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Abstract— In this paper we investigate the control of compass
gait biped based on its impact dynamics. We use the Receding
Horizon Control (RHC) strategy to develop an active control
law so as to mimic the passive gait. Our results shows that this
control strategy not only mimics the passive gait but can also
stabilize it for those initial conditions, which make the passive
gait unstable.

I. INTRODUCTION

Since the pioneering work of McGeer, many researchers
have studied the mechanical biped with or without knees,
powered only by gravity, [1] - [3]. These passive gaits exhibit
stable limit cycles only for very shallow slopes. The biped
studied in [3], show that a passive gait exhibits extreme
sensitivity to slope and shows period doubling bifurcation
leading to chaos as the ground slope is changed from 3 to
5.

Spong [4], introduced a potential energy shaping controller
that ensures the closed-loop system is invariant under the
slope changing action which is referred to as the Controlled
Symmetry. He showed for a three dimensional n- degrees of
freedom biped that by changing the ground slope defines a
group action on the configuration manifold of the system and
both kinetic energy and impact dynamics are invariant under
this group action. Hence by compensating just the potential
energy of the system, invariance of the passive limit cycles
can be achieved.

The compass gait biped considered here, is a hybrid
dynamical system, where the transition stage of the biped
is characterized by continuous change in energy while the
impact stage is characterized by discontinuous change in
energy. This paper focuses on developing a control strategy
based on impact dynamics of the biped. It is our belief
that the human brain optimizes the control effort needed
to perform a particular task. The brain first develops an
intention to perform a task.This intention is nothing but the
reference trajectory that needs to be tracked. As the person
performs the task, the brain optimizes the control effort
needed and continuously tracks this reference trajectory and
stabilizes around it. RHC strategy uses this same philosophy.
RHC uses a reference trajectory, which it tracks and stabi-
lizes by optimizing the control. The past inputs and outputs
are feedback to the controller which uses this information
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along with the reference trajectory to solve the optimization
problem. The controller provides the best current and future
control inputs out of which the current control action is
implemented.

The main contribution of this paper is the use of RHC
strategy on the impact dynamics of the compass gait
biped.Through simulations, we show that, we can not only
mimic a stable passive gait but also stabilize the gait which
would be unstable in the absence of control.

II. THE COMPASS GAIT BIPED

We follow the model and notations from Goswami, et.al.
(1997). The compass gait biped, shown below, is equivalent
to a double pendulum with point masses mH and m concen-
trated at the hip and legs. The configuration of the gait is
determined by the support angle, θs, and nonsupport angle,
θns. The dynamic equations, from Goswami, et. al. (1997),
are those of a 2-DOF robot and can be written as:

M(θ)θ̈ +N(θ , θ̇)θ̇ +G(θ) = Su (1)

Where M(θ)isa2x2matrix,N(θ , θ̇) is 2x2 matrix with the
centrifugal co-efficient, G(θ) is a 2x1 with gravitational
torques and S is a 2x3 matrix, which selects the actuator
torques.θ = [θns,θs] is a vector of joint angles (see fig(1))
and u is a vector of joint torques. These torques appear at
the hip and ankle, and are assumed to be identically zero in
case of the passive biped. In this case, equation 1 becomes
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M(θ)θ̈ +N(θ , θ̇)θ̇ +G(θ) = 0 (2)

The matrices M(θ),N(θ , θ̇)andG(θ) are given as,

M(θ) =
[

mb2 −m`bcos(θs−θns)
−m`bcos(θs−θns) (mH +m)`2 +ma2

]

N(θ , θ̇) =
[

0 m`bsin(θs−θns)θ̇s
−m`bsin(θs−θns)θ̇ns 0

]

G(θ) =
[

mbsin(θns)
−(mH`+ma+m`)sin(θs)

]
Where ` = a+b

Assuming a perfectly inelastic collision at foot contact,
an instantaneous change in angular velocity results in a
loss of kinetic energy while total angular momentum is
conserved. A limit cycle results when the velocities after
impact equal the initial velocities and the loss of kinetic
energy at impact equals the change in potential energy during
the step. For a given distribution of masses and leg lengths,
and a given ground slope a stable limit cycle may exist as
shown below. The limit cycles are typically determined from
the momentum equations using a numerical search procedure
(Goswami, et. al. 1998).

Fig(2): Stable Limit Cycle for a 3 slope.

Ideally, during transition, two things happen simultane-
ously, the swing leg touches the ground and the support leg
leaves the ground. For an inelastic no-sliding collision of the
robot foot with the ground the robots angular momentum
during the collision is conserved. This allows us to linearly
relate the post-impact and the pre-impact angular velocities
of the robot in the following way

θ̇
+ = H(α)θ̇− (3)

where ˙θ−and ˙θ+ are angular velocities just before and
after the transition.

Also, H(α) = Q(α)−1P(α)

where

P(α) =

(mH`2 +2m`2)cos(2α)
−mab−2mb`cos(2α) −mab

−mab 0



Q(α) =

mb2−mb`cos(2α) (m`2 +ma2 +mH`2)
−mb`cos(2α)

mb2 −mb`cos(2α)



III. RECEDING HORIZON CONTROL STRATEGY

In general, the model predictive control problem is formu-
lated as solving on-line a finite horizon open-loop optimal
control problem subject to system dynamics and constraints
involving states and controls. Figure 3 shows the basic
principle of model predictive control. Based on measure-
ments obtained at time t, the controller predicts the future
dynamic behavior of the system over a prediction horizon
N and determines (over a control horizon Nc ≤ N) the input
such that a predetermined open-loop performance objective
functional is optimized. If there were no disturbances and
no model-plant mismatch, and if the optimization problem
could be solved for infinite horizons, then one could apply
the input function found at time t = 0 to the system for all
times t ≥ 0. However, this is not possible in general. Due
to disturbances and model-plant mismatch, the true system
behavior is different from the predicted behavior. In order
to incorporate some feedback mechanism, the open-loop
manipulated input function obtained will be implemented
only until the next measurement becomes available. The time
difference between the recalculation/measurements can vary,
however often it is assumed to be fixed, i.e the measurement
will take place every Ts sampling time-units. Using the new
measurement at time t+Ts, the whole procedure - prediction
and optimization - is repeated to find a new input function
with the control and prediction horizons moving forward.

Fig(3): Receding Horizon Principle.
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Suppose a linear, discrete-time, state-space model of the
plant is given in the form

x(k +1) = Ax(k)+Bu(k) (4)
y(k) = Cyx(k) (5)
z(k) = Czx(k) (6)

where x is an nx-dimensional state vector, u is an nu-
dimensional input vector,y is an ny-dimensional vector of
measured outputs and z is an nz-dimensional vector of out-
puts which are to be controlled, either to particular set-points,
or to satisfy some constraints, or both. The components in
y and z may overlap, and may be the same that is, all
the controlled outputs could as well be measured. We will
assume that y = z, and we will then use C to denote both Cy
and Cz.

Problem: min
u

Jk(x(k),u)

Jk(x(k),u) =‖ Y (k)−Yre f (k) ‖2
Q + ‖ ∆U(k) ‖2

R (7)

Where Yre f denote given set point, Q(j) and R(j) denote
positive definite, symmetric weighting matrices. Q(j) penal-
izes the tracking error while R(j) penalizes for control efforts
required.Notice here that we are solving a unconstrained
optimization problem.

RHC Algorithm is given as follows:
1) Obtain measurements/estimates of the states of the

system
2) Compute an optimal input signal by minimizing a

given cost function over a certain prediction horizon
in the future using a model of the system

3) Implement the first part of the optimal input signal until
new measurements/estimates of the state are available

4) Continue with 1.

IV. IMPACT DYNAMICS BASED CONTROL OF BIPED

The receding horizon control strategy is applied to the
impact dynamics of the gait i.e. the transition stage of the
gait. So, the transition equation is modified as follows:

θ̇(k +1) = Aθ̇(k)+BuRHC (8)

where k is the kth impact of the swing foot with the
ground. ˙θ(k)and ˙θ(k +1) are the angular velocities before
and after impact. uRHC is the optimal control found by
minimizing the cost function.

No control is applied in the swing stage and hence u = 0.
Therefore the swing stage dynamics follows eqn (2).

V. MATLAB SIMULATION AND RESULTS

Fig (1) shows the stable limit cycle for a 3 slope. Fig (2)
shows the passive gait is unstable with the initial conditions
z0 = [−11.713867;9.713867;−34.688622;−9.347404]. Fig
(3) shows how the gait stabilizes when MPC control strategy
is used starting from the above initial conditions. It eventu-
ally converges to the stable limit cycle.

Fig(4): Unstable passive gait.

Fig(5): Gait stabilizes under the influence of active control.

Another example using initial conditions z0 =
[−21.12699;13.12699;−12.388625;−65.279246] is shown
below.
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Fig(6): Unstable passive gait.

Fig(7): Gait stabilizes under the influence of active control.

VI. CONCLUSION

RHC successfully stabilizes the gait around the stable limit
cycle of a passive gait. But there are conditions which cannot
be stabilized as these conditions either makes the initial step
size too small or very large which makes the gait unstable
even before it can complete a cycle.

Using RHC, we can not only mimic a passive gait corre-
sponding to a particular slope but can also stabilize the gait
by starting with those initial conditions that make the passive
gait unstable.

The convergence of the compass gait to its stable limit
cycle takes more time using RHC algorithm. By using PI

controller along with RHC we can make faster convergence
possible.
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