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Abstract— This paper presents a method to synthesize inter-
nal model principle type controllers for rejection of sinusoidal
disturbances. The frequencies of the disturbance are not re-
quired to be of rational ratios of the sampling interval or each
other, thus addressing both periodic and aperiodic signals. The
control synthesis utilizes positive feedback around notch filters
to create the internal model and employs stable inversion of
the plant dynamics to achieve closed loop stability. An example
and simulation on a general electromechanical motion control
system are presented to demonstrate the effectiveness of the
proposed method.

I. INTRODUCTION

Internal Model Principle (IMP) type controllers are based

on the well known Internal Model Principle [1], which

places the exogenous signal generating dynamics in the

feedback path between the external input and the output to

be regulated. By doing so, the controller achieves asymptotic

convergence. The ubiquitous PID controller is an IMP type

controller with an integral action internal model. Repetitive

control [2] is another IMP type controller that deals with

periodic exogenous signals and has been successfully applied

to many areas, including hard disk drives [3], optical disk

drives [4], non-circular metal cutting [5], industrial robots

[6] and PWM inverters and rectifiers [7].

In a digital repetitive control system, a periodic signal

generator 1/(1 − zN ) is included in the feedback loop to

generate an infinitely large feedback gain at the periodic

signal’s fundamental frequency and its harmonics. Thus,

periodic signals can be tracked or rejected asymptotically

provided that the resulting closed loop system is stable. The

high order, marginally stable internal model inserted in the

feedback loop makes the task of designing a controller for

closed loop stability challenging. In [8], a prototype discrete-

time repetitive controller design was proposed using Zero-

Phase Error Tracking Control (ZPETC) technique. A zero-

phase low-pass filter Q(z) was introduced to this structure

[5], [9] to improve robust stability. The tradeoff between

robustness stability and disturbance rejection performance in

this formulation is simplified to the design of the Q filter.

The repetitive control based on the previously mentioned

internal model has some limitations. Firstly, the internal

model includes all harmonics of the periodic signal, i.e. all

frequencies that are integer multiples of the fundamental
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frequency. In some cases the disturbance signal may be

aperiodic, including multiple frequencies that are not com-

mensurate with the Fourier harmonic frequencies. Secondly,

the convergence rate of repetitive control largely depends

on the internal model’s delay length, which corresponds

to the period length. Meaning when the signal period is

long, the convergence transient is slow. Thirdly, the delay

length N must be an integer. Although interpolation [10]

and least square based approximation [11] have been used,

the performance is still compromised by approximations.

In [12], a sinusoidal internal model was proposed to reject

a sinusoidal disturbance. In [13], the internal model of a

sinusoidal signal, a second order peak filter, was designed

and plugged into a servo loop in parallel with an existing

controller. The control design for multiple frequencies in-

volve solving high order Diophantine equations and do not

enjoy the simplicity of the prototype repetitive control design

based on plant inversion. Other adaptive feed-forward control

algorithms with sinusoidal regressors were proposed in [14]

and shown to be equivalent to the IMP. These realizations of

the parameter adaptation algorithms, based on least means

squares (LMS) or recursive least squares (RLS) are more

complex than the IMP-type feedback controllers.

In this paper, we construct internal models of sinusoidal

signals whose frequencies are not required to be of ratio-

nal ratios so that both periodic and aperiodic signals are

addressed. The internal models are created using positive

feedback loops wrapping around any number of cascaded

notch filters, where the width and depth of each notch can be

independently tuned. Using the internal model construction,

we formulate the closed loop control design problem as one

similar to the prototype repetitive control design, where the

stable inversion of the plant model, such as the ZPETC, is

applied to satisfy a simple and transparent stability condition.

The transient and steady state performance, as well as

robust stability of the proposed method are also analyzed.

The proposed synthesis is then applied to a motion control

example.

The remainder of this paper is organized as follows: Sec-

tion 2 presents the problem formulation and design objective.

Section 3, constructs the internal model using cascaded notch

filters and positive feedback loops. Section 4 establishes the

stability conditions and designs inversion based compensator,

the Zero Phase Error Tracking Compensator, to achieve

closed loop stability. Section 5 presents a motion control

example and simulation results with the conclusions given

in Section 6.
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II. PROBLEM FORMULATION

Consider the feedback control system shown in Figure 1.

where P represents the plant model and C1 is a preexisting
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Fig. 1. The proposed internal model principle type controller C is plug-in
to an existing feedback loop

stabilizing controller, which satisfies some predetermined

performance requirements. Define

d(t) =

p∑

k=1

Mk sin(ωkt + φk) (1)

where d(t) is the disturbance signal characterized by multiple

sinusoidal signals of known frequencies ωk. In this paper,

the additional controller C will be designed to reject these

disturbances.

From Figure 1, the controller C will be designed based

on the closed loop system G defined as

G(z−1) =
PC1

1 + PC1
= z−d B(z−1)

A(z−1)
(2)

where d is represents a known delay, and

A(z−1) = 1 + a1z
−1 + · · · + anz−n (3)

B(z−1) = b0 + a1z
−1 + · · · + amz−m (4)

where b0 6= 0 and n ≥ m.

The design objective is to find C(z−1) which assures the

asymptotic stability and asymptotic disturbance rejection,

lim
t→∞

e(t) = 0 (5)

III. SYNTHESIS OF IMP TYPE CONTROL

In order to reject the sinusoidal disturbances shown in

(1). the feedback loop has to incorporate the disturbance

model, using the Internal Model Principle (IMP) [1], [15].

The internal model can be implemented using a positive

feedback loop wrapped around a digital filter L(z−1) as

shown in Figure 2.

L
+

Fig. 2. Discrete internal model construction with positive feedback loop
wrapping around a digital filter L(z−1)

If the frequency response of L(z−1) satisfies
{

L(e−jω) = 1 if ω = ωk

L(e−jω) ≈ 0 if ω 6= ωk
(6)

the feedback loop will generate infinity gain when ω = ωk.

Placing this internal model ( Figure 2) in a feedback control

loop, it is possible to reject the sinusoidal disturbances at

those frequencies while keeping the original system almost

unchanged at the remaining frequencies.

In this paper, we will construct filter L through cascaded

Notch Filters (NF). A cascaded NF can be described as

H =

p∏

k=1

1 − 2βk cos ωkz−1 + β2
kz−2

1 − 2ρk cos ωkz−1 + ρ2
kz−2

=

p∏

k=1

Hk (7)

where p is the number of notches and the wk’s are the

frequencies at which the notches are placed. ρk and βk are

contraction factors with 0 ≪ ρk < βk ≤ 1. When βk = 1 is

chosen, the output of the filter will be zero. Figure 3 shows
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Fig. 3. Magnitude of frequency response of example H with different ρ
with β = 1. BW rejection becomes narrower as ρ → 1

the frequency response magnitude for one notch of H(z−1)
with different selections of ρ and fixed β = 1. Equation (7)

approaches ideal notches as ρ → 1. The bandwidth (-3dB) of

notch filter is roughly determined by the contraction factor:

BWk ≈ π(1 − ρk) (8)

Now define

L(z−1) = 1 − H(z−1) (9)

making the internal model D̃0 become

D̃0 =
L

1 − L
=

1 − H

H
(10)

ensuring that D̃0(e−jω) has infinite gain when ω = ωk and

almost zero gain when ω 6= ωk.

Given this internal model, a general form of internal model

type controller can be described by

C = D̃0F = D̃0 R

S
(11)

where F or R/S represents the rest of the controller not

captured by D̃0. By using this controller C in the system

described in Figure 1, we set the closed-loop characteristic

equation K equal to zero to find

K = SA(1 − L) + z−dBLR = 0 (12)

where (S,R) should be chosen so that K is asymptotically

stable, i.e., the roots of K are inside the unit disk of z-plane.

Equation (12) is the Diophantine Equation and the existence
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of solutions for S and R given K is guaranteed if A(1−L)
and z−dBL are coprime [16].

In general, the Diophantine equation (12) can be solved

numerically by forming a Sylvester matrix [16] or through

state space methods. However, the control design for multiple

frequencies involve solving high order Diophantine equa-

tions. If we combine Equations (10) and (11), a sufficient

stability condition for the closed-loop system shown in

Figure 4 can be derived from Nyquist stability criterion or

small gain theorem [17]

‖L(1 − FG)‖∞ < 1 (13)

and the problem becomes H∞ norm model matching prob-

lem, which has been discussed in detail [18].
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Fig. 4. IMP type control system for stability analysis

One simple way to solve the stable plant inversion problem

in (13) is to apply the zero-phase-error-tracking feed-forward

control (ZPETC) [19]. Given the stable plant shown in (2),

factor B into

B = B+B− (14)

where B+, B− represent stable and unstable zeros, respec-

tively. The ZPETC causal compensator FZPC is defined as

follows,

FZPC = γz−(nu+d) A(z−1)B−(z)

B+(z−1)
(15)

where γ is a positive real design parameter, and nu is the

number of unstable zeros.

Combining internal model (10) and ZPETC compensator

(15), the IMP type controller C is becomes:

C = D̃0FZPC (16)

The stability of closed-loop system will be shown in the

following Lemma:

Lemma 1: Given any stable plant G, shown in (2), there

exists a feedback controller C, as shown in (16), such that

there always exists a small enough γ such that

max
ωk

|1 − γe−j(nu+d)ωkB−(e−jωk)B−(ejωk)| <
1

1 + δ
(17)

where δ > 0 is a small constant. The closed-loop system is

always stabilizable given a small enough γ.

Proof: The denominator of closed-loop system can be

rewritten as

1 − (1 − γz−(nu+d)B−(z−1)B−(z))L (18)

where H is a stable filter with |L| ≤ 1 + δ, and

B−(z−1)B−(z) is also a stable filter. So, according to small

gain theorem [17], if Equation (17) holds, the closed-loop

system is stable.

Remark 1: For non-minimum phase systems, nu + d > 1
and the phase delay z−(nu+d) in (17) forces γ to be samll to

ensure closed-loop system stability. In order to achieve larger

stability range of γ, it is necessary for (10) to generate more

phase lead steps.

An effortless extension is to define a new D̃1

D̃1 =
Lz

1 − L
=

(1 − H)z

H
(19)

to include a phase lead, which still remains causal and allows

for a larger stability range. To introduce even more phase

lead, the structure of internal model can be modified by up

sampling the notch filter. Define

H̃m =

p∏

k=1

1 − 2βk cos(mωk)z−m + β2
kz−2m

1 − 2ρk cos(mωk)z−m + ρ2
kz−2m

=

p∏

k=1

H̃m
k

(20)

where m = nu + d, and the internal model can then be

defined as

D̃m =
(1 − H̃m)zm

H̃m
(21)

It can be seen that D̃m is able to provide nu + d step look

ahead to compensate the delay of FZPC . However, using this

notch filter as shown in (20) will generate m − 1 unwanted

notches due to aliasing. Figure 5 shows an example of this
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Fig. 5. Aliasing of Notch filter H̃5, which is supposed to have notch only
at 0.05π. The notch is duplicated at 0.4π ± 0.05π and 0.8π ± 0.05π

phenomenon. The position of notches can be calculated to

be

ωk,i =

∣∣∣∣
(

ωk ± 2πi

m

)
mod(2π)

∣∣∣∣ (22)

where i ∈ Z, and 0 ≤ i ≤ ⌊m/2⌋. To remove the m − 1
unwanted notches, define the new filter Lm as

Lm = L̃1L̃m−1 (23)

where L̃m = 1 − H̃m. As such, L̃1 masks the unwanted

peaks of L̃m−1. Then Hm can be calculated to be

Hm = H̃1 + H̃m−1 − H̃1H̃m−1 (24)

the feedback control is then

C = DmFZPC (25)
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and the stability is addressed by the following Lemma:

Lemma 2: Given any stable plant G, which is shown

in (2), there exists a feedback controller C, as shown in

(25), such that if γ is small enough to satisfy the following

condition

max
ωk

|1 − γB−(e−jωk)B−(ejωk)| <
1

1 + δ
(26)

then, the closed-loop system is stable.

Proof: The proof is similar to Lemma 1 and thus

omitted.

IV. ANALYSIS OF IMP TYPE CONTROL

A. Transient performance

Consider the difference equation of second order IIR notch

filter:

y(t) = x(t) − 2βk cos ωkx(t − 1) + β2x(t − 2)+
2ρ cos ωky(t − 1) − ρ2y(t − 2)

(27)

Given initial state y(−2) and y(−1), the free response of

notch filter converges as fast as ρt
k. A smaller ρk ensures a

faster transient. For cascaded NF, the transient is determined

by largest pole contraction factor, i.e., maxk{ρk}.

B. Steady state performance

The steady state performance of proposed scheme is

summarized in the following Theorem.

Theorem 1: Given stable plant shown in (2) and feedback

controller C shown in (25), if Lemma 2 holds and βk = 1,

then the error signal due to disturbances (1) converges to

zero asymptomatically.

Proof: The proof is due to IMP and hence omitted here.

C. Robust stability

Suppose plant with uncertainty G∆ is described by the

following multiplicative form [17]

G∆ = (1 + ∆rWr)G (28)

Where G is the nominal plant model; Wr(z) ∈ RH∞ is

uncertainty weighting function, which is specified to bound

the uncertainties; ∆r ∈ RH∞ is a variable transfer function

with ‖∆r‖∞ ≤ 1.

Assume that the nominal stability of closed-loop system

is satisfied, i.e., the controller in (25) satisfies Lemma 2. Let

ǫ > 0 be a small constant, define

δ1
k = |Hm(e−jωk)| (29)

δ2
k = |Hm(e−j(ωk−ǫ))| (30)

δ3
k = max

ω
|Hm(e−jω)| − 1 (31)

From Figure 6, it is easy to verify that
{

δ1
k < |Hm(e−jω)| < δ2

k if |ω − ωk| < ǫ
δ2
k ≤ |Hm(e−jω)| ≤ 1 + δ3

k if |ω − ωk| ≥ ǫ
(32)

and we have{
1 − δ2

k < |1 − Hm(e−jω)| < 1 + δ2
k if |ω − ωk| < ǫ

0 < |1 − Hm(e−jω)| < δ4
k if |ω − ωk| ≥ ǫ

(33)

Fig. 6. Frequency Response of Hm

The robust stability of system with multiplicative uncer-

tainty is shown as follows [17]

Lemma 3: Given G∆ shown in (28) and let C be a

stabilizing controller for the nominal plant P , then the

closed-loop is stable for all ‖∆r‖∞ ≤ 1 if and only if

‖TWr‖∞ ≤ 1, where T = I − (I + PC)−1.

The robust stability of proposed approach is shown as

follows,

Theorem 2: Consider G∆ shown in (28) and feedback

controller C shown in (25), if Lemma 2 holds and one of

the following conditions is satisfied

|Wr(e
jωk)| ≤ 1 − δ2

k

1 + δ2
k

(34)

1 − δ2
k

1 + δ2
k

< |Wr(e
jωk)| <

δ1
k + (1 − δ2

k)γb(ωk)

(1 + δ2
k)γb(ωk)

(35)

where b(ωk) = B−(ejωk)B−(e−jωk), then, the closed-loop

system is stable for all ‖∆r‖∞ ≤ 1
Proof: From Equation (2) and (25), the complementary

sensitivity function of closed-loop system is

T =
(1 − Hm)γB−(z)B−(z−1)

Hm + (1 − Hm)γB−(z)B−(z−1)
(36)

Substituting (32) and (33) into (36), we have

|T (e−jω)| <
(1 + δ2

k)γb(ωk)

δ1
k + (1 − δ2

k)γb(ωk)
, |ω − ωk| < ǫ (37)

|T (e−jω)| <
δ4
kγb(ωk)

δ2
k + δ4

kγb(ωk)
, |ω − ωk| ≥ ǫ (38)

If |ω − ωk| ≥ ǫ, it is reasonable to assume δ4
kγb(ωk) ≪ δ2

k,

when γ is small enough, i.e., |T (e−jω)| ≪ 1.

max
|ω−ωk|≥ǫ

|T (e−jω)Wr(e
−jω)| ≪ 1 (39)

If |ω − ωk| < ǫ and Equation (37) holds,

1

|Wr(e−jω)| ≥
1 + δ2

k

1 − δ2
k

≥ (1 + δ2
k)γb(ωk)

δ1
k + (1 − δ2

k)γb(ωk)
> |T (e−jω)|

(40)

max
|ω−ωk|<ǫ

|T (e−jω)Wr(e
−jω)| < 1 (41)

If |ω − ωk| < ǫ and Equation (38) holds,

1

|Wr(e−jω)| >
(1 + δ2

k)γb(ωk)

δ1
k + (1 − δ2

k)γb(ωk)
> |T (e−jω)| (42)
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max
|ω−ωk|<ǫ

|T (e−jω)Wr(e
−jω)| < 1 (43)

Combining Equation (39),(41) and (43), we have

‖TWr‖∞ < 1 (44)

According to Lemma 3, the closed-loop is stable for all

‖∆r‖∞ ≤ 1.

Remark 2: In Equation (38), the condition will be valid

only if δ1
k > 0, which means Dm(e−jωk) 6= 0. So, the results

in Theorem 2 suggest that for those frequencies where the

unmodeled dynamics |Wr| ≥ 1, the error signal can not

be completely canceled. It reflects the trade-offs between

robustness and performance in the proposed scheme.

Remark 3: For the non-minimum phase plant, the ZPETC

compensator FZPC will generate high gain at high frequency

range, which allows only for very small γ from Lemma 2

and Theorem 2. To remedy this, a zero-phase low-pass filter

M(z, z−1) can be introduced to suppress the high gain at

high frequencies. This can be accomplished by replacing γ
with γM(z, z−1), and let m = nu + d + nm, where nm is

the order of M(z, z−1).

D. Relationship with prototype repetitive control

The prototype repetitive control based on ZPETC was

presented in [8]. The internal model in prototype repetitive

control is

Hr(z
−1) = 1 − Q(z, z−1)z−N (45)

where Q(z, z−1) is zero-phase low-pass filter. Assume the

order of Q(z, z−1) is high enough so that it approaches an

ideal low-pass filter, i.e.,

{
Q(ω) ≈ 1 if ω ≤ ωc

Q(ω) ≈ 0 if ω > ωc
(46)

where ωc is the cut-off frequency of Q(z, z−1). The internal

model shown in Equation (45) can be factorized as follows,

Hr = (1 − z−1)
s∏

k=1

(
1 − 2 cos

(
2kπ

N

)
z−1 + z−2

)
(47)

where

s = arg max
1≤k≤N

2kπ

N
≤ ωc

This can be considered as a special case of Hm
s with βk = 1,

ρk = 0, and ωk = 2kπ/N .

E. Real-time implementation

Figure 7 shows the real-time implementation of proposed

controller C, where a positive feedback loop is used to

construct internal model with better numerical properties,

and Lm = 1 − Hm.

Note that in prototype repetitive control [8], Lm is re-

placed by the delay z−m, where m is the signal period. The

internal model for the repetitive control can also be obtained

by up sampling an integrator to the signal’s period length.

zmLm

z−m

FZPC
e v+

Fig. 7. Realtime implementation of C, the positive feedback loop provides
m-step phase lead to make FZPCG zero-phase

V. APPLICATION TO MOTION CONTROL PROBLEMS

Consider a typical servo motor driven motion control

system. Using the parameters of an existing AC brushless

servo motor shown in [20], [18] and sampling time Ts =
0.0005 second, the zero-order hold discrete transfer function

is shown as follows

Bp

Ap

=
5.276 × 10−5(z + 1.239)(z − 0.0886)(z + 0.0122)

(z − 1.000)2(z − 0.0316)(z − 0.00013)
(48)

Before applying the proposed controller, a stabilizing feed-

back controller Bc/Ac is used:

Bc

Ac

=
2221.8818(z − 0.8051)

z − 0.2802
(49)

and the closed-loop transfer function becomes

G = B
A

=
BcBp

AcAp+BcBp

= 0.11723(z+1.239)(z−0.8051)(z−0.08859)(z+0.01223)
(z−0.5064)(z−0.05496)(z+0.006098)(z2−1.639z+0.74)

(50)

which has one step delay and one unstable zero at -1.239,

making nu = 1 and d = 1.

This first example attempts to reject two sinusoidal distur-

bances at 60Hz and 60
√

3Hz with unity amplitudes. Using

Equation (7), (25), the controller is designed, where ρk =
0.9, βk = 1, m = nu + d = 2. According to Lemma 2,

the closed-loop system is stable if (17) is satisfied. Here we

choose γ = 1.5, |1−γB−(e−j2π60)B−(ej2π60)| = 0.4869 <

1 and |1 − γB−(e−j2π
√

3)B−(ej2π60
√

3)| = 0.4637 < 1.

Figure 8 shows the Bode plot of sensitivity function S =
1/(1+CG). The total closed-loop sensitivity function will be

Stol = S/(1 + C1P ). The time domain simulation in Figure

9 shows that the tracking error converges at 0.03 seconds

and the steady state error converges to zero asymptotically.

Another simulation compares the proposed method with

the prototype repetitive control presented in [8]. In both

methods, ZPETC compensator is used. The disturbance in

this simulation comprises 50Hz, 100Hz and 150Hz sinusoids

with unity amplitude. Figure 10 shows the time domain

simulation comparison. In our proposed method, γ is chosen

to be 1.5. In repetitive control, the delay N is chosen to be

40 since the sampling frequency is 2kHz, learning gain kr to

be 0.5. It is shown that the proposed method converges faster

than the repetitive control. In repetitive control, the control

signal for periodic disturbance is only updated every N steps.

If the disturbance signal period is long, the convergence will

be slow.
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Fig. 8. Sensitivity function S = 1/(1+CG), which rejects disturbances at
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√

3Hz and does not change the performance at other frequency
range achieved by existing controller C1. βk = 1 and ρk = 0.9, where
k = 1, 2
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Fig. 9. Time domain simulation: the transient of tracking error signal. The
disturbance signal consists of 60Hz and 60

√
3 Hz sinusoids with amplitude

1

VI. CONCLUSION

The novelties presented in this paper for synthesizing in-

ternal model principle type controller include the following:

(1) The construction of the internal model utilizes a

positive feedback loop of a “unity” filter L described in (6)

that is complementary to regular notch filters;

(2) By this construction, the closed loop stability can be

achieved by any stable inversion, or the simpler ZPETC, of

the plant dynamics;

(3) The forward and feedback paths of the positive feed-

back loop formed by the internal model are arranged to

account for plant delays and unstable zeros.

(4) Up-sampling of the internal model is proposed to allow
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Fig. 10. Tracking error transient comparison: repetitive control (red dashed
line) converges within 0.2 seconds and proposed method (blue solid line)
converges within 0.02 seconds

compensation of larger number of delays and unstable zeros.

Bearing some similarities to the approach to the design

of the so called prototype repetitive control, the method

discussed in this paper is more general than the repetitive

control. In this design both aperiodic and periodic signals

consisting multiple harmonics can be rejected. Transient

convergence can be made faster than repetitive control when

fewer harmonics are included in the internal model. These

features are demonstrated by the simulation results.
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