
Control of Robotic Manipulators with Input/Output Delays

Nikhil Chopra

Abstract— Input/output delays in a control system can pose
significant impediments to the stabilization problem. Recently,
passivity based control has emerged as a promising approach
to guarantee delay independent stability of passive systems
with delays in the input-output channel. In this paper we
study two problems in motion control of rigid robots with
input/output delays. The first problem is the classical set-point
control problem of rigid robots where we demonstrate that
the use of the scattering variables can stabilize an otherwise
unstable system for arbitrary constant time delays. The second
problem we address is that of stabilizing a rigid robot with
external stiffness and input /output delays using bounded output
feedback. Employing the the scattering transformation, and by
encoding the inputs and outputs in the scattering variables,
we show that the mechanical system can be asymptotically
stabilized independent of the input-output delays. The proposed
algorithms are numerically verified on a two-degree-of-freedom
manipulator.

I. INTRODUCTION

In this paper we study the problem of motion control

of rigid robots when there are time delays in their input-

output channel. In the last three decades, several control

schemes [24] have been developed for control of robots.

Starting with the work of [25], passivity-based control [19]

has been a fruitful methodology for control design of robotic

systems. Several control design have been presented in the

literature [18], [12] where the controller and the mechanical

system can be represented as a negative feedback intercon-

nection of passive systems. Invoking the fundamental pas-

sivity theorem [5], it is then possible to guarantee passivity

of the closed loop system. Under additional assumptions,

stability of the closed loop system can also be established.

The problem of bilateral teleoperation [1], [17], a classical

problem in robot control, highlighted the deleterious effect

of time delays on the stability of the closed loop system.

This problem has received widespread attention and several

results [8] have been developed to address the network delay

and lossy nature of the communication network. However,

input/output delays may manifest in a robotic control system

from many other sources, for example processing delays in

visual systems [4] or from communication between different

computers on a single humanoid robot [20]. It is well

known [21] that guaranteeing stability of a control system

with input delays is a challenging problem. In this paper

we exploit the passivity property of robotic systems to study
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two problems in motion control of robots with input/output

delays.

The issue of time delay instability in dissipative systems

has been studied by several authors [13], [16], [6], [10],

[3], [15], [26], [14], [2], [20], [22]. Scattering or the wave-

variable representation, which was developed in [1], [17] for

guaranteeing stability of bilateral teleoperators, has emerged

as a novel tool for studying network control systems [13],

[10], [3], [2], [20], [22]. The basic idea in these results

is to use the scattering variables to guarantee passivity of

the communication block, thereby creating a passive two-

port network between a passive plant, communication and

the passive controller. Furthermore, time-varying gains [11],

dependent on the maximum rate of the delay, can be addition-

ally added in the communication path to guarantee stability

independent of the time-varying delays [3], [2].

In this paper we first study the problem of set-point control

in rigid robots with input delays and which are constrained to

move in the horizontal plane. Using simulations on a two-

degree-of-freedom system we show that if the classical PI

(with velocities as outputs) is used and there are small input

delays, then the closed loop becomes unstable. However, if

the scattering transformation is used to encode the input-

output variables for the robot and the controller, then stability

is recovered independent of the time delays, The second

problem we address is that of stabilizing a robotic system,

interacting with a stiff environment, using bounded output

feedback. Using the scattering variables together with a static

controller, asymptotic stabilization of the closed loop system

is demonstrated.

The outline of the paper is as follows. A brief background

on the general concept of passivity and a description of the

robot dynamics is presented in Section II. This is followed

by the two main results in Section III. Section IV describes

the details of the numerical simulations and the results are

summarized in Section V.

II. BACKGROUND

The concept of passivity is one of the most physically

appealing concepts of system theory [23] and, as it is based

on input-output behavior of an system, is equally applicable

to both linear and nonlinear systems. Most of the ideas

presented in this section are adapted from [9]. Consider a

dynamical system represented by the state space model

ẋ = f (x,u) (1)

y = h(x) (2)

where f : Rn ×Rp → Rn is locally Lipschitz, h: Rn Rp is

continuous, f (0,0) = 0, h(0) = 0 and the system has the
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same number of inputs and outputs.

Definition The dynamical system (1)-(2) is said to be pas-

sive if there exists a continuously differentiable non-negative

definite scalar function S(x): Rn → R (called the storage

function) such that

uT y ≥ Ṡ(x), ∀(x,u) ∈ Rn ×Rp

Moreover, the system is said to be

• strictly passive if uT y ≥ Ṡ(x)+D(x) for some positive

definite function D(x)
• lossless if uT y=Ṡ(x)
• input strictly passive if uT y ≥ Ṡ(x) + uT ψ(u), where

uT ψ(u) > 0 for some function ψ and ∀u 6= 0

• output strictly passive if uT y ≥ Ṡ(x)+ yT ρ(y), where

yT ρ(y) > 0 for some function ρ and ∀y 6= 0

Following [24], in the absence of friction and disturbances,

the Euler-Lagrange equations of motion for an n-degree-of-

freedom robotic system in the horizontal plane are given as

M(q)q̈+C(q, q̇)q̇ = −τs + τe = τt (3)

where q(t) ∈ Rn is the vector of generalized configuration

coordinates, τs(t)∈ Rn is motor torque acting on the system,

τe(t)∈Rn is the external torque acting on the system, M(q)∈
Rn×n is the positive definite inertia matrix and C(q, q̇)q̇ ∈
Rn is the vector of Coriolis/Centrifugal forces. The above

equations exhibit certain fundamental properties due to their

Lagrangian dynamic structure [24].

• Property 1: The matrix M(q) is symmetric positive

definite and there exists a positive constant m such that

mI ≤ M(q).
• Property 2: Under an appropriate definition of the

matrix C, the matrix Ṁ - 2C is skew-symmetric

Moreover, it is well known that the robot dynamics are

passive [24] with

S(q, q̇) =
1

2
q̇T M(q)q̇ (4)

as the storage function and (τt(t), q̇(t)) as the input-output

pair. The passivity property of the robot dynamics has led

to constructive control designs for the robot manipulators.

Specifically, several robot control algorithms can be re-

formulated as a negative feedback interconnection of two

passive systems [12]. Observing Figure 1, the controller takes

in the robot velocity as the input, and the output of the

controller block is fed back to the robot as the desired control

input. If the controller is input-output passive, then by the

fundamental passivity theorem [5], the closed loop system

formed by the robot dynamics and the controller is passive.

We briefly review the set point problem for robotic ma-

nipulators when there are no delays in the input-output path.

The controller dynamics are given as

Controller =

{

ẋc = uc = q̇

yc = KPuc +KI(xc −qd)
(5)

τtτe ∑
robot

∑
c

uc

q̇

yc
+

T2
T1

+

τs

Fig. 1. A negative feedback interconnection of the robot dynamics and the
controller

It is to be noted that the controller dynamics (5) are input

strictly passive with Sc(xc) = 1
2
KI(xc −qd)

T (xc −qd) as

Ṡc(xc) = KI(xc −qd)
T ẋc

= (yc −KPuc)
T uc = yT

c uc −KPuT
c uc

where KP,KI > 0 are the controller gains. Assuming τe(t) ≡
0, the control input to the robot is given as τs(t) = yc(t). The

sum of the storage functions of the robot and the controller

defines a positive definite storage function for the system and

is given by

S(xc, q̇) =
1

2
(q̇T M(q)q̇+KI(xc −qd)

T (xc −qd))

It is then possible to show [12], [18] that the derivative of

this storage function along system trajectories is given by

S(xc, q̇) = −KPuT
c uc = −KPq̇T q̇ ≤ 0

Thus all signals in the closed loop system are bounded.

Invoking Lasalle’s Invariance principle [12], all bounded

trajectories converge to the largest invariant set where q̇(t)≡
0 and consequently limt→∞(q(t)−qd) = 0 provided xc(t0) =
q(t0). Asymptotic stability of the closed loop system follows

from the above discussion.

III. MAIN RESULTS

In this section we first study the set point problem for

mechanical systems with input/output delays. The controller

dynamics are then given as

Controller =

{

ẋc = uc

yc = KPuc +KI(xc −qd)
(6)

where uc(t) = q̇(t − T1) and furthermore the control input

to the robot is given as τs(t) = yc(t −T2) where T1,T2 are

the constant, heterogeneous time delays between the robot

and the controller. It is possible to show via simulations (see

Section IV) that if the delays in the input-output path are non-

neglibible, then the system can be easily rendered unstable

for modest values of the controller gains.

Let x(t) = [xc(t) q̇(t)]T and denote by xt the state of the

system. Denote by C = C ([−h,0],R2n), the Banach space of

continuous functions mapping the interval [−h,0] into R2n,

with the topology of uniform convergence. Define xt = x(t +
φ)∈C ,−h < φ < 0 as the state of the system [7]. We assume
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τtτe ∑
robot

∑
c

uc

q̇

yc

+

Scattering Representation

z1

z2 v2

v1

T2
T1

τs

Scattering Representation

+

Fig. 2. A negative feedback interconnection of the robot dynamics and the
controller

in this note that x(φ) = η(φ),η ∈ C and that all signals

belong to L2e, the extended L2 space.

With the aim of stabilizing the closed loop system, in-

stead of transmitting the joint velocities and input torques

directly, the scattering variables are transmitted across the

communication channel

v1 = 1√
2b

(τs +bq̇) ; z1 = 1√
2b

(τs −bq̇)

v2 = 1√
2b

(yc +buc) ; z2 = 1√
2b

(yc −buc)
(7)

where b > 0 is a constant. The proposed architecture is

demonstrated in Figure 2. The transmission equations be-

tween the robot and the controller can be written as

z1(t) = z2(t −T2)
v2(t) = v1(t −T1)

(8)

The controller dynamics for this system are described by (6),

however uc 6= q̇(t − T1) but is derived from the scattering

representation (7) and the transmission equations (8).

The first claim in the paper follows

Theorem 3.1: Consider the closed loop system described

by (3), (6), (7) and (8).

1) The closed loop system is input-output passive with

(τe, q̇) as the input-output pair.

2) If τe(t) ≡ 0 and KP = b, then the signals q̇(t) and

xc(t)−qd are asymptotically stable.

Proof: Consider a positive semi-definite storage func-

tional for the system as

S(xt) =
1

2
(q̇T M(q)q̇+KI(xc −qd)

T (xc −qd))

+
1

2
(
∫ t

t−T1

||v1(τ)||2dτ +
∫ t

t−T2

||z2(τ)||2dτ)

The derivative of the storage function yields

Ṡ(xt) = q̇T (−C(q, q̇)q̇− τs + τe)+
1

2
q̇T Ṁ(q)q̇

+KI(xc −qq)
T ẋc +

1

2
(||v1||2 −||v1(t −T1)||2 + ||z2||2

−||z2(t −T2)||2)

= (−τs + τe)
T q̇+ yT

c uc −KPuT
c uc +

1

2
(||v1||2 −||z1||2

+||z2||2 −||v2||2)
= (−τs + τe)

T q̇+ yT
c uc −KPuT

c uc + τT
s q̇−uT

c yc

= τT
e q̇−KPuT

c uc (9)

From the above calculations it is evident that the closed loop

system is passive with (τe, q̇) as the input-output pair.

To prove the second claim, note that with τe(t) ≡ 0,

Ṡ(xt) = −KPuT
c uc ≤ 0 (10)

Therefore, the storage function is bounded which implies that

signals q̇,xc(t) ∈ L∞. Using the scattering variables (7) and

the transmission equations (8), the relationship between the

various power variables can be written as

yc(t)+buc(t) = τs(t −T1)+bq̇(t −T1)

yc(t −T2)−buc(t −T2) = τs(t)−bq̇(t)

Using (6) in the above equation yields

(b+KP)uc(t)+KI(xc −qd) = τs(t −T1)+bq̇(t −T1)

(KP −b)uc(t −T2)+KI(xc(t −T2)−qd) = τs(t)−bq̇(t)

Choosing KP = b, the above equations can be rewritten as

2buc(t)+KI(xc(t)−qd) = τs(t −T1)+bq̇(t −T1)(11)

KI(xc(t −T2)−qd) = τs(t)−bq̇(t) (12)

Using (12) and the fact that xc(t), q̇(t) are bounded signals,

we get that τs(t) ∈ L∞. Using this result in (11) yields the

boundedness of uc(t). Observing the robot dynamics (3) with

τe(t) ≡ 0 and using Property 1 gives us that q̈(t) ∈ L∞.

Differentiating (12), we then get that τ̇s(t) is bounded and

furthermore differentiating (11) we have that the signal u̇c(t)
is bounded.

Integrating (9) (with τe(t) ≡ 0) and letting t → ∞ we get

that uc(t) ∈ L2[0,∞). It is well known [24] that a square

integrable signal with a bounded derivative approaches the

origin, and thus limt→∞ uc(t) = 0. Delaying the transmission

equation (12) by T1 and subtracting from (11) we get that

2buc(t)+KI(xc(t)− xc(t −T1 −T2)) = 2bq̇(t −T1)

Taking the limit t → ∞ on both sides we get that

lim
t→∞

2buc(t)+ lim
t→∞

KI(xc(t)− xc(t −T1 −T2)) = lim
t→∞

2bq̇(t −T1)

Noting that limt→∞ uc(t) = 0 yields

lim
t→∞

KI(xc(t)− xc(t −T1 −T2)) = lim
t→∞

2bq̇(t −T1)

lim
t→∞

KI

∫ t

t−T1−T2

ẋc(τ)dτ = lim
t→∞

2bq̇(t −T1)

lim
t→∞

KI

∫ t

t−T1−T2

uc(τ)dτ = lim
t→∞

2bq̇(t −T1)
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The last equation gives us that limt→∞ q̇(t) = 0. Therefore,

the robot velocity is asymptotically stable independent of the

time delay.

Differentiating the robot dynamics (3), it can be shown

that
...
q (t) ∈ L∞. This observation coupled with the fact the

limt→∞ q̇(t) = 0, and invoking Barbalat’s lemma [9] yields

that limt→∞ q̈(t) = 0. Therefore, from (3), limt→∞ τs(t) = 0.

Taking limits on both sides of the transmission equation (12)

implies that limt→∞ (xc(t −T2)−qd) = 0. As qd is a constant

reference, we have limt→∞ (xc(t)−qd) = 0, and hence the

signal (xc(t)−qd) is asymptotically stable.

We next study the problem of stabilization of the mechani-

cal system, when the external forcing term τe(t) =−Kq;K >

0, and using bounded input torques. The external term, for

example, may represent the interaction force with a stiff en-

vironment. We consider the case when there may be constant

time delays in the input-output path. As before, these delays

may be caused due to control over a communication network

or may be inherent in the system structure. Using (3), the

system dynamics can be rewritten as

M(q)q̈+C(q, q̇)q̇+Kq = −τs (13)

Let x(t) = [q(t) q̇(t)]T and denote by xt the state of the

system. The controller output, in the absence of any delay

compensation, is given as

yc = KP tanh(q̇(t −T1)) (14)

where T1 is the output delay and tanh(·) is the hyperbolic

tangent function which acts elementwise on the enclosed

vector. The signal tanh(x) ≤ 1, tanh(x)x > 0;∀x ∈ R, x 6= 0

and furthermore tanh(x) = 0 ⇐⇒ x = 0. The hyperbolic

tangent function is used to guarantee that the controller

output remains bounded. We assume that the constant Kp

is selected so that

KP ≤ umax

where umax is the desired bound on the control torque.

The control input to the mechanical system is given as

τs(t) = yc(t −T2), where as before T2 is the input delay. It

can be demonstrated that the desired stabilization goal is not

achieved even for small time delays in the input-output path

(see Section IV).

It is to be noted that the linearized dynamics of the closed

loop system formed by (13) can be written as

ẋ1 = x2

mẋ2 = −Kx1 − τs

The above system is a simple oscillator and the stability

problem due to input delays in this system was studied

by [14]. The proposed control law in [14] was delay-

dependent and we next propose a delay-independent control

law to stabilize the nonlinear system described by (13).

Define a static bounded control as

yc = KP tanh(uc) (15)

where as before, scattering variables (7) are used to stabi-

lize the system. The next result demonstrates that the null

solution of the closed loop system with input/output delays

is asymptotically stable.

Theorem 3.2: Consider the closed loop system described

by (13), (15), (7), and (8). Then the zero solution of closed

loop system is asymptotically stable independent of the time

delays and with bounded control inputs.

Proof: Consider a positive definite storage functional

for the system as

S(xt) =
1

2
(q̇T M(q)q̇+KqT q)+

1

2
(
∫ t

t−T1

||v1(τ)||2dτ

+
∫ t

t−T2

||z2(τ)||2dτ)

The derivative of this functional along system trajectories is

given as

Ṡ(xt) = q̇T (−C(q, q̇)−Kq− τs)+Kq̇T q+
1

2
(||v1||2

−||v1(t −T1)||2 + ||z2||2 −||z2(t −T2)||2)+
1

2
q̇T Ṁ(q)q̇

= −q̇T τs +
1

2
(||v1||2 −||v1(t −T1)||2 + ||z2||2 −||z2(t −T2)||2)

= −q̇T τs +
1

2
(||v1||2 −||v2|2 + ||z2||2 −||z1||2)

= −q̇T τs + q̇T τs − yT
c uc

= −KPuT
c tanh(uc) ≤ 0

Thus the storage functional S(xt) is bounded and conse-

quently xt ∈ L∞. Using the invariance principle for time

delay systems [7], all bounded solutions asymptotically con-

verge to the largest invariant set where Ṡ(xt) ≡ 0. Hence,

using the above calculations and properties of the tanh(·)
function, it is evident that all solutions converge to the largest

invariant set where uc(t) ≡ 0.

Using the scattering variables (7) and the transmission

equations (8) we have

τs(t −T1)+bq̇(t −T1) = KP tanh(uc(t))+buc(t)

τs(t)−bq̇(t) = KP tanh(uc(t −T2))−buc(t −T2)

Delaying the second equation by T1 and subtracting from the

first equation yields

2bq̇(t −T1) = KP(tanh(uc(t))− tanh(uc(t −T1 −T2))+buc(t))

−buc(t −T2 −T1)

Therefore, all solutions converge to the largest invariant set

where q̇(t −T1)≡ 0. Observing the robot dynamics (13), we

conclude that q̇(t)≡ 0⇒ q̈(t)≡ 0⇒ q(t)≡ 0. Hence, the zero

solution is asymptotically stable independent of the input-

output time delay.

IV. NUMERICAL SIMULATIONS

The results were simulated on a two-link revolute joint

arm [24]. The dynamics of a two link robot, in the absence

of gravitational forces, are given as

d11q̈1 +d12q̈2 + c121q̇2q̇1 + c211q̇2q̇1 + c221q̇2
2 = τ1 (16)

d21q̈1 +d22q̈2 + c112q̇2
1 = τ2 (17)
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Fig. 3. The closed loop system is unstable due to time delays in
communication

where the entries of the inertia matrix are given as

d11 = m1l2c1+m2(l
2
1 + l2

c2 +2l1lc2 cos(q2))+ I1 + I2

d12 = d21 = m2(l
2
c2 + l1lc2 cos(q2))+ I2

d22 = m2l2
c2 + I2

On the other hand, the c121 =−m2l1lc2sin(q2) = h and c221 =
h,c112 =−h. In the simulations, m1 = 7.848,m2 = 4.49, I1 =
0.176, I2 = 0.0411, l1 = 0.3, l2 = 1, lc1 = 0.1554, lc2 = 0.0341.

We first simulate the remote set point stabilization prob-

lem. The desired set point was chosen to be qd = [π
3

π
4
]T . In

the first simulation, the dynamical system described by (3)

and (6) was studied with KP = 2,KI = 1 and T1 = 0,T2 =
0.1s and therefore only input delay was assumed in the

communication path. In the absence of any compensation for

the time delay, as seen in Figure 3, the time delay renders the

closed loop system unstable. However, when the scattering

variables, as described in Theorem 3.1, are used and the time

delay is increased to T1 = T2 = 1s, the closed loop system is

stable independent of the constant time delays and the joint

angles are driven to the desired configuration as shown in

Figure 4.

We next simulate the stabilization scheme for the robot

interacting with a stiff environment using delayed output

feedback and bounded controls. The upper bound on the

control input was given as umax ≤ 3 and hence KP = 2. In

the absence of any delay compensation, using the bounded

control input described by (14), the closed system is unstable

as seen in Figure 5. However, when the scattering variables

are used to encode the inputs and outputs of the mechanical

system and the controller, then as seen in Figure 6, the zero

solution for the closed loop system is asymptotically stable.

V. CONCLUSIONS

In this paper we studied two problems in motion con-

trol of rigid robots with input/output delays. The set-point
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Fig. 4. If the scattering variables are used, the closed loop system is stable
independent of the constant time delays
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Fig. 5. The closed loop system is unstable due to time delays in the input
channel
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control problem for a robot, constrained to move in the

horizontal plane, was first addressed. It was demonstrated

via simulations on a two-degree-of-freedom manipulator that

the classical algorithm can render the closed loop system

unstable in the presence of input delays. However, using

the scattering variables between the controller and the robot

can stabilize an otherwise unstable system for arbitrary

constant time delays. The problem of stabilizing a rigid

robot, in contact with a stiff environment, using bounded

output feedback was also studied. It was demonstrated that

by encoding the inputs and outputs in the scattering variables,

the mechanical system can be asymptotically stabilized inde-

pendent of the input-output delays. The proposed algorithm

provides a constructive methodology for stabilizing passive

nonlinear oscillators [14] with input delays using bounded

output feedback. The proposed schemes were also numeri-

cally verified on a two-degree-of-freedom manipulator.
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