
 
 

 

  

Abstract— Type 1 diabetic patients compensate the lack of 
endogenous insulin by basal delivery and bolus injections at 
meal-times.  Exact dosage of the bolus amount is critical to 
keep the blood glucose both below the maximum limits and 
above the hypoglycaemia critical values. Determination of the 
optimal dosage would require information which in general is 
not available to the patient, who uses empirical rules of thumb 
to choose the dosage. Although closed loop control obtained by 
linking insulin delivery from insulin pumps and continuous 
glucose monitoring systems may be considered as the ultimate 
solution, multiple daily insulin injections and finger stick 
glucose measurements remain the current mode of therapy. 
This paper is concerned with this conventional insulin 
treatment and is based on the use of model predictive 
techniques extended to approximate continuous control output 
signal by single control moves in time. The paper shows that 
substituting continuous measurement and insulin delivery with 
discrete values leads to a suboptimal control performance, but 
that this residual defect is not essential if compared with 
estimation errors of model parameters, patient inputs and/or 
measurements. Furthermore, the approach proposed shows in 
simulation sufficient robustness margins. Computations are 
done with an extended Bergman model tuned on available data 
of Type 1 diabetic patients. 

I. INTRODUCTION 
ITH more than 246 million affected people worldwide, 
diabetes mellitus is one of the most widespread 

diseases and causes 3.8 million deaths per year, similar to 
HIV/AIDS [2]. Type 1 diabetes is characterized by the 
inability of the beta cells of the pancreas islets to produce 
insulin, which is essential for the uptake of glucose in the 
muscles and storage in the liver. Type 2 diabetic patients 
combine a partial defect of insulin secretion and reduced 
insulin sensitivity. Although Type 2 diabetic patients may 
finally need insulin administrations, Type 1 diabetic patients 
need exogenous insulin delivery from diagnosis to allow 
survival. 

In practice, the common treatment for Type 1 diabetes 
consists of one slow acting insulin analogue injection per 
day to ensure a basal insulin concentration and several 
single shots (e.g. one for each meal) of a fast acting insulin 
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analogue. The injections are usually given in the 
subcutaneous tissue via an insulin pen. The insulin dosage 
follows rules of thumb, e.g. with an amount linear to the 
estimated carbohydrate content of the meal. To get a 
feedback of the glucose control, several daily finger prick 
blood glucose (BG) concentration measurements should be 
made as well, and following insulin injections are adjusted 
according to these measurements. 

Since the 1970s, insulin delivery can also be achieved by 
continuous subcutaneous insulin infusion from a portable 
pump, and recent research work tried to link insulin infusion 
to continuous glucose monitoring systems. These 
approaches cover standard PID-control [3], model predictive 
control [4-6], non-linear model predictive control [7], robust 
H∞control [8] and even sliding mode control [9]. An insulin 
pump has the great advantage of allowing a programmable 
basal insulin profile with much less variability than injected 
long acting insulin analogs. Additionally, single boluses are 
given from the pump to compensate the effect of a meal. 

Although great effort has been given to this topic in the 
last decades, there is still no system allowing closed-loop, 
glucose-controlled insulin delivery which is available for 
sale. On the one hand, this may be due to the fact that up to 
now, only few continuous measurement devices are 
approved by the FDA (U.S. Food and Drug Administration), 
and none of them should replace standard glucose testing via 
strip measurements. They typically need daily calibrations 
using finger prick glucose measurements and the sensor 
element needs to be replaced every three to five days. On the 
other hand, insulin pumps also have some drawbacks, like 
the need for a constant carriage which may be quite 
cumbersome for many patients, and the higher expenses.  

In this paper, we consider the standard therapy for Type 1 
diabetic patients and try to improve it by optimizing the time 
of bolus insulin injections and the amount of insulin for each 
meal. A gain scheduling model predictive controller, based 
on an extension of the widely used Bergman minimal model 
[10] for the diabetic patient, was adopted to attain this. The 
design of the controller was modified in such a way, that 
only single control moves in time are possible, i.e. the 
control output is zero most of the time and differs from zero 
only at several time points.  

The paper is organized as follows: Section II introduces 
the mathematical models which we use for our controller 
and for validation, section III provides the background for 
control design, section IV presents the basic layout of the 
glucose control for Type 1 diabetes patient application, 
section V illustrates the main results, and final conclusions 
are drawn in section V. 
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II. MODELS OF THE GLUCOSE – INSULIN SYSTEM 

A. Extended Bergman minimal model 
The Bergman minimal model [10] was one of the first 
models to describe the relation between glucose and insulin, 
and due to its simplicity it is widely used in the control 
community. The model contains three compartments, 
represented by the following equations [11]: 
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G is the plasma glucose concentration above the basal level 
Gb (mg/dl), X is a quantity proportional to the plasma insulin 
concentration in a remote compartment (min-1), I is the 
plasma insulin concentration above a basal value Ib (mU/l), 
and 12 lIV =  is the insulin distribution volume. The model 
inputs are appearance of ingested glucose in plasma ( )D t  
(mg/dl/min) after a meal and insulin ( )U t  (mU/min) from 
an external injection, both having direct effect on the 
glucose and insulin concentrations in blood. The remaining 
parameters are [11] 
 3

1 2 30.002, 0.025, 11 10 , 5 / 54.P P P n−= = = ⋅ =  (2) 
Since a raise in the glucose concentration is usually 

caused by an oral ingestion of food, and not by intravenous 
infusion, we extend (1) with a model of the gastro intestinal 
tract following [12]. The trapezoidal function for the glucose 
rate of appearance therein is further simplified. We divided 
the profile into two time periods. In the first interval we 
assume a constant slope k1 of the glucose absorption rate 
after a meal, until a peak value, defined by Dmax (3) is 
reached. The parameter CHO denotes the carbohydrate 
content of the meal. In the second interval, a constant 
negative slope k2, assuming k1 > k2, is supposed, which 
results in a triangular function D(t) (4), see also Fig. 1.  

The parameter t0 is the time when the meal begins, t1 is 
the time when the maximum appearance occurs and was 
estimated with 18 minutes, and t2 is the time when the 
glucose appearance reaches zero again and was estimated to 
260 minutes. Both time estimations can be validated on real 
measurement data, e.g. in [13]. The remaining parameters 
are the glucose distribution volume VG in dl/kg and a tuning 
parameter k1.   
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the total amount of ingested carbohydrates, CHO (g). This 
simple function D(t) is able to approximate much more 
complex meal models like [1], where the rate of appearance 
of glucose in the gut is described with a three compartment 
chain and the emptying rate of the stomach is a nonlinear 
function depending on six parameters. In total, 10 
Parameters need to be estimated from measurement data, 
whereas our simple approximation only depends on four 
parameters. Both signals are compared in Fig. 1, where the 
parameter k1 was tuned to 0.65 in order to get equivalent 
results for the glucose concentration of the Bergman 
minimal model with our meal model when compared with 
the more complex meal model [1].  

 A further extension of the Bergman minimal model (1) 
is necessary due to the fact that insulin is usually given 
subcutaneously and not intravenously. This results in an 
additional time delay until insulin diffuses from the tissue 
where it is injected into the blood plasma. Following [7] the 
model is extended by 
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where S1 and S2 are a two compartment chain representing 
the insulin, uSC is the subcutaneous insulin administration, U 
is the appearance of insulin in plasma which is the input for  
(1), and tI a time constant depending on the type of insulin 
analogue used (e.g. 55 minutes for a short acting drug). 

B. Validation Model – Virtual Patient 
For the validation of our control system we employ a 

more complex model [14] which was modified in [5] by 
introducing a model for subcutaneously injected insulin, 
similar to (5), and removing the sub-model of insulin 
secretion by the pancreas in order to account for Type 1 
diabetics. The model consists of 13 differential equations 
and was used as a virtual patient for our controller i.e. we 

 
Fig. 1.  Appearance of glucose in plasma after meals of 45g, 70g, and 
70g of carbohydrates at 8am, 13pm, and 19pm. Solid line: rate of 
appearance [1],  dashed line: triangular approximation 
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assume that this model will behave like a real diabetic 
patient. The model was recently approved by the FDA as an 
alternative to animal experiments for diabetes research. 

 Furthermore, the parameter P3 and the maximum value of 
the glucose absorption rate Dmax of the extended Bergman 
model were tuned with the validation model to facilitate a 
good compliance between the outputs of both models, which 
is the plasma glucose concentration. This tuning can be seen 
as an initial calibration of the model to the individual patient 
in order to estimate the metabolic characteristics.  

III. CONTROL DESIGN 
The goal for all diabetic patients is to achieve and 

maintain a rather constant BG between 80 and 100 mg/dl at 
a basal fasting state. Too low concentrations – a state which 
is called hypoglycemia – have to be avoided at any time 
since they may cause deleterious cerebral outcomes, even if 
they are of only short duration. Too high concentrations – a 
state called hyperglycemia – over longer periods of time 
may cause long term complications. 

In this paper, we consider concentrations between 80 and 
140 mg/dl as acceptable under basal conditions, whereas 
concentrations below 60 and above 220 should to be 
avoided at any time. Values in-between 60 – 80 and 140 – 
220 are also acceptable, but only for short time periods, for 
example after ingestion of a meal.  

For a performance evaluation of the control approach, the 
area outside bounds AOB (6) and the minimum blood 
glucose are used. If the minimum BG is below 60 mg/dl, the 
controller is not useful and may also harm to the patient.  

 ( ) ( ) ] ] [ [
0
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A. Model Predictive Control 
A MPC solves an online finite horizon optimization 

problem at each sample time. A cost function (7) is 
minimized with respect to constraints on the input u and 
possibly additional output constraints. 
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The prediction y is accomplished p (prediction horizon) 
samples ahead with the linear model, c represents the control 
horizon, c p≤ , ( )r t  is the reference to be tracked, Q, R, 
and ρ  are tuning variables penalizing the tracking error, the 
control output increment ( ) ( ) ( )1u t k u t k u t k∆ + = + − + − , 

and the enforcement of the constraints, respectively. The 
optimization leads to an optimal sequence of control outputs 
Uopt, but only the first element is applied to the plant at each 
sample time, and at the next time step the optimization is 
performed again. 

A valuable advantage of MPC is the easy consideration of 
both input and output constraints and the explicit 
consideration of the future predicted controlled variables 
with an internal model. 

B. Discrete Approximation of the control output 
As already stated, we want to apply our controller to 

optimize the standard insulin injection therapy of diabetic 
patients. The output of the MPC therefore cannot be 
continuous, but must be approximated with control outputs 
at single time points. Instead of applying the first element of 
the optimal output sequence of the controller to the plant at 
each sample time, the whole sequence of length c T⋅ , with 
the control horizon c and sample time T, is reduced to one 
control output with the size *

optU  (8) at time *
optt  (9). 

The size of the single control move is the area of the whole 
optimal sequence between sample 0 and c. The optimal time 
for this control move can be interpreted as the barycenter in 
the x direction. The time tend is a parameter, specifying the 
time range within which the continuous control output is 
approximated and satisfies [ ]1, ,...,endt T pT∈ , and t0 is the 
current time instant.  
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Fig. 2 shows e.g. an optimal output sequence with control 
horizon 5, prediction horizon 12, sample time T=1, starting 
from 0 0t = , and the approximated single control move with 
size * 63optU =  at time * 2.1429optt = . 

Note that the calculation of *
optU  and *

optt  is not repeated at 
each sample time, but only after tend samples – by setting 

( )
0 0

new
endt t t= +  and using the new optimal output sequence 

of the MPC – because the information of the whole optimal 
input sequence from t0 to tend is already included in the 
previous discrete output. 

C. Gain Scheduling MPC Control 
For an introduction to gain scheduling, we refer to [15] 

and several textbooks concerning control engineering. Every 
gain scheduling control needs a variable which specifies the 
operating region of the system under control. In our 
application, the BG concentration is the scheduling variable. 
The switching between the several controllers is often 
difficult to manage in gain scheduling applications and may 
cause steps in the control output signal which as a 
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consequence can also be a reason for stability problems of 
the closed loop system. Here, we do not have to consider 
this issue, since our controller is supposed to give an output 
signal only at several, not concatenated time points.  

IV. APPLICATION: GLUCOSE CONTROL 

A. Control System Description 
The structure of the overall control system can be seen in 

Fig. 3. The amount of carbohydrates is the only external 
input and has to be estimated by the diabetic patient because 
a measurement is not possible. This input is given to both 
models and can be seen as a measured disturbance, which 
has an effect on the glucose concentration that should be 
regulated via the insulin. The controller needs a sufficient 
robustness to handle the anticipated errors of this estimated 
quantity.  

The extended Bergman model provides the gain 
scheduling MPC controller with continuous information on 
the glucose concentration and is itself updated with the 
actual glucose concentration from the virtual patient, 
whenever a strip based glucose measurement was made. 
This update is essential because the virtual patient model is 
much more complex and describes the metabolism in a more 
detailed way and should be done whenever a meal appears 
and ideally also some time after a meal.  The control output 
is the quantity of insulin which has to be injected externally 
and is given to both models. 

B. MPC Setup 
For the purpose of control design, the extended Bergman 

model was linearized at eight different steady state operating 
points with the glucose concentrations 80, 100, 120, 140, 
160, 180, 200, and 220 mg/dl and discretized with a sample 
time of 15 minutes to obtain the linear models required. For 
each of these linear models, a MPC was designed.  

Since the control output cannot become negative, input 
constraints are considered in the MPC approach. However, 
we do not employ any output constraints on the glucose 
concentration. The setpoint for the glucose concentration 
was put to 100 mg/dl. This rather high value was chosen due 
to safety reasons, because BG shall never fall under 
60mg/dl, even in the presence of errors. 

The MPC approach is able to explicitly consider measured 
disturbance signals in the calculation of the 

optimal control output. It is also possible to use available 
future information of the disturbance for the calculation of 
the actual output. It was shown, that the performance of the 
overall control system improves significantly if the 
information of the carbohydrates of an upcoming meal is 
announced to the MPC ahead in time. Therefore we assumed 
that the diabetic patient knows the size of the meal 60 
minutes in advance and this information is forwarded to the 
MPC controller. The prediction and control horizons were 
tuned to 400 and 240 minutes, respectively. 

C. Steady State Conditions 
As already observed in [4], the Bergman model can only 

reach a steady state, when a constant, basal insulin 
concentration is assured. Also the virtual patient model 
needs a constant insulin input signal to reach steady state 
conditions. In a real application, this basal insulin can either 
be fulfilled by an insulin pump giving the basal profile or by 
injection of a long acting insulin analogue. Here, we assume 
that a constant basal insulin concentration exists due to 
injection of long acting insulin. 

D. Test Case 
All simulations that follow are performed under the same 

preconditions: a total simulation time of 24 hours with meals 
at 8am, 13pm, and 19pm containing 45g, 70g, and 70g of 
carbohydrates. The update of the extended Bergman model 

 
Fig. 4.  Glucose concentration of the virtual patient under different 
controller setups: 1) MPC with continuous information on BG form 
the virtual patient and continuous output signal, 2) MPC with 6 
measurement updates and continuous output, 3) MPC with 6 
measurement updates and 3 single insulin injections, and 4) standard 
therapy   
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Fig. 3.  Basic layout of the control system 

 
Fig. 2.  Approximation of the optimal output sequence of a MPC with 
a single control output. 
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with the actual glucose concentration from the virtual patient 
model, i.e. real measurements, was completed six times a 
day: with every meal and additionally one hour afterwards.  

V. RESULTS 

A. Performance Assessment 
To quantify the performance of our sparse glucose 

measurement and insulin injection control system, we first 
have to evaluate a reference performance as expected when 
using standard rules of thumb, consisting of an insulin bolus 
proportional to the carbohydrate amount, but without any 
update of the therapy considering BG measurements.  In this 
work we do not consider physical exercise and so do not use 
corrections for expected activity. 

 The results are then compared with a MPC using 
different setups, see Table 1. First a combination of perfect 
CGMS (the controller receives the glucose measurement 
directly from the virtual patient without error and time 
delay) and pump (the output of the MPC is not 
approximated with single control moves), then the setup 
described in the previous chapter using six single glucose 
measurements for updating the extended Bergman model, 
but without discrete approximation of the control output. 
Finally a MPC with discrete approximation and six 
measurements from the virtual patient is employed. The 
results are shown in Fig. 4. and point out that our approach 
is sensible and improves the achievable performance 
compared to the standard therapy. Furthermore, the 
approximation of the continuous control output does not 
entail a substantial performance degradation. 

The results also show that the differences between the 
several configurations get higher with the amount of 
ingested carbohydrates.    

B. CVGA 
To allow a comparison and performance estimation of the 

different results that will follow, the Control Variability Grid 
Analysis (CVGA) [16] was adopted, Fig. 5. The only two 
quantities which are considered here are the minimum (x-
axis) and maximum (y-axis) blood glucose (BG) 
concentrations that appear within a 24 hour cycle. Note that 
the x-axis is inverted and the scaling of the y-axis is not 
linear in order to capture a broad region. The light green 
area (A) is the one with the best performance, the green 
areas (B) are acceptable, the yellow and orange ones (C, D) 
may contain dangerous hypoglycemic situations and should 
be avoided, and the red one (E) simply indicates an 
erroneous control. 

C. Robustness Analysis 
Since the uncertainty in biomedical systems is rather large 

due to inter- and intra patient variability, different sources of  
model errors, sensor errors, and meal errors were introduced 
and the performance of the control system evaluated. 

1) Structured Uncertainty 
 The parameters of the extended Bergman model (P1, P2, 

P3, n, tI) were changed by -30%, -20%, 0, +20%, and +30% 

independently from each other, which results in a total of 
3125 different parameter configurations. The MPCs are still 
designed on the nominal, linearized extended Bergman 
model without any parameter variations. With all these 
combinations the test case was simulated, and the results in 
terms of the minimum and maximum glucose concentration 
which occur in the different simulations are shown in Fig. 5. 
Almost all results show up in the areas A and B, and only a 
few, calculated with the higher parameter variations are in 
the C area. These points disappear, when parameter 
variations are bounded within a 20% region. All C points are 
either caused by a 30% variation of the parameters P1 and / 
or n which seem to be the most sensitive parameters. 

The result of a single simulation can be seen in Fig. 6. 
Here, the parameters were changed by -20%, 0%, 20%, 20% 
and 30% causing a minimum BG of 96.41 mg/dl, and a 
maximum BG of  153.64 mg/dl. Note that the dynamics of 
the two systems is quite different due to the large parametric 
uncertainty, but the update of the extended Bergman model 
through measurements from the virtual patient prevents the 
system from diverging too far. 

2) Uncertain Meal Amount 
This error may happen very often in real life applications, 

since the diabetic patient has to estimate the content of 
carbohydrates of the meal by himself, which is not very 
easy. Here we consider an estimation error of ±20%, and 
±40% respectively. 

3) Uncertain Meal Time 
The measured disturbance signal provided to the MPC is 

now moved back and forth in time 15, 30, and 45 minutes. 
The announcement of a meal which takes not place at all is 
especially dangerous, because an insulin bolus is given and 
the risk for hypoglycemia is increased, hover this case is not 
considered. 

 

 
Fig. 5.  CVGA of structured uncertainty analysis 

TABLE I 
CONTROL SETUPS 

 1 2 3 4 

BG 
measurement 

Perfect 
CGMS 

6 strip  
meas. 

6 strip 
meas. 

- 

Insulin delivery Pump Pump 3 inj. 3 inj. 
Computation MPC 

Bergman 
MPC 
Bergman  

MPC 
Bergman 

Stand
ard 
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4) Measurement Error 

The update of the extended Bergman model with the real 
glucose concentration from the virtual patient is perturbed 
by a uniformly distributed random signal in the range of ±10 
mg/dl. This error range is sensitive for commonly used self 
monitoring blood glucose devices [17].  

5) Combination of all errors 
Now, all previously described errors are applied 

simultaneously with a random magnitude in between 
boundaries to simulate the most realistic test cases in real 
life. The meal amount and time vary randomly between 
±40% and ±45 minutes and the parameters of the extended 
Bergman model between ±20 percent. A Monte Carlo 
simulation with 1000 runs proved that in most of the cases 
the BG stays in the safe areas above 70 and below 300 mg/dl 
(green areas in the CVGA plot). The results are displayed in 
Table II in the form of percentage of the runs above or 
below a bound on the BG. All critical cases (BG between 50 
and 70 mg/dl) are related to a rather large meal time delay of 
more than 30 minutes and can be avoided, if only delays up 
to 20 minutes will arise. 

VI. CONCLUSION 
We showed that it is possible to improve the common 

treatment of Type 1 diabetic patients by optimization of the 
time and quantity of single subcutaneous insulin injections. 
An approximation of the continuous output signal of a MPC 
with single control moves in time does not reduce the 
performance significantly in this application, but rather 
makes it possible to use the control advices for patients on 
multiple daily insulin injections. Considering the simulated 
test cases with different error sources that may arise in a 
real-life application, the gain scheduling MPC has sufficient 
robustness properties. 
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Fig. 6. Upper panel: glucose concentration of the virtual patient (solid) 
and of the extended Bergman minimal model (dashed). Bottom panel: 
calculated optimal insulin injections which are applied to both models. 

TABLE II 
SIMULATION RESULTS WITH A COMBINATION OF ALL ERRORS 

BG Percentage of test cases 

> 50  100 % 
> 70 91 % 
< 200 100 % 
< 150 87 % 
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