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Abstract— In this paper, an adaptive control algorithm is
proposed to reject unknown deterministic disturbances and
minimize output variance. The proposed algorithm contains
two adaptive control actions. One rejects a set of unidentified
deterministic disturbances by an adaptive internal model with
online frequency identification. The other minimizes the out-
put variance using an adaptive finite impulse response filter.
The stability and performance of the proposed algorithm are
analyzed and demonstrated by simulation results.

I. INTRODUCTION

A common approach to disturbance rejection control prob-

lem is to model disturbances as a result of an excitation signal

passing through a disturbance model. These disturbances can

be categorized as deterministic or stochastic. The stochastic

disturbance is modeled as the output of stable system driven

by stationary white noise, while the deterministic disturbance

can be modeled as the output of a marginally stable system

with an initial state or driven by a Dirac impulse.

If the disturbance model and plant model are both known

Linear Time Invariant (LTI) systems, an LTI controller is

often designed. The LQG/H2 control [1] was proposed to

minimize the steady-state output variance under stochastic

disturbances to minimize H2 norm of the closed-loop system.

In order to reject deterministic disturbances, the feedback

loop has to incorporate the disturbance model via the Internal

Model Principle (IMP) [2], [3]. The objective then becomes

both to minimize the H2 norm of closed-loop system as

well as achieve asymptotic deterministic disturbance rejec-

tion. The existence condition of optimal H2 controller were

addressed in [4]. Based on this result, quadratic terms were

added to the usual LQG/Wiener-Hopf cost to ensure the

existence of (unique) solutions [5]. In [6], an integral square

output cost was added to LQG cost for tradeoffs between

transient performance and H2 disturbance rejection.

When the disturbance model is unknown or time-varying,

adaptive control is often applied. In [7], [8], adaptive feed-

back control based on the IMP and Youla-parametrization

was proposed for canceling sinusoidal disturbances with

unknown frequency. In [9], [10], the disturbances were

rejected by using an internal model structure with adaptive

frequency in parallel with a feedback controller. An adaptive-

Q scheme in [11], [12] was proposed to minimize the
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effects of stochastic disturbances improving the performance

of the existing controller. This scheme was implemented

successfully in Hard Disk Drive (HDD) control [13]. In

[14], [15], adaptive disturbance observers were designed

to estimate the unknown frequency. In [16], an adaptive

feed-forward controller based on phase-locked loop structure

was proposed to reject the unknown sinusoidal disturbance.

Despite the different structures, they are essentially the same.

The equivalence between adaptive feed-forward control and

internal model principle was shown in [17]. In [18], a peri-

odic disturbance was rejected by using repetitive control with

online periodic estimation. These methods have been applied

to optical and hard disk drives systems [19], active noise

control systems [20], and vibration suppression systems [8],

[21], [22].

The Adaptive Inverse Control (AIC) is another scheme for

stochastic disturbance rejection [23], [24] which minimizes

the Least-Mean-Square (LMS) values of the plant output.

Adaptive controllers, based on LMS adaptive filters, are nu-

merically stable and efficient, but typically converge slowly.

The AIC scheme based on Recursive Least Square (RLS)

[25] filters minimizes least square values of the plant output

was reported in [26], since RLS filters offer the potential of

significantly faster adaptation. For better numerical stability,

inverse QR-RLS algorithms [25] or the lattice algorithms

[27] have been used. Either inverse QR-RLS or lattice RLS

algorithms show significant performance improvement over

conventional RLS implementations [13], [28].

Using AIC structure, it is possible to handle both stochas-

tic and deterministic disturbances. In [29], an fixed internal

model was integrated in AIC to minimize H2 norm of closed-

loop system as well as reject the deterministic periodic

disturbances with known frequency. In this paper, we further

extend the work in [29] by assuming the frequency of

deterministic disturbance is unknown and/or time-varying.

An adaptive internal model is embedded to estimate the

unknown or time-varying deterministic sinusoidal distur-

bances. The frequency estimation is achieved through an

Adaptive Notch Filter (ANF). The ANF proposed in [30]

used a minimal number of parameters equal to the number

of sinusoidal components. The results of [31] confirmed the

effectiveness of this algorithm for stationary processes and

the performance of this algorithm for non-stationary signals

was analyzed in [32]. Based on the same structure, [33],

[34] proposed the direct frequency estimation algorithms for

ANF.

The remainder of this paper is organized as follows:

Section 2 formulates the problem as a constrained H2
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norm minimization problem. In section 3, cascaded notch

filters are studied and used to construct a particular solution

with ZPETC compensation. H2 norm minimization can then

be achieved by using Youla-parametrization. In section 4,

adaptive notch filter is used to estimate the frequency of

deterministic sinusoidal disturbance online, and updates the

controller accordingly. The convergence, stability and per-

formance is also analyzed in this section. Section 5 presents

simulation results to show the effectiveness of the proposed

approach. The paper will be concluded in section 6 and some

future research will be discussed.

II. PROBLEM FORMULATION

Consider the adaptive inverse control (AIC) scheme for

disturbance rejection as shown in Figure 1.

G

Ĝ

C1

r u2 + y

−

−

d

Fig. 1. Block Diagram of Adaptive Control for Disturbance Rejection

Assume both G and Ĝ are stable and causal, where G
and Ĝ represent the actual plant and identified plant model,

respectively. If not, a closed-loop system with a stabilizing

controller will be considered as the plant. The plant model

Ĝ(z−1) can be represented as

Ĝ(z−1) = z−dB(z−1)

A(z−1)
(1)

where d is defined as delay steps and

A(z−1) = 1 + a1z
−1 + · · · + anz

−n (2)

B(z−1) = b0 + a1z
−1 + · · · + amz

−m (3)

where b0 6= 0 and n ≥ m.

The disturbance d(t) consists of both stochastic d1(t) and

deterministic d2(t) signals, which can be modeled as

d(t) = d1(t) + d2(t)

= Ws(q
−1)w(t) +Wd(q

−1)δ(t) (4)

where w(t) is a stationary zero mean white process and

δ(t) is the Dirac impulse. Ws and Wd are the unknown

disturbance models, where Ws is assumed to be stable and

Wd has roots on the unit disk. The control objective is to have

E[y(t)] approaching zero asymptotically and to minimize the

H2 norm of the closed-loop transfer function between d(t)
and y(t).

The relationship between disturbance d and output y can

be shown to be,

y =
1 − C1Ĝ

1 + C1(G− Ĝ)
d (5)

Using the small gain theorem [35], if Ĝ accurately repre-

sents the true closed-loop system G, then the system shown

in Figure 1 is guaranteed to be stable with any stable

controller C1. If G = Ĝ, then Equation (5) reduces down

to

y = (1 − C1Ĝ)d (6)

The feedback control design can then be formulated as a

model matching problem: given a stable Ĝ, find a stable C1,

such that the error is minimized in H2 sense, i.e.,

min
C1∈RH∞

‖1 − C1Ĝ‖2 (7)

To guarantee that the expected value of the measurement

E[y(t)] approaches zero asymptotically, the feedback loop

must contain the internal model that captures the dynamics

of deterministic disturbance model Wd [2], [3]. Choose D
such that

e2(t) = D(q−1)d2(t) (8)

lim
t→∞

e2(t) = 0 (9)

Then, it is straightforward to let the transfer function

1 − C1Ĝ = RD (10)

RD + C1Ĝ = 1 (11)

Assuming Ĝ and D are coprime, (11) is guaranteed to have at

least one solution. Additionally from Youla-parameterization

[35], we know that if (R10, C10) is a solution pair to (11)

then all solutions can be characterized as R1 = R10 −QĜ,

C1 = C10 +QD where Q is a design parameter constrained

to be stable. The H2 optimization problem in (7) can be

reformulated as

min
Q ∈ RH∞

Dd = 0

‖(R10 −QĜ)D‖2 (12)

III. ADAPTIVE CONTROL FOR DISTURBANCE REJECTION

A. Cascaded notch filters

In order to reject the deterministic disturbance d2(t) shown

in (4), D is constructed using cascaded Notch Filters (NF).

The cascaded NF is defined as follows

D(z−1) =

p∏

k=1

1 − 2βk cosωkz
−1 + β2

kz
−2

1 − 2ρk cosωkz−1 + ρ2
kz

−2
(13)

=

p∏

k=1

Dk(z−1) (14)

where p is the number of harmonics, wk is the frequency

of sinusoidal disturbances, and ρk and βk are contraction

factors with 0 ≪ ρk < βk ≤ 1. It is easy to verify

that De2 → 0 if βk = 1. Figure 2 shows the frequency

response magnitude with different choices of ρ, where β = 1.
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Fig. 2. Frequency response magnitude with different ρ

Equation (14) approach ideal notches as ρ→ 1, i.e.
{
D(e−jω) ≈ 1 if ω 6= ωk

D(e−jω) = 0 if ω = ωk
(15)

B. A particular solution

It is necessary to construct an initial solution pair

(R10, C10) in order to apply 12, that satisfies the Diophantine

equation

C10Ĝ+R10D = 1 (16)

In general, the Diophantine equation can be solved nu-

merically by forming a Sylvester matrix [36] or through

state space methods. In this paper, we propose a sim-

ple method to construct (R10, C10) using zero-phase-error-

tracking (ZPETC) type feed-forward controllers [37].

ZPETC corrects the phase of any stable plant to zero phase

using a simple feed-forward control. Given the stable plant

shown in (1), factor B as:

B = B+B− (17)

where B+, B− represent stable and unstable zeros of the

stable plant, respectively. The ZPETC compensator FZPC is

defined as

FZPC = γz−(nu+d)A(z−1)B−(z)

B+(z−1)
(18)

where γ is a positive real design parameter, and nu is the

number of unstable zeros.

By cascading the ZPETC compensator (18) and the NF

(14), (R10, C10) can be designed as follows:

C10 =
FZPC(1 −D)z

D + z−(nu+d−1)γB−(z)B−(z−1)(1 −D)
(19)

R10 =
1

D + z−(nu+d−1)γB−(z)B−(z−1)(1 −D)
(20)

The stability of closed-loop system will be shown in the

following Lemma:

Lemma 1: Given any stable plant G, shown in (1), there

exists (R10, C10) such that if γ is small enough to satisfy

the following condition

max
ωk

|1 − γe−j(nu+d−1)ωkB−(e−jωk)B−(ejωk)| <
1

1 + δ
(21)

where δ > 0 is a small constant. So given any plant, the

closed-loop system is guaranteed to be stable when γ is

chosen to be small enough.

Proof: The denominator of closed-loop system can be

rewritten as

1 + (1 − γz−(nu+d−1)B−(z−1)B−(z))(D − 1) (22)

where H is a stable filter with |D − 1| ≤ 1 + δ, and

B−(z−1)B−(z) is also a stable filter. So, according to small

gain theorem [35], if Equation (21) holds, the closed-loop

system is stable.

C. Adaptive control for disturbance rejection

Assuming disturbance model Ws is unknown and D is

fixed, the adaptive control can be used. The H2 optimization

in (12) will identify the disturbance model Ws implicitly,

i.e., direct adaptive algorithm. The online identification of

D will be introduced in the next section.

IV. ADAPTIVE CONTROL FOR DISTURBANCE REJECTION

WITH ADAPTIVE INTERNAL MODEL

From (19) and (20), (R10, C10) are functions of internal

model with unknown frequency ωk. In this proposed ap-

proach, the frequency ωk is estimated online and D, R10

and C10 are updated accordingly. The online frequency

estimation is implemented using a Adaptive Notch Filter

(ANF).

A. Adaptive Notch Filter

The online frequency estimation algorithm for the notch

filter can be found in [30], [33], [34] and will be reviewed

in this section.

Let d(t) be the noise corrupted measurement of sinusoidal

signal defined by

d(t) =

p∑

k=0

Bk sin(ωkt+ φk) + d1(t) (23)

The objective is to apply the notch filter shown in Equation

(14) to cancel the sinusoidal signals with unknown frequen-

cies ωk, magnitudes Bk and phase shifts φk. Let

ǫ(t, ω̂k) = D
(
ω̂k(t− 1), z−1

)
d(t) (24)

where ǫ(t, ω̂k) is the filtered output of the input disturbance

d through the filter D. To estimate the frequency ωk, define

the cost function as

ω̂k = arg min
ω̂k

1

M

M∑

t=1

ǫ2(t, ω̂k) (25)

where M denotes the number of data points.

A modified gradient function ψi(t) is derived to be

ψi(t) ≈ ψi(t− 1) = −
∂ǫ(t)

∂ωi(t)
(26)
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With the modified gradient function ψ(t), the recursive

frequency estimation algorithm can be proposed. For com-

pactness, define

ω(t) = [ω1(t), ω2(t), · · · , ωp(t)]
T

Ψ(t) = [ψ1(t), ψ2(t), · · · , ψp(t)]
T

The algorithm is summarized as follows:

Initialization: ω̂(0), P (0), α(1), λ0, λ∞, λ, β,ρ;

Main loop: for t = 1, 2, · · ·

• Step 1: Prediction error ǫ(t) computation:

ǫ(t) = D
(
ω̂(t− 1), z−1

)
d(t) (27)

• Step 2: Computing Ψ(t):

ψi(t) =
[
−2β sin ω̂i(t−1)z−1

A0(ω̂i(t−1),βz−1)

−−2ρ sin ω̂i(t−1)z−1

A0(ω̂i(t−1),ρz−1)

]
ǫ(t)

(28)

• Step 3: Parameter updating:

K(t) =
P (t− 1)Ψ(t)

λ+ Ψ(t)P (t− 1)Ψ(t)
(29)

P (t) = [P (t− 1) −K(t)Ψ(t)P (t− 1)] /λ(30)

ω̂(t) = [ω̂(t− 1) +K(t)ǫ(t)] (31)

• Step 4: Derive posteriori prediction error ǭ(t):

ǭ(t) = D
(
ω̂(t), z−1

)
y(t) (32)

With this adaptive notch filter, the frequencies of the distur-

bances are estimated online and the internal model is tuned

to reject those disturbances. This structure is discussed in the

next section.

B. Adaptive control with adaptive internal model

Figure 3 shows the block diagram of proposed adaptive

control scheme. The adaptive internal model D estimates

the frequencies of the deterministic sinusoidal disturbances

and update C10 and R10 accordingly at each time step. In

all, there are two adaptive channels: 1) the adaptive internal

model for unknown deterministic sinusoidal rejection. 2) the

adaptive control for H2 norm minimization, i.e., stochastic

disturbance rejection.

1) Convergence and Stability: Since there are two adap-

tive channels in the proposed scheme, they may interfere with

each other and prevent the convergence. However, because

the adaptive notch filter converges much faster than adaptive

control channel, the adaptive controller can be considered

as LTI with respect to the ANF. Therefore the two adaptive

channels will both converge.

According to small gain theorem, the closed-loop is stable

if both the filter Q and the notch filter are stable. By

implementing the Q filter as an FIR filter, Q is guaranteed

to be stable. According to Equation (14), the poles of notch

filter are chosen to be ρe±jω0 with ρ < 1, which is always

within unit disk of z-plane forcing the closed-loop system

always stable.

ω̂

ω̂

ω̂

G

Ĝ

C10

D

Copy of Q

R10

Q Ĝ

u2 +

−

−

+

−

d̂

r
d

y

ǫ

C1

Fig. 3. Block Diagram of Adaptive Control with Adaptive Internal Model

2) Performance: The performance of the proposed

method will be affected by the performance of adaptive notch

filter. According to [31], we have,

ω∗ = ω0 +O((1 − ρ)2) (33)

where ω∗ = limt→∞ ω̂(t). The frequency estimation is

biased but can be reduced quadratically by choosing ρ
approaching 1. It is also interesting to note that although

there is only one minimum point in Equation (25) when

M → ∞, it will certainly have local minimal points with

finite M . The use of time-varying ρ can prevent convergence

to a local minimum point. On the other hand, the bandwidth

of the notch filter is also determined by ρ [30]:

BW = π(1 − ρ) (34)

The bandwidth of notch filter determines the horizon of

frequency tracking. Thus ρ represents the tradeoff between

estimation accuracy and tracking performance of the adaptive

notch filter.

V. SIMULATION RESULTS

The proposed algorithm will be applied to a linear motor

plant. The identified model of the plant is

P (z) =
−0.0028567(z − 2.518)

(z − .99631)(z − 1.00244)
(35)

The model P (z) closely matches the expected simple free

body double integrator Newtonian model

F = mẍ (36)
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Since the open-loop plant is unstable, a PD controller is

applied to stabilize the plant.

C(z) =
14.2z − 13

z
(37)

making the estimated closed-loop system

Ĝ(z) =
−0.040565(z − 2.58)(z − 0.9155)

(z − 0.1015)(z2 − 1.938z + 0.9438)
(38)

where nu = 1 and d = 1 as shown in (20). The disturbance in

the simulation comprises of two sinusoidal signals at 60Hz

and 120Hz and white noise passing through a high order

stable IIR filter Ws, i.e.,

d(t) = 2sin(2π60) + sin(2π120) +Ws(q
−1)w(t) (39)

Figure 4 shows the online frequency estimation with ANF

from d̂. When there are two sinusoids, the ANF converges to

frequency with larger magnitude, i.e., the ANF has a global

convergence property, which is discussed in the previous

section.
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Fig. 4. Online Frequency Estimation from d̂(t), which converges to 60Hz

Figure 5 shows the performance comparison between

conventional AIC structure and the proposed method with

the adaptive internal model. In both methods, the filter

length of Q is chosen to be 20 and the coefficients are

updated by inverse QR based RLS algorithms [25]. In the

proposed algorithm, D comprises of a second-order IIR filter,

and C10 and R10 is chosen to be a 6th-order IIR filter.

As seen in Figure 6, in order for the conventional AIC

structure to get comparable performance, the filter length of

Q has to be above 50. From Figure 5(b) and 5(c), one may

find that the deterministic disturbances are rejected by both

method, however, the proposed method shows better overall

performance.

Figure 6 shows the RMS error with different adaptive

filter lengths. From this figure, we may see that: 1) All three

curves show improved performance with longer filter length.

3) The proposed method will achieve similar performance

with lower filter length in Q and reduce the computational

cost of coefficient update.

VI. CONCLUSION

The proposed adaptive control scheme is able to mini-

mize the output variance by using a recursive least squares

adaptive FIR filter, which implicitly identifies the distur-

bance stochastic dynamics. At the same time, the control
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is able to reject sinusoidal disturbances, where the unknown

frequencies are estimated by another on-line identification

algorithm. The simulation results show that the adaptive

internal model for rejecting harmonic disturbances is able

to achieve good performance with low order adaptive FIR

filters. To achieve similar performance without the internal

model the adaptive FIR filter would require to be of high

order. Therefore, the proposed algorithm is more efficient

in real-time implementation than the conventional minimum

variance adaptive control.
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