
Controlled Hopwise Averaging: Bandwidth/Energy-Efficient

Asynchronous Distributed Averaging for Wireless Networks

Choon Yik Tang and Jie Lu

Abstract— This paper addresses the problem of averaging
numbers across a wireless network from an important, but
largely neglected, viewpoint: bandwidth/energy efficiency. We
show that existing distributed averaging schemes are inefficient,
producing networked dynamical systems that evolve with waste-
ful communications. To improve efficiency, we develop Con-
trolled Hopwise Averaging (CHA), a distributed asynchronous
algorithm that attempts to “make the most” out of each
transmission. Unlike the existing schemes, CHA fully exploits
the broadcast nature of wireless medium and enables greedy,
decentralized, feedback control of when to initiate an iteration.
We show that CHA admits a common quadratic Lyapunov
function for analysis and control, establish its exponential
convergence, and characterize its worst-case convergence rate.
Finally, through extensive simulation on random geometric
graphs, we show that CHA is substantially more efficient than
several existing schemes, requiring far fewer transmissions to
complete an averaging task.

I. INTRODUCTION

Averaging numbers across a network is a need that arises
in many applications of mobile ad hoc networks [1] and
wireless sensor networks [2]. In order to collaboratively
accomplish a task, nodes often have to compute the network-
wide average of their individual observations. For examples,
by averaging their individual throughputs, an ad hoc network
of computers can assess how well the network, as a whole,
is performing; by averaging their noisy observations, a team
of unmanned aerial vehicles tracking a target can jointly
determine the minimum mean-square-error estimate of the
target position; and by averaging their humidity measure-
ments, a wireless network of sensing agents can coopera-
tively detect the occurrence of local, deviation-from-average
anomalies. Therefore, methods that enable such computation
are of notable interest. Moreover, since such nodes often
have to operate autonomously in dynamic and infrastructure-
less environments, communicate in a multi-hop fashion over
unreliable wireless channels, and cope with severe bandwidth
and energy constraints, it is highly desirable that the methods
developed be robust, scalable, and efficient.

In principle, computation of the network-wide average
may be accomplished via flooding, whereby every node
floods the network with its observation, as well as centralized
computation, whereby a central node uses an overlay tree
to collect all the node observations, calculate their average,
and send it back to every node. These two methods, un-
fortunately, have serious limitations: flooding is extremely
bandwidth and energy inefficient because it propagates re-
dundant information across the network, ignoring the fact
that the ultimate goal is to simply determine the average.
Centralized computation, on the other hand, is vulnerable
to node mobility, node membership changes, and single-
point failures, making it necessary to frequently maintain the

The authors are with the School of Electrical and Computer Engi-
neering, University of Oklahoma, Norman, OK 73019, USA (e-mail:
cytang@ou.edu; jie.lu-1@ou.edu).

overlay tree and occasionally start over with a new central
node, both of which are rather costly to implement.

The limitations of flooding and centralized computation
have motivated the search for distributed averaging algo-
rithms of iterative nature, that require neither flooding of
node observations, nor construction of overlay trees and
routing tables, to execute. To date, numerous such algorithms
have been developed in continuous-time [3]–[5] as well
as in discrete-time for both synchronous [3], [5]–[12] and
asynchronous [13]–[20] models, including Pairwise Averag-
ing [13], Anti-Entropy Aggregation [14], [15], Randomized
Gossip Algorithm [16], Accelerated Gossip Algorithm [17],
Distributed Random Grouping [18], Consensus Propagation
[19], and Algorithms A1 and A2 of [20] for the asynchronous
case. The closely related topic of distributed consensus,
where nodes seek to achieve an arbitrary network-wide con-
sensus on their individual opinions, has also been extensively
studied; see [21], [22] for early treatments, [3], [23]–[28] for
more recent work, and [29] for a survey.

Although the current literature offers a rich collection of
distributed averaging schemes along with in-depth analysis
of their behaviors, their efficacy from a bandwidth/energy
efficiency standpoint has not been examined. This paper is
devoted to addressing the distributed averaging problem from
this standpoint. The contributions of the paper are as follows:

1) We provide, in Section III, a detailed explanation of
why the existing schemes, regardless of whether they are
developed in continuous- or discrete-time, for synchronous or
asynchronous models, are inefficient, producing networked
dynamical systems that evolve with wasteful communica-
tions. We also point out a number of other drawbacks of
these schemes.

2) To improve efficiency and overcome such drawbacks,
we propose, in Sections IV and V, respectively, Random and
Controlled Hopwise Averaging (RHA and CHA), two asyn-
chronous distributed averaging algorithms with convergence
guarantees: RHA is almost surely asymptotically convergent,
while CHA is exponentially convergent with the worst-
case convergence rate governed by the solution of a convex
maximization problem.

3) To the best of our knowledge, CHA is the first asyn-
chronous distributed averaging algorithm that fully exploits
the broadcast nature of wireless medium, so that no poten-
tially useful overheard information is discarded. It is also the
first distributed averaging algorithm that enables feedback
iteration control, leading to a networked dynamical system
with state-dependent switching.

4) We show that both RHA and CHA admit a com-
mon quadratic Lyapunov function for analysis. This result
casts a positive light on a nonexistence result for a class
of consensus algorithms, numerically verified in [23] and
analytically proven in [30]. In addition, we show that the
same Lyapunov function may be used by CHA to perform

2009 American Control Conference
Hyatt Regency Riverfront, St. Louis, MO, USA
June 10-12, 2009

WeC06.4

978-1-4244-4524-0/09/$25.00 ©2009 AACC 1561

greedy, decentralized, feedback iteration control. Although
Lyapunov functions have been used to analyze consensus
algorithms (e.g., in the form of a disagreement function [3] or
a set-valued convex hull [25]), their use for control purposes
has not been reported.

5) We demonstrate, via extensive simulation on random
geometric graphs in Section VI, that CHA is substantially
more efficient than Pairwise Averaging [13], Anti-Entropy
Aggregation [14], [15], Consensus Propagation [19], Algo-
rithm A2 of [20], and Distributed Random Grouping [18],
requiring far fewer transmissions to complete an averaging
task. In particular, CHA is twice more efficient than the most
efficient existing scheme—Distributed Random Grouping
[18]—when the network is sparsely connected.

The outline of this paper is as follows: Section II formu-
lates the distributed averaging problem. Section III identifies
and explains the deficiencies of the existing schemes. Sec-
tions IV and V develop RHA and CHA and characterize their
convergence properties. In Section VI, their comparison with
several existing schemes is carried out. Finally, Section VII
concludes the paper. Due to space limitations, all proofs are
omitted and can be found in [31].

II. PROBLEM FORMULATION

Consider a multi-hop wireless network consisting of N ≥
2 nodes, connected by L bidirectional links in a fixed
topology. The network is modeled as a connected, undirected
graph G = (V , E), where V = {1, 2, . . . , N} represents the
set of N nodes (vertices) and E ⊂ {{i, j} : i, j ∈ V , i 6= j}
represents the set of L links (edges). Any two nodes i, j ∈ V
are one-hop neighbors and can communicate if and only if
{i, j} ∈ E , and the set of one-hop neighbors of each node
i ∈ V is denoted as Ni = {j ∈ V : {i, j} ∈ E}. Each
node i ∈ V observes a scalar yi ∈ R, and all the N nodes
wish to determine the network-wide average x ∈ R of their
individual observations, given by

x =
1

N

∑

i∈V

yi. (1)

Given the above model, the problem addressed in this
paper is how to construct a distributed averaging algorithm—
continuous- or discrete-time, synchronous or otherwise—
with which each node i ∈ V repeatedly communicates with
its one-hop neighbors, iteratively updates its estimate x̂i ∈ R

of the unknown average x in (1), and asymptotically drives x̂i

to x—all while consuming bandwidth and energy efficiently.
The bandwidth/energy efficiency of an algorithm is mea-

sured by the number of real-number transmissions it needs
to drive all the x̂i’s to a sufficiently small neighborhood of
x, essentially completing the averaging task. This quantity is
a natural measure of efficiency because the smaller it is, the
lesser bandwidth is occupied, the lesser energy is expended
for communications, and the faster an averaging task may
be completed. These, in turn, imply more bandwidth and
time for other tasks, smaller probability of collision, longer
lifetime for battery-powered nodes, and possible earlier re-
turn to sleep mode, all of which are desirable. The quantity
also allows algorithms with different numbers of real-number
transmissions per iteration to be fairly compared. Although,
in networking, every message inevitably contains overhead
(e.g., transmitter/receiver IDs and message type), we exclude
such overhead when measuring efficiency since it is not
inherent to an algorithm, may be reduced by piggybacking

messages, and becomes negligible when averaging long
vectors.

Similar to most existing work on distributed averaging
[3]–[20] and distributed consensus [3], [21]–[29], we assume
ideal internode communications, so that every message from
each node i ∈ V is not subject to quantization, takes neg-
ligible time to transmit and propagate, and is received with
negligible error. Moreover, since the nodes are wirelessly
connected, the same message is received by every one-hop
neighbor j ∈ Ni, regardless of the intended recipient(s).

III. DEFICIENCIES OF EXISTING SCHEMES

As was pointed out in Section I, the current literature
offers a variety of distributed averaging schemes for solving
the problem formulated in Section II. Unfortunately, as is
explained below, they suffer from a number of deficiencies,
especially a lack of bandwidth/energy efficiency, by produc-
ing networked dynamical systems that evolve with wasteful
real-number transmissions.

The continuous-time algorithms in [3]–[5] have the fol-
lowing deficiency:

D1) Costly discretization: As immensely inefficient as
flooding is, the continuous-time algorithms in [3]–[5] may
be more so: flooding only requires N2 real-number transmis-
sions for all the N nodes to exactly determine the average x
(since it takes N transmissions for each node i ∈ V to flood
the network with its yi), whereas these algorithms may need
far more than that to essentially complete an averaging task.
For instance, the algorithm in [3] updates the estimates x̂i’s
of x according to the differential equation

dx̂i(t)

dt
=

∑

j∈Ni

(x̂j(t)− x̂i(t)), ∀i ∈ V . (2)

To realize (2), each node i ∈ V has to continuously monitor
the x̂j(t) of every one-hop neighbor j ∈ Ni. If this can
be done without wireless communications (e.g., by direct
sensing), then the bandwidth/energy efficiency issue is moot.
If wireless communications must be employed, then (2) has
to be discretized, either exactly via a zero-order hold, i.e.,

x̂i((k + 1)T) =
∑

j∈V

hij x̂j(kT), ∀i ∈ V , (3)

or approximately via numerical techniques such as the Euler
forward difference method, i.e.,

x̂i((k+1)T)−x̂i(kT)

T
=
∑

j∈Ni

(x̂j(kT)−x̂i(kT)), ∀i∈V , (4)

where each hij ∈ R is the ij-entry of e−LT , L ∈ R
N×N

is the Laplacian matrix of the graph G that governs the
dynamics (2), and T > 0 is the sampling period. Regardless
of (3) or (4), they may be far more costly to realize than
flooding: with (3), N2 real-number transmissions are already
needed per iteration (since, in general, hij 6= 0, so that
each node i ∈ V has to flood the network with its x̂i(kT),
for every k). In contrast, with (4), only N real-number
transmissions are needed per iteration (since each node i ∈ V
only has to wirelessly transmit its x̂i(kT) once, to every one-
hop neighbor j ∈ Ni, for every k). However, the number
of iterations, needed for all the x̂i(kT)’s to converge to an
acceptable neighborhood of x, may be very large, since the
sampling period T must be sufficiently small for (4) to be

1562

stable. If the number of iterations needed exceeds N—which
is entirely possible and likely so with a conservatively small
T —then (4) would be more inefficient than flooding.

The discrete-time synchronous algorithms in [3], [5]–[12]
have the following deficiencies:

D2) Clock synchronization: The discrete-time synchronous
algorithms in [3], [5]–[12] require all the N nodes to always
have the same clock to operate. Although techniques for
reducing clock synchronization errors are available, it is still
desirable that this requirement can be completely eliminated.

D3) Forced transmissions: The discrete-time synchronous
algorithms in [3], [5], [7]–[11] update the estimates x̂i’s of
x according to the difference equation

x̂i(k + 1) = wiix̂i(k) +
∑

j∈Ni

wij x̂j(k), ∀i ∈ V , (5)

where each wij ∈ R is a weighting factor. The wij ’s
may be specified in a number of ways [3], [5], [7]–[11],
including choosing them to optimize the convergence rate
[7] or minimize the mean-square deviation [11]. However,
no matter how the wij ’s are chosen, these algorithms are
bandwidth/energy inefficient because the underlying update
rule (5) simply forces every node i ∈ V at each iteration k
to transmit its x̂i(k) to its one-hop neighbors, irrespective of
whether the transmission is worthy. It is possible, for exam-
ple, that the x̂i(k)’s of a cluster of nearby nodes are almost
equal, so that the x̂i(k +1)’s, being convex combinations of
the x̂i(k)’s, are also almost equal, causing their transmissions
to be unworthy. The fact that N real-number transmissions
are needed per iteration also implies that, in order to be
more efficient than flooding, the algorithms must drive all
the x̂i(k)’s to an acceptable neighborhood of x within at
most N iterations.

D4) Computing intermediate quantities: The scheme in
[10] uses two parallel runs of a consensus algorithm to obtain
two consensus values and defines each x̂i(k) as the ratio
of these two values. While possible, this scheme is likely
inefficient because it attempts to compute two intermediate
quantities, as opposed to computing x directly.

The discrete-time asynchronous algorithms in [13]–[20]
have the following deficiencies:

D5) Wasted receptions: The algorithms in [13]–[20] do
not exploit the broadcast nature of wireless medium. With
Pairwise Averaging [13], Anti-Entropy Aggregation [14],
[15], Randomized Gossip Algorithm [16], and Accelerated
Gossip Algorithm [17], each iteration involves a pair of
nodes exchanging their state variables. Unintended nearby
nodes that overhear a transmission would simply discard the
message, resulting in wasted receptions. The same can be
said about Consensus Propagation [19] and Algorithm A2
of [20], although they do not assume pairwise exchanges.
A partial exception is Distributed Random Grouping [18],
which only slightly exploits such broadcast nature (i.e., the
leader of a group does but the members, which contribute
to the majority of the transmissions, do not). It is of interest
to investigate how such “free” information may be exploited
and to what extent may such exploitation speed up conver-
gence.

D6) Overlapping iterations: Pairwise Averaging [13],
Anti-Entropy Aggregation [14], [15], Randomized Gossip
Algorithm [16], Accelerated Gossip Algorithm [17], and
Distributed Random Grouping [18] require sequential trans-
missions from more than one nodes to execute an iteration.

Thus, before an iteration completes, nodes participating in
that iteration may be asked by other nodes unaware of the
ongoing iteration to begin other iterations, thereby creating
potentially complex situations of overlapping iterations. It
is noted that this practical issue is naturally avoided in Con-
sensus Propagation [19] and explicitly handled in Algorithms
A1 and A2 of [20].

D7) Uncontrolled iterations: The algorithms in [13]–[20]
only specify how nodes would update their state variables
whenever they communicate during an iteration. They do not
specify when and/or how often they should communicate,
i.e., the iterations are not controlled. Two exceptions are
Randomized Gossip Algorithm [16] and Distributed Random
Grouping [18], which specify the probabilities with which
nodes communicate with their neighbors or become leaders.
Although these probabilities may be optimized [16], [18], the
optimization is carried out a priori, independent of the nodes’
state variables during run-time. As a result, it is possible that
the state variables of nodes involving in an iteration take
similar values before and after the iteration, thereby wasting
that particular iteration.

D8) Steady-state errors: Consensus Propagation [19] en-
sures that all the x̂i(k)’s asymptotically converge to the same
value. However, this value is, in general, not equal to x (see
Figure 2), although theoretically the difference can be made
arbitrarily small, at the expense of slower convergence.

D9) Lack of convergence guarantee: Accelerated Gossip
Algorithm [17], developed based on the power method in
numerical analysis, is shown by simulation to have the
potential of speeding up the convergence of Randomized
Gossip Algorithm [16] by a factor of 10. However, it has
yet been proven that the algorithm always converges.

IV. RANDOM HOPWISE AVERAGING

The deficiencies D1 of continuous-time, D2–D4 of
discrete-time synchronous, and D5–D9 of discrete-time asyn-
chronous distributed averaging algorithms raise the question
of whether it is possible to develop an algorithm that does
not suffer at all from these deficiencies. In this section,
we present a step-by-step development of an algorithm that
avoids all but deficiency D7. In the next section, we modify
it to eliminate D7.

To circumvent D1, the costly discretization issue with
continuous-time algorithms, as well as D2 and D3, the
clock synchronization and forced transmissions issues with
discrete-time synchronous algorithms, the algorithm we de-
velop must be asynchronous. To avoid D6, the issue with
overlapping iterations, each iteration of the algorithm must
involve only a single node, say, node i, transmitting exactly
once to its one-hop neighbors j ∈ Ni, i.e., no replies
from the neighbors are allowed. To address D5, the issue
with wasted receptions, all the neighbors j ∈ Ni, upon
receiving the message from node i, have to “meaningfully”
incorporate the message into updating their estimates, rather
than discarding it. To circumvent D8 and D9, the issues with
steady-state errors and convergence guarantee, the algorithm
must be provably asymptotically convergent to the correct
average. Finally, to eliminate D4, it must avoid computing
intermediate quantities.

To develop an algorithm that has the aforementioned
properties, consider a networked dynamical system, where
the state variables are associated with the set E of L links
of the graph G, rather than with the set V of N nodes,

1563

as is typically assumed, for example, in [13]–[18]. Let
x{i,j} ∈ R represent the state variable associated with each
link {i, j} ∈ E , x{i,j}(0) be its initial value, and x{i,j}(k)
be its value upon completion of each iteration k ∈ P,
where P denotes the set of positive integers. Let c{i,j} > 0
represent a to-be-determined constant associated with each
link {i, j} ∈ E . Suppose, upon completing each iteration
k ∈ P, the state variables x{i,j}(k)’s are such that the
expression

∑

{i,j}∈E c{i,j}x{i,j}(k) is conserved, i.e.,

∑

{i,j}∈E

c{i,j}x{i,j}(k)=
∑

{i,j}∈E

c{i,j}x{i,j}(k−1), ∀k∈P. (6)

Also suppose the differences among the x{i,j}(k)’s decrease
to zero as k → ∞, so that they all converge to the same
steady-state value x̃ ∈ R, i.e.,

lim
k→∞

x{i,j}(k) = x̃, ∀{i, j} ∈ E . (7)

Then, due to (6) and (7), x̃ is given by

x̃ =

∑

{i,j}∈E c{i,j}x{i,j}(0)
∑

{i,j}∈E c{i,j}
. (8)

To solve the averaging problem, the steady-state value x̃ in
(8) needs to be equal to the average x in (1), i.e.,

∑

{i,j}∈E c{i,j}x{i,j}(0)
∑

{i,j}∈E c{i,j}
=

∑

i∈V yi

N
. (9)

Clearly, (9) may be satisfied by letting the constants c{i,j}’s
and initial values x{i,j}(0)’s be

c{i,j} =
1

|Ni|
+

1

|Nj |
, ∀{i, j} ∈ E , (10)

x{i,j}(0) =

yi

|Ni|
+

yj

|Nj |

c{i,j}
, ∀{i, j} ∈ E , (11)

where | · | denotes the cardinality of a set. Although this
choice is not unique, defining the c{i,j}’s and x{i,j}(0)’s as
in (10) and (11) offers the advantage that each node i ∈ V
can compute c{i,j} and x{i,j}(0) ∀j ∈ Ni as long as, during
algorithm initialization, it transmits |Ni| and yi once, to every
node j ∈ Ni, resulting in an initialization overhead of 2N
real-number transmissions.

The above paragraph shows that the averaging problem
can be solved by letting the c{i,j}’s and x{i,j}(0)’s be as
in (10) and (11) and ensuring that (6) and (7) are satisfied.
To satisfy (6) and (7) while circumventing the deficiencies,
for each link {i, j} ∈ E , let nodes i and j each maintain a
local copy of the state variable x{i,j}(k), denoted as xij(k)
and xji(k), respectively, where they are meant to be always
equal, so that the ordering of the subscripts is only used to
distinguish between the local copies. Since each node i ∈ V
has |Ni| one-hop neighbors, it maintains |Ni| local copies of
the state variables x{i,j}(k)’s ∀j ∈ Ni. In addition to these
local copies, let each node i ∈ V also maintain an estimate
x̂i(k) ∈ R of the unknown average x, defined as

x̂i(k) =

∑

j∈Ni
c{i,j}x{i,j}(k)

∑

j∈Ni
c{i,j}

, ∀k ≥ 0, ∀i ∈ V , (12)

which is just a convex combination of the x{i,j}(k)’s ∀j ∈
Ni. To circumvent D1–D3, consider an asynchronous iter-
ation, say, iteration k ∈ P, initiated by a randomly and

equiprobably selected node, say, node i, and involving all
its one-hop neighbors j ∈ Ni in the following manner. To
avoid D6, node i sets all its local copies xij(k)’s ∀j ∈ Ni

to x̂i(k − 1), sets its estimate x̂i(k) also to x̂i(k − 1) (or,
equivalently, calculates x̂i(k) from (12)), and transmits the
value of x̂i(k) once, to every one-hop neighbor j ∈ Ni, but
does not expect any replies from its neighbors. To address
D5 and ensure that the local copies are always equal, each
neighbor j ∈ Ni, upon receiving the value of x̂i(k), sets its
local copy xji(k) to x̂i(k) and calculates its estimate x̂j(k)
from (12). The above process defines an iteration k.

Since each iteration is initiated by a randomly selected
node, and since all the node does is updating the state
variables within a hop as a convex combination of their pre-
vious values, we refer to the resulting algorithm as Random
Hopwise Averaging (RHA). RHA yields an L-dimensional
networked dynamical system with random switching, given
by

x{i,j}(k)=



















∑

ℓ∈Nu(k)

c{u(k),ℓ}x{u(k),ℓ}(k−1)

∑

ℓ∈Nu(k)

c{u(k),ℓ}
, if u(k)∈{i, j},

x{i,j}(k − 1), otherwise,

∀k ∈ P, ∀{i, j} ∈ E , (13)

where u(k) ∈ V represents the node that initiates iteration
k ∈ P, i.e., causes a switch in the dynamics. The system
(13) with initial condition (11) and output equation (12) can
be formalized in algorithm form as follows:

Algorithm 1 (Random Hopwise Averaging).
Initialization:

1) Each node i ∈ V transmits |Ni| and yi to every node
j ∈ Ni.

2) Each node i ∈ V creates variables xij ∈ R ∀j ∈ Ni

and x̂i ∈ R and initializes them sequentially:

xij ←
yi

|Ni|
+

yj

|Nj |

c{i,j}
, ∀j ∈ Ni, x̂i ←

∑

j∈Ni
c{i,j}xij

∑

j∈Ni
c{i,j}

.

Operation: At each iteration:
3) A node, say, node i, is selected randomly and equiprob-

ably out of the set V of N nodes.
4) Node i updates xij ∀j ∈ Ni: xij ← x̂i, ∀j ∈ Ni.
5) Node i transmits x̂i to every node j ∈ Ni.
6) Each node j ∈ Ni updates xji and x̂j sequentially:

xji ← x̂i, x̂j ←

∑

ℓ∈Nj
c{j,ℓ}xjℓ

∑

ℓ∈Nj
c{j,ℓ}

. �

Note that (13) ensures (6). To show that it ensures (7), let
x(k) ∈ R

L represent the vector obtained by stacking the state
variables x{i,j}(k)’s and consider the following quadratic

Lyapunov function candidate V : R
L → R:

V (x(k)) =
∑

{i,j}∈E

c{i,j}(x{i,j}(k)− x)2. (14)

The following lemma shows that V (x(k)) is non-increasing.

Lemma 1. Consider the wireless network modeled in Sec-
tion II and the use of RHA described in Algorithm 1. Then,
for any yi ∈ R ∀i ∈ V , and any sequence {u(k)}k∈P,
V (x(k)) is non-increasing ∀k ∈ P and satisfies

V (x(k)) − V (x(k − 1))

= −
∑

j∈Nu(k)

c{u(k),j}(x{u(k),j}(k−1)−x̂u(k)(k−1))2. (15)

1564

The following theorem establishes the almost sure asymp-
totic convergence of RHA, so that D8 and D9 are avoided:

Theorem 1. Consider the wireless network modeled in
Section II and the use of RHA described in Algorithm 1.
Then, for any yi ∈ R ∀i ∈ V , with probability 1,

lim
k→∞

V (x(k)) = 0, (16)

lim
k→∞

x{i,j}(k) = x, ∀{i, j} ∈ E , (17)

lim
k→∞

x̂i(k) = x, ∀i ∈ V . (18)

V. CONTROLLED HOPWISE AVERAGING

In Section IV, we develop RHA and show that it success-
fully overcomes all the deficiencies of the existing schemes
except D7. RHA fails to account for D7 because it randomly
selects a node to initiate an iteration, i.e., the iterations are
uncontrolled. In this section, we show that the iterations
can be feedback controlled with a suitable modification of
RHA, beginning with the assumption that a “genie” exists for
control purposes, followed by a relaxation of this assumption.

Observe from Lemma 1 that if node u(k) initiates iteration
k, the value of the Lyapunov function V would drop by an
amount equal to the right-hand side of (15). Also observe
that the state variables appearing on the right-hand side of
(15), i.e., characterizing the amount of drop, are locally
maintained by node u(k). Therefore, node u(k) knows that
if it spontaneously decides to initiate iteration k, the value of
V , whatever it may be, would drop by an amount which it
knows. This implies that every node i ∈ V at any given time
knows by how much the value of V would drop if it elects
to become the node that initiates “the next” iteration. Hence,
if there is a genie in the network that knows all the potential
drops, the genie may choose to behave greedily and always
let the node that causes the largest drop in the value of V
initiate the next iteration.

To formalize this idea, consider the function ∆Vi : R
L →

R, i ∈ V , defined as

∆Vi(x(k)) =
∑

j∈Ni

c{i,j}(x{i,j}(k)− x̂i(k))2, (19)

where x̂i(k) is given in (12). Notice that each node i ∈ V has
sufficient information to determine ∆Vi(x(k)) itself. With
∆Vi defined as in (19), equation (15) can be rewritten as

V (x(k)) − V (x(k − 1))

=



















−∆V1(x(k − 1)), if u(k) = 1,

−∆V2(x(k − 1)), if u(k) = 2,
...

−∆VN (x(k − 1)), if u(k) = N.

(20)

Thus, the genie, equipped with knowledge of all the
∆Vi(x(k − 1))’s, may select u(k), the node that initiates
iteration k, according to

u(k) = argmax
i∈V

∆Vi(x(k − 1)), k ∈ P, (21)

so that the value of V always exhibits maximum decrease
upon completing each iteration.

Due to the idealized assumption of having a genie to carry
out feedback control, we refer to the resulting distributed
averaging algorithm as Ideal Controlled Hopwise Averaging

(ICHA). Note that while RHA leads to a random switched
system (13), ICHA yields a state-dependent switched system
governed by (13) and (21). This can be formalized in
algorithm form as follows:

Algorithm 2 (Ideal Controlled Hopwise Averaging).
Initialization:

1) Each node i ∈ V transmits |Ni| and yi to every node
j ∈ Ni.

2) Each node i ∈ V creates variables xij ∈ R ∀j ∈
Ni, x̂i ∈ R, and ∆Vi ∈ [0,∞) and initializes them
sequentially:

xij ←
yi

|Ni|
+

yj

|Nj |

c{i,j}
, ∀j ∈ Ni, x̂i ←

∑

j∈Ni
c{i,j}xij

∑

j∈Ni
c{i,j}

,

∆Vi ←
∑

j∈Ni
c{i,j}(xij − x̂i)

2.
Operation: At each iteration:

3) Let i ∈ argmaxj∈V ∆Vj .
4) Node i updates xij ∀j ∈ Ni and ∆Vi sequentially:

xij ← x̂i, ∀j ∈ Ni, ∆Vi ← 0.
5) Node i transmits x̂i to every node j ∈ Ni.
6) Each node j ∈ Ni updates xji, x̂j , and ∆Vj sequen-

tially:

xji ← x̂i, x̂j ←

∑

ℓ∈Nj
c{j,ℓ}xjℓ

∑

ℓ∈Nj
c{j,ℓ}

,

∆Vj ←
∑

ℓ∈Nj
c{j,ℓ}(xjℓ − x̂j)

2. �

The following theorem asserts the asymptotic convergence
of ICHA:

Theorem 2. Consider the wireless network modeled in
Section II and the use of ICHA described in Algorithm 2.
Then, for any yi ∈ R ∀i ∈ V , (16)–(18) hold.

The following theorem asserts a stronger result—ICHA
is exponentially convergent with the worst-case convergence
rate governed by the solution of a convex maximization (i.e.,
non-convex optimization) problem:

Theorem 3. Consider the wireless network modeled in
Section II and the use of ICHA described in Algorithm 2.
Then,

V (x(k)) ≤ ρV (x(k − 1)), ∀k ∈ P, (22)

and ∃x(k − 1) ∈ R
L such that

V (x(k)) = ρV (x(k − 1)),

where ρ ∈ [0, 1) is such that 1
1−ρ

is the optimal value of the

following convex maximization problem:

maximize
z∈RL V (z)

subject to ∆Vi(z) ≤ 1, ∀i ∈ V
∑

{i,j}∈E c{i,j}z{i,j} = 0.
(23)

Obviously, ICHA is not implementable since it assumes
the presence of a genie. Fortunately, it is possible to closely
mimic the greedy behavior of ICHA with a practical, decen-
tralized controller. To describe this controller, the notions of
time t ≥ 0 and a discrete-event system are needed. Suppose
each node i ∈ V maintains a time-to-initiate variable τi > 0,
so that when time t = τi, node i initiates the next iteration.
Suppose also that τi is a function of ∆Vi:

τi(k − 1) = Φ(∆Vi(x(k − 1))), (24)

where Φ : [0,∞)→ (0,∞] is a continuous, strictly decreas-
ing function satisfying limv→0 Φ(v) = ∞ and Φ(0) = ∞.

1565

Since Φ is strictly decreasing, ∆Vi(x(k − 1)) is inversely
proportional to τi(k − 1). Hence, with (24), the node with
the largest ∆Vi(x(k−1))’s would also have the smallest τi’s
and, thus, would become the node that initiates iteration k.
Although (24) attempts to foster a greedy behavior, it has
two issues. First, it is possible that τi may become smaller
than t upon completion of an iteration. This is undesirable
because every node’s time to initiate the next iteration should
be in the future, not the past. Second, although unlikely it
is theoretically possible that τi = τj for some i, j ∈ V and,
hence, if nodes i and j are one-hop neighbors, a collision of
wireless transmissions would occur. To alleviate these two
issues, we slightly modify (24), resulting in

τi(k − 1) = max{Φ(∆Vi(x(k − 1))), t}

+ ε(∆Vi(x(k − 1))) · rand(), (25)

where ε : [0,∞)→ (0,∞) is a continuous function meant to
take on a small positive value and rand() returns a uniformly
distributed random variable on the unit interval. Note from
(25) that introducing the max{·, ·} function ensures that τi

is never less than t. In addition, inserting a little randomness
into (25) reduces the probability of collision.

With each node i ∈ V utilizing a decentralized, time-to-
initiate-the-next-iteration controller (25), the resulting system
becomes a simple discrete-event system, in which there are
always N events scheduled, one from each node. The node
u(k) that initiates iteration k can therefore be determined
from

u(k) = argmin
i∈V

τi(k − 1), k ∈ P. (26)

Expression (26), along with (25), (13), and (19), defines the
practical Controlled Hopwise Averaging (CHA), which can
be formalized in algorithm form as follows:

Algorithm 3 (Controlled Hopwise Averaging).
Initialization:

1) Let time t = 0.
2) Each node i ∈ V transmits |Ni| and yi to every node

j ∈ Ni.
3) Each node i ∈ V creates variables xij ∈ R ∀j ∈ Ni,

x̂i ∈ R, ∆Vi ∈ [0,∞), and τi ∈ (0,∞] and initializes
them sequentially:

xij ←
yi

|Ni|
+

yj

|Nj |

c{i,j}
, ∀j ∈ Ni, x̂i ←

∑

j∈Ni
c{i,j}xij

∑

j∈Ni
c{i,j}

,

∆Vi ←
∑

j∈Ni
c{i,j}(xij − x̂i)

2,
τi ← max{Φ(∆Vi), t}+ ε(∆Vi) · rand().

Operation: At each iteration:
4) Let i ∈ argminj∈V τj and t = τi.
5) Node i updates xij ∀j ∈ Ni, ∆Vi, and τi sequentially:

xij ← x̂i, ∀j ∈ Ni, ∆Vi ← 0, τi ←∞.
6) Node i transmits x̂i to every node j ∈ Ni.
7) Each node j ∈ Ni updates xji, x̂j , ∆Vj , and τj

sequentially:

xji ← x̂i, x̂j ←

∑

ℓ∈Nj
c{j,ℓ}xjℓ

∑

ℓ∈Nj
c{j,ℓ}

,

∆Vj ←
∑

ℓ∈Nj
c{j,ℓ}(xjℓ − x̂j)

2,

τj ← max{Φ(∆Vj), t}+ ε(∆Vj) · rand(). �

VI. PERFORMANCE COMPARISON

In this section, we compare the performances of RHA
and CHA with those of Pairwise Averaging (PA) [13] (to

Fig. 1. A 100-node, 20-neighbor multi-hop wireless network.

which Anti-Entropy Aggregation [14], [15] is identical), Con-
sensus Propagation (CP) [19], Algorithm A2 (A2) of [20],
Distributed Random Grouping (DRG) [18], and flooding via
simulation. The algorithm parameters are selected as follows:
for CP, β = 106; for A2, γi = 0.3

|Ni|+1 ∀i ∈ V and

φij = φji = 0.49 ∀{i, j} ∈ E ; and for CHA, Φ(v) = 1/v
and ε = 0.001. For PA and DRG, we assume that overlapping
iterations cannot occur.

Two sets of simulation results are generated. The first
set corresponds to a single scenario of a multi-hop wireless
network with N = 100 nodes, where each node, on the
average, has 2L

N
= 20 neighbors, as shown in Figure 1.

The second set corresponds to multi-hop wireless networks
modeled by random geometric graphs, with number of nodes
varying from N = 100 to N = 500, and average number
of neighbors varying from 2L

N
= 10 to 2L

N
= 60. For each

N and each 2L
N

, a total of 50 randomly generated network
topologies are considered, so that every resulting data point
is actually an average over these 50 topologies.

Results from the first set of simulation are shown in
Figure 2. Observe from the figure that PA and A2 have
roughly similar performance, requiring approximately 7, 000
real-number transmissions to drive all the node estimates x̂i’s
to ±0.005 of the average x. In contrast, CP fails to converge
after 10, 000 transmissions, despite experimenting with sev-
eral choices of its parameter β [19]. On the other hand, DRG
is found to be quite efficient, needing only approximately
2, 100 transmissions to complete the averaging task. The
proposed RHA outperforms PA, CP, and A2, but not DRG,
while CHA is the most efficient among all the schemes,
requiring only roughly 1, 300 transmissions to converge.

Results from the second set of simulation are shown in
Figure 3. Analyzing the figure, we see that regardless of the
number of nodes N and the average number of neighbors
2L
N

, CP has the worst efficiency, followed by PA and A2.
DRG, RHA, and CHA are all fairly efficient, with CHA
again having the best efficiency. In particular, CHA is at
least 20% more efficient than DRG, and around 50% more
so when the network is sparsely connected at 2L

N
= 10.

The significant difference in performance between RHA
and CHA represents the benefit of greedy, decentralized,
feedback iteration control.

VII. CONCLUSION

In this paper, we have studied the distributed averaging
problem from the bandwidth/energy efficiency standpoint

1566

Number of R transmissions

x̂
i
’s

a
n
d

x

Pairwise Averaging (PA)

0 2000 4000 6000 8000 10000
0

0.5

1
x̂i ’s
x

Number of R transmissions

x̂
i
’s

a
n
d

x

Consensus Propagation (CP)

0 2000 4000 6000 8000 10000
0

0.5

1

Number of R transmissions

x̂
i
’s

a
n
d

x

Algorithm A2 (A2)

0 2000 4000 6000 8000 10000
0

0.5

1

Number of R transmissions

x̂
i
’s

a
n
d

x

Distributed Random Grouping (DRG)

0 2000 4000 6000 8000 10000
0

0.5

1

Number of R transmissions

x̂
i
’s

a
n
d

x

Random Hopwise Averaging (RHA)

0 2000 4000 6000 8000 10000
0

0.5

1

Number of R transmissions

x̂
i
’s

a
n
d

x

Controlled Hopwise Averaging (CHA)

0 2000 4000 6000 8000 10000
0

0.5

1

All x̂i’s converge to x± 0.005
after 6982 R transmissions

Do not converge to x± 0.005
after 10000 R transmissions

Converge after 7500 Converge after 2167

Converge after 3081 Converge after 1353

Fig. 2. Performance comparison on the wireless network shown in Figure 1.

and explained the deficiencies of the existing solutions, espe-
cially their lack of bandwidth/energy efficiency. To alleviate
these deficiencies, we have developed Random and Con-
trolled Hopwise Averaging (RHA and CHA), two distributed
asynchronous algorithms capable of fully exploiting the
broadcast nature of wireless medium, and the latter capable
of enabling greedy, decentralized, feedback iteration control.
We have shown that CHA admits a common quadratic
Lyapunov function for analysis and control, established its
exponential convergence, characterized its worst-case conver-
gence rate, and shown through extensive simulation that it is
substantially more efficient than several existing schemes.

REFERENCES

[1] B. Tavli and W. Heinzelman, Mobile Ad Hoc Networks: Energy-
Efficient Real-Time Data Communications. Berlin, Germany:
Springer-Verlag, 2006.

[2] D. Culler, D. Estrin, and M. Srivastava, “Overview of sensor net-
works,” Computer, vol. 37, no. 8, pp. 41–49, 2004.

[3] R. Olfati-Saber and R. M. Murray, “Consensus problems in networks
of agents with switching topology and time-delays,” IEEE Transac-
tions on Automatic Control, vol. 49, no. 9, pp. 1520–1533, 2004.

[4] J. Cortés, “Finite-time convergent gradient flows with applications to
network consensus,” Automatica, vol. 42, no. 11, pp. 1993–2000, 2006.

[5] A. Tahbaz-Salehi and A. Jadbabaie, “Small world phenomenon,
rapidly mixing Markov chains, and average consensus algorithms,”
in Proc. IEEE Conference on Decision and Control, New Orleans,
LA, 2007, pp. 276–281.

[6] D. Kempe, A. Dobra, and J. Gehrke, “Gossip-based computation of
aggregate information,” in Proc. IEEE Symposium on Foundations of
Computer Science, Cambridge, MA, 2003, pp. 482–491.

[7] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,”
Systems & Control Letters, vol. 53, no. 1, pp. 65–78, 2004.

[8] D. S. Scherber and H. C. Papadopoulos, “Distributed computation of
averages over ad hoc networks,” IEEE Journal on Selected Areas in
Communications, vol. 23, no. 4, pp. 776–787, 2005.

[9] D. B. Kingston and R. W. Beard, “Discrete-time average-consensus
under switching network topologies,” in Proc. American Control
Conference, Minneapolis, MN, 2006, pp. 3551–3556.

[10] A. Olshevsky and J. N. Tsitsiklis, “Convergence rates in distributed
consensus and averaging,” in Proc. IEEE Conference on Decision and
Control, San Diego, CA, 2006, pp. 3387–3392.

[11] L. Xiao, S. Boyd, and S.-J. Kim, “Distributed average consensus
with least-mean-square deviation,” Journal of Parallel and Distributed
Computing, vol. 67, no. 1, pp. 33–46, 2007.

[12] M. Zhu and S. Martı́nez, “Dynamic average consensus on synchronous
communication networks,” in Proc. American Control Conference,
Seattle, WA, 2008, pp. 4382–4387.

[13] J. N. Tsitsiklis, “Problems in decentralized decision making and
computation,” Ph.D. Thesis, Massachusetts Institute of Technology,
Cambridge, MA, 1984.

[14] M. Jelasity and A. Montresor, “Epidemic-style proactive aggregation
in large overlay networks,” in Proc. IEEE International Conference
on Distributed Computing Systems, Tokyo, Japan, 2004, pp. 102–109.

[15] A. Montresor, M. Jelasity, and O. Babaoglu, “Robust aggregation
protocols for large-scale overlay networks,” in Proc. IEEE/IFIP Inter-
national Conference on Dependable Systems and Networks, Florence,
Italy, 2004, pp. 19–28.

[16] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip
algorithms,” IEEE Transactions on Information Theory, vol. 52, no. 6,
pp. 2508–2530, 2006.

[17] M. Cao, D. A. Spielman, and E. M. Yeh, “Accelerated gossip algo-
rithms for distributed computation,” in Proc. Allerton Conference on
Communication, Control, and Computing, Monticello, IL, 2006, pp.
952–959.

[18] J.-Y. Chen, G. Pandurangan, and D. Xu, “Robust computation of
aggregates in wireless sensor networks: Distributed randomized algo-
rithms and analysis,” IEEE Transactions on Parallel and Distributed
Systems, vol. 17, no. 9, pp. 987–1000, 2006.

[19] C. C. Moallemi and B. Van Roy, “Consensus propagation,” IEEE

1567

100 200 300 400 500
0

0.5

1

1.5

2

2.5

3

3.5

x 10
5

Number of nodes N

N
u
m

b
er

o
f
R

tr
a
n
sm

is
si

o
n
s

n
ee

d
ed

to
co

n
v
er

g
e

Average number of neighbors
2L
N

= 10

Flooding
PA
CP
A2
DRG
RHA
CHA

100 200 300 400 500
0

2

4

6

8

10

12

x 10
4

Number of nodes N

N
u
m

b
er

o
f
R

tr
a
n
sm

is
si

o
n
s

n
ee

d
ed

to
co

n
v
er

g
e

Average number of neighbors
2L
N

= 20

100 200 300 400 500
0

1

2

3

4

5

6

7

8
x 10

4

Number of nodes N

N
u
m

b
er

o
f
R

tr
a
n
sm

is
si

o
n
s

n
ee

d
ed

to
co

n
v
er

g
e

Average number of neighbors
2L
N

= 30

100 200 300 400 500
0

1

2

3

4

5

6
x 10

4

Number of nodes N

N
u
m

b
er

o
f
R

tr
a
n
sm

is
si

o
n
s

n
ee

d
ed

to
co

n
v
er

g
e

Average number of neighbors
2L
N

= 40

100 200 300 400 500
0

1

2

3

4

5
x 10

4

Number of nodes N

N
u
m

b
er

o
f
R

tr
a
n
sm

is
si

o
n
s

n
ee

d
ed

to
co

n
v
er

g
e

Average number of neighbors
2L
N

= 50

100 200 300 400 500
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Number of nodes N

N
u
m

b
er

o
f
R

tr
a
n
sm

is
si

o
n
s

n
ee

d
ed

to
co

n
v
er

g
e

Average number of neighbors
2L
N

= 60

Fig. 3. Performance comparison on randomly generated multi-hop wireless networks with varying number of nodes, varying average number of neighbors,
and varying network topologies.

Transactions on Information Theory, vol. 52, no. 11, pp. 4753–4766,
2006.

[20] M. Mehyar, D. Spanos, J. Pongsajapan, S. H. Low, and R. M. Murray,
“Asynchronous distributed averaging on communication networks,”
IEEE/ACM Transactions on Networking, vol. 15, no. 3, pp. 512–520,
2007.

[21] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Com-
putation: Numerical Methods. Englewood Cliffs, NJ: Prentice-Hall,
1989.

[22] N. A. Lynch, Distributed Algorithms. San Francisco, CA: Morgan
Kaufmann Publishers, 1996.

[23] A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of groups
of mobile autonomous agents using nearest neighbor rules,” IEEE
Transactions on Automatic Control, vol. 48, no. 6, pp. 988–1001, 2003.

[24] Y. Hatano and M. Mesbahi, “Agreement over random networks,” IEEE
Transactions on Automatic Control, vol. 50, no. 11, pp. 1867–1872,
2005.

[25] L. Moreau, “Stability of multiagent systems with time-dependent com-
munication links,” IEEE Transactions on Automatic Control, vol. 50,
no. 2, pp. 169–182, 2005.

[26] W. Ren and R. W. Beard, “Consensus seeking in multiagent systems
under dynamically changing interaction topologies,” IEEE Transac-
tions on Automatic Control, vol. 50, no. 5, pp. 655–661, 2005.

[27] L. Fang and P. J. Antsaklis, “On communication requirements for
multi-agent consensus seeking,” in Networked Embedded Sensing and

Control, ser. Lecture Notes in Control and Information Sciences, P. J.
Antsaklis and P. Tabuada, Eds. Berlin, Germany: Springer-Verlag,
2006, vol. 331, pp. 53–67.

[28] S. Sundaram and C. N. Hadjicostis, “Finite-time distributed consensus
in graphs with time-invariant topologies,” in Proc. American Control
Conference, New York, NY, 2007, pp. 711–716.

[29] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and
cooperation in networked multi-agent systems,” Proceedings of the
IEEE, vol. 95, no. 1, pp. 215–233, 2007.

[30] A. Olshevsky and J. N. Tsitsiklis, “On the nonexistence of quadratic
Lyapunov functions for consensus algorithms,” IEEE Transactions on
Automatic Control, vol. 53, no. 11, pp. 2642–2645, 2008.

[31] C. Y. Tang and J. Lu, “Controlled hopwise averaging:
Bandwidth/energy-efficient asynchronous distributed averaging
for wireless networks,” submitted to IEEE/ACM Transactions on
Networking, 2009.

1568

