations. Fig. 2
presents the average of 50 Monte-Carlo simulations, it can
be observed that the trace matrix P and the estimation error
very rapidly converges very close to zero. In other words
the performance of the estimator improves as it gets more
information from the sensors.

B. Controller implementation

Fig. 3 presents the open-loop evolution of the PDE (with
process uncertainty) for u(t) = 0. It can be observed that
the open-loop process behavior is unstable even though the
process noise and its derivatives, θ(t) and θ̇(t), are kept
small. The initial operating point x(z,0) = 0 is therefore an
unstable one. The control objective in this case is to design
a dynamic output feedback controller that stabilizes the rod
temperature to the spatially open-loop unstable steady state.
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Fig. 2. Temporal profile of the 2-norm of the error between true and
estimated states and the trace of P obtained during the open-loop operation
of Eq.12

We utilize the dynamic output robust feedback controller
based on the reduced order system Eq.7 to achieve the
above objective. In the present case study the reduced order
system was obtained using a truncated series expansion of
x, using N = 11 eigenfunctions. Subsequently, the reduced
order model was utilized to design the robust controller
of the generic form of Eq.11. The expression for one of
the parameters responsible for accounting model uncertainty
(r(â, t)) is presented below

r(â, t) =−χ
â

|â|+Λ

∫
π

0
φ1(z)e

−γ

(1+∑
N
i=1 âi(t)φi(z)) dz (14)

where χ, Λ are adjustable control parameters and φ1(z) is
the first eigenfunction of the spatial differential operator in
Eq.12. It should be noted that the controlled output chosen
to stabilize the process (as the first eigenvalue gives us the
desired separation required in Eq.III-A) was the first mode
i.e yc = â1. Also note that the expression for nonlinear time
varying bounding function which captures the size of the
uncertain terms in the system

c0(â, t) =
∫

π

0
φ1(z)e

−γ

(1+∑
N
i=1 âi(t)φi(z)) dz

is explicitly used in the formulation of r(â, t). The control
parameters for this case study were set at χ = 1.2 and Λ =
0.01.

In Fig. 4, we present the closed loop performance of Eq.12
using EKF and controllers designed with r ≡ 0. The closed
loop performance clearly is unacceptable as the controller
does not account for model uncertainty; moreover state
estimates by EKF are not reliable in this case as EKF is
sensitive to errors due to the unaccounted model dynamics.
The closed loop performance of the PDE system (Eq. 12)
using the robust controllers is presented in Fig. 5. The
performance of robust controller far exceeds the performance
of controllers designed using feedback linearization as it
explicitly accounts for the process uncertainty.

The performance of the closed loop estimator is evaluated
using Monte-Carlo simulations (Fig. 6). It is observed that as
the process evolves, the trace of the error covariance matrix
relaxes to zero and the estimation error remains bounded very

Fig. 3. Open-loop profile of Eq.12 with measurement noise

Fig. 4. Estimated surface profile of Eq.12 in closed loop with controller
of Eq.11 with r ≡ 0.

close to zero. We also observe that as the robust controller
accounts for model uncertainty the estimates from EKF be-
come reliable. Fig. 7 presents the temporal profile of control
action used. The chattering observed in the control action
is due to measurement noise present in the sensors. This is
confirmed by simulating the process under no measurement
noise and again stabilizing the open-loop unstable operating
point of the process using the designed robust controller. The
smooth control action obtained (used) in this simulation is
presented in Fig. 8.

VII. CONCLUSIONS

The issue of utilizing dynamically estimated states (ob-
tained from EKF using limited noisy process measurements)
in a robust controller, that addresses model uncertainty,
was investigated. We initially found a finite dimensional
approximation of the PDE system employing Galerkin’s
method, then an EKF was designed to estimate the system
states from the available noisy measurement data. Employing
these estimated states along with a robust controller resulted
in a reliable estimation of the system states, in presence of
model uncertainty and simultaneously achieved the neces-
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Fig. 5. Closed-loop estimated surface profile of Eq.12 using robust
controller of Eq.11.

Fig. 6. Temporal profile of the 2-norm of the error between true and
estimated states and the trace of P obtained during the closed-loop operation
of Eq.12 with the robust controller

Fig. 7. Control action needed to stabilze Eq.12 using robust controller;
with measurement noise.

Fig. 8. Control action needed to stabilze Eq.12 calculated using robust
controller; no measurement noise.

sary control objective. The methodology was applied to a
representative example wherein the control objective was to
control temperature in a catalytic rod where an exothermic
reaction occurs. It was observed from numerical simulations
that the 2-norm of the estimation error asymptotically goes
to zero as more measurements from the process was made
available to the estimator. The robust dynamic output feed-
back controller, using the states estimated through EKF, was
found to successfully stabilize the process around an open-
loop unstable steady-state.
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