
 

 

 

  

Abstract—In this paper, new approaches for the 

identification of FIR systems using HOS are proposed. The 

unknown model parameters are obtained using optimization 

algorithms. In fact, the proposed method consists first in 

defining an optimization problem and second in using an 

appropriate algorithm to resolve it. Moreover, we develop a 

new method for estimating the order of FIR Models using 

only the output cumulants. The results presented in this 

paper illustrate the performance of our methods and 

compare them with a range of existing approaches. 

I. INTRODUCTION 

INITE Impulse Response (FIR) models have found 

applications in many fields, such as signal processing 

and control, since they can fit any complex stable system 

[1]. Moreover, they do not require any structure to be 

selected, but they need only the model order to be 

identified. 

For the identification of FIR systems, two main problems 

must be considered: one, identification of model order, 

and, two, identification of model parameters. 

Considerable work has been done in the area of model 

parameters identification [2], [3], [4], which consist in 

using second order statistics. However, these statistics are 

phase blind and sensible to additive Gaussian noise. Thus, 

they are incapable to identify the nonminimum phase 

systems and their performances degrade when the output is 

noisy. To overcome these problems, other approaches 

were proposed and consist in using higher-order statistics 

(HOS) [2], [3], [4], which present several interesting 

properties such as: robustness to additive Gaussian noise, 

ability to preserve phase and detection of nonlinearities. 

Therefore, HOS based methods are very useful in dealing 

with non-Gaussian and nonminimum phase linear systems 

as well as non linear systems. The proposed methods for 

the identification of FIR system parameters using HOS can 

be classified in three categories of solutions: optimization 

based solutions [3], [4], closed-form solutions [5]–[8], and 

linear algebra solutions [5], [8]–[15]. Only the linear 

algebra solutions are considered in this paper, since they 

have been found to be more robust to measurement noise 

and they deliver estimated parameters with a lower 

variance.  
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The linear algebra methods consist in constructing a 

system of equations which link the FIR model parameters 

to the output cumulants and in using the least squares 

approaches to solve the obtained system. But, most of the  

existing methods are characterized by a redundant 

unknown vector (i.e. whose elements are related to each 

other). Consequently, the obtained solution is suboptimal 

because the least squares approach assumes that the 

parameters are independent which they are not [3]. To 

overcome this problem, we have presented a solution 

which consists in solving the obtained system using least 

squares approaches under the constraint of dependency 

between the estimated parameters [16]. In this paper, we 

propose two methods which allow to avoid the problem of 

redundancy. They treat the obtained system as a nonlinear 

set of equations.  

The linear algebra methods assume that the model order is 

either a priori known or arbitrarily chosen. However, 

successful identification of FIR model parameters requires 

exact knowledge of the model order. This is one of the 

areas of research in which several efforts have been 

devoted in the past [5], [6], [17]–[19]. A new approach is 

also proposed for determining the order of FIR model 

using only the output cumulants. 

This paper is organized as follows. Section II presents the 

model and its assumptions. Section III recalls the principal 

relations linking HOS to FIR model parameters. 

Moreover, it presents in a unified way the main methods 

of FIR model identification using HOS.  In section IV, we 

propose new solutions to overcome the problem of 

redundancy. A new method to identify a FIR model order 

is developed in section V. Results of simulations are 

illustrated in the last section.  

II. MODEL AND ASSUMPTIONS 

In the following, we address the problem of estimating 

the order q and the parameters of a discrete, causal, 

stationary, minimum or nonminimum phase FIR system 

described by: 

( ) ( ) ( )∑
=

−=
q

0i

ineihnx      (1) 

where {e(n)} is the input sequence, {h(i)} are the impulse 

response coefficients, q is the order of the FIR system and 

{x(n)} is the non observable output sequence.  

The observed output process {y(n)} is given by: 

( ) ( ) ( )nvnxny +=      (2) 

where {v(n)} is the noise sequence. 

Model (1) is assumed to be exponentially stable with 

h(0)=1.  
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The following assumptions are assumed to be verified: 

A1. The input sequence {e(n)} is an independent and 

identically distributed zero mean, non-Gaussian, stationary 

process. 

A2. The additive noise v(n) is assumed to be an 

independent and identically distributed Gaussian process, 

independent of e(n) and with unknown variance. 

III. FIR PARAMETER IDENTIFICATION METHODS 

We present the main linear algebra methods using only 

HOS. This presentation allows, firstly, to compare the 

considered methods in terms of numerical complexity, and 

secondly, to show that the use of all available cumulants 

increases the redundancy in the parameters vector. 

However, the comparison between the performances of the 

different methods can be made through simulations, as 

well as by computing an asymptotic lower bound for the 

variance of the estimated parameters based on results 

presented in [20]. 

A. Basic relations 

We describe the main general relationships between 

cumulants and impulse response coefficients. From these 

relations, we can unify most of the linear HOS based 

methods proposed in the literature.  

Relation 1 

Brillinger and Rosenblatt showed that the mth order 

cumulants of {x(n)} can be expressed as a function of 

impulse response coefficients h(i) as follows [21]: 

( ) ( ) ( )
2

1

, 1 2 1 1 1
( , , , )

s

m x m m,e m

i s

C h i h i h i  τ τ τ γ τ τ
− −

=

… = + … +∑  (3) 

The methods presented in [6], [7] are derived from this 

relation. 

Relation 2 

This Relation was introduced for the first time in [22], and 

then used in [14]. It relates the m
th

 and n
th 

order cumulants 

to FIR system parameters: 
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Relation (4) is the basis of the Giannakis and Mendel [10], 

Tugnait [8], [15], Alshebeili [5] and Srinivas & Hari, [13]–

[14] methods. 

Relation 3 

Stogioglou and McLaughlin proposed a relation between 

different slices of the same order cumulants m [18]: 
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where 2mr1  −≤≤          (5) 

Relation (5) was used by Tugnait in [8] to modify the 

method of Giannakis & Mendel [10]. 

Relation 4 

This relation is presented in [16], [23]. It links the m
th

 and 

nth order cumulants of the FIR system output.  

( ) ( ) ( )

( ) ( ) ( )
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where s is an arbitrary integer number satisfying : 

[ ]  1 s min m,n 2≤ ≤ −   

The methods presented in [23] and [11] are derived from 

this relation. 

B. The main parameters identification methods 

The linear algebra methods use the following steps to 

identify the FIR model parameters: 

- Constructing a system of equations having the following 

form: 

bA =θ            (7) 

 where  A, b: respectively matrix and vector of cumulants 

   θ : the unknown parameters vector. 

- Solving the obtained system using the least squares 

approach. 

( ) bAAA
TT

.
1−

=θ         (8) 

- Extracting the FIR parameter 

The best FIR parameters estimation methods use third and 

fourth orders cumulants only. They are presented in a 

unified way in table I. This unification contains the basic 

relations, the used HOS information, the effective 

estimated parameters and the dimension of the equations 

system. 

According to table I, we can deduce the following: 

- The unknown vector is redundant in all presented 

methods. Consequently, they treat the unknown 

parameters as independent in order to simplify the 

identification algorithm [3]. 

- Methods 1, 2 and 5 are based on the same basic relation 

and use the same information of the third order 

cumulants, but they only differ in the information of the 

fourth order cumulants. The increase of slice number of 

fourth order cumulants improves the estimation quality, 

but it introduces a redundancy in the unknown vector. 

- Methods 3 and 4 are based on the same relation and use 

the same information of the fourth order cumulant, but 

they differ in the information of the third order 

cumulants. In fact, method 3 uses two slices. However, 

Method 4 uses all third order cumulants. The unknown 

vector is redundant for these two methods. 

- Methods 2 and 4 can be considered among the best 

algorithms because they use the third and fourth order 

cumulants and not autocorrelation. Consequently, they 

give consistent estimates in the presence of colored 

Gaussian noise. Moreover, they exploit nearly all the 

available statistics information which is expected to 

improve the quality of estimation [3]. For this reason, 

only these methods are to be considered in from now on. 
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TABLE I 

FIR PARAMETERS ESTIMATION METHODS BASED ON FOURTH AND THIRD ORDER CUMULANTS. 

 Method 1 Method 2 Method 3 Method 4 Method 5 

 [13]–[14] [13] [11] [23] [12] 

General Rel.  relation 2 
3 0τ =  

4 & 3m n= =  

relation 2  
3 0τ =  

4 & 3m n= =  
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1 2 0τ τ= =  

4 & 3m n= =  
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1 2 0τ τ= =  

4 & 3m n= =  

relation 2 
3 0τ =  

4 & 3m n= =  
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2 1
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2 1 qτ τ= +  
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Dim. A [ ]22,25 ++ qq  ( )[
( ) ]225

,2275

2

2

++

++

qq

qq  
[ ]22,25 ++ qq  ( )[

( ) ]225

,2275

2

2

++

++

qq

qq  [ ]3q 1,2q 1+ +  

IV. PROPOSED SOLUTION FOR REDUNDANCY PROBLEM 

The selected methods use the least squares approach to 

solve a system of equations characterized by a redundant 

vector of unknown parameters. Mathematically, this 

approach is not suitable since the obtained system is 

nonlinear and must be treated as an optimization problem. 

The objective of all optimization problems is to find a 

minimum or maximum objective function value.  In fact, 

we must define the optimization problem firstly, and 

secondly use an appropriate algorithm to solve it. 

A.  The considered optimization problems 

Three optimization problems can be considered in our 

case:  

Problem 1 

This problem is defined as follows: 

( )

2
min

1
0

b A
P  :  

subject to g

θ
θ

θ

 −


=

 

It consists in minimizing a least squares function which 

includes a constraint to take the interdependence of the 

estimated parameters into account.  

These non linear equality constraints are inspired from the 

redundancy in the estimated vector.  

 

 

Example 

We illustrate the use of this problem in the case of method 

2 (SRH) and method 4 (ABM) methods which are 

characterized by 
2

3
2

qq +  non linear constraints. 

For q=2, θ  and ( )θg  are given by: 

( ) ( ) ( ) ( )[

( ) ( ) ( ) ( )]  2h2h1h1h

2h1h2h1h

T2
3,43,4

2
3,4
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T22

3
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This approach improves the estimation performance, but 

still conserves the redundancy between the elements of the 

unknown vector. 

Problem 2 

The optimization problem P2 can be presented without 

non linear equality constraints: 

( )

( ) ( )

2

2 x
min b x

P  :
where   x A x

ϕ

ϕ θ

 −


=

 

with ( ) ( ) ( )[ ]T

, qh ...hhεx 2134= , dim(x)=(q+1,1) 

τ2 

τ1 
τ1 

τ2 

τ1 

τ2 

τ1 
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τ3 
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τ2 

τ3 

τ3=0 
τ2 

τ1 

τ3=0 τ2 

τ1 

τ2 

τ1 

τ2 τ3=0 

τ1 
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Example 

For SRH and ABM methods, the vector ( )xθ  is given by 

the following when q=2: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[

( ) ( ) ( ) ( ) ( ) ( ) ( )]  3x1x3x2x1x2x1x

3x1x2x1x1x3x2xx

T22

SRH =θ
 

( ) ( ) ( ) ( ) ( ) ( ) ( )[
( ) ( ) ( ) ( ) ( )]  3x3x2x2x3x

2x3x1x2x1x1xx

T22

33
ABM =θ

 

Problem P2 is a non-convex problem, therefore cannot 

guaranty that it’s a global minimum. To overcome the 

local minimum problem we proposing a third optimization 

approach. 

Problem 3 

 The problem 3 consists of taking P2 and framing the 

unknown parameters: 

( )

( ) ( )

2

max

3

x

min

min b x

P  : where x A x

subject   to  x x x

ϕ

ϕ θ

 −



=
 ≤ ≤


 

We can use the results of an explicit solution to initialize 

min
x  and

max
x . 

B.  The used algorithms 

- Problems 1 and 3 define an optimization problem with 

constraints. These problems can be solved using the 

sequential quadratic programming (SQP) which is  one 

of the best methods for solving nonlinear constrained 

problems particularly when a high degree of 

nonlinearity is present [24]. 

- Problem 2 is an unconstrained problem. Several 

optimization methods can be used to solve this 

problem such as the methods of Gauss-Newton, 

Newton-Raphson, quasi-Newton, gradient methods and 

Levenberg-Marquardt method. A comparative study of 

Gradient descent algorithm, Gauss–Newton algorithm 

and Newton–Raphson algorithm methods is presented 

in [25]. It can be mentioned that the quasi-Newton 

BFGS method is more often adopted to solve the 

unconstrained optimization problem because it presents 

good convergence performance [26]. Consequently, we 

propose the use of quasi-Newton BFGS method to 

solve problem P2. 

V.  MODEL ORDER IDENTIFICATION 

The presented methods for the identification of FIR model 

parameters assume that the model order is priory known or 

selected by a higher-level ‘wrapper’ selection algorithm. 

However, the model order identification is an important 

problem toward the objective of system identification. In 

fact, this problem presents an area of research in which 

several efforts have been devoted in the past. In fact, 

several algorithms have been proposed in the literature for 

the identification of a model order which can be divided in 

two families: statistical test approach and parameters 

estimation approach. The statistical test approach consists 

in searching the smallest integer for which the third order 

cumulants are zero. The methods belonging to this family 

use only one slice of third order cumulants. On the other 

hand, the parameters estimation approachs require an 

identification of the parameter in order to determine the 

model order. Consequently, their computational 

complexity is very expensive.  This section proposes a 

new method for the identification of FIR model order 

which belongs to the statistical test family. It uses all the 

available statistics information in order to improve the 

estimation quality. 

A.  The existing methods 

We recall the main existing methods which are based on 

relation 1 for n=3: 

( ) ( ) ( ) ( )3, 1 2 1 2
,

x

k

C h k h k h kτ τ τ τ= + +∑  

For a FIR model of order q, the third-order cumulant 

equals zero for either one or both of its arguments is 

greater or equal to 1q + . Consequently, it is very easy to 

determine the order of the FIR model q, by testing in a 

statistical sense, the smallness of a third-order cumulant 

such as ( )3,
1,0

y
C q + . This idea has been exploited in 

[17]. Two methods based on visual inspection and 

statistical tests are suggested. Obviously, the first method 

is impractical, while the second depends on statistics of a 

single random variable. In fact, the authors of [19] were 

suggested to compute the effective rank of the following 
cumulants matrix using the SVD which yields the effective 

order of the FIR model. 

( ) ( ) ( )
( ) ( )

( ) 



















=

00p,0C

0p,0C1,0C

p,0C1,0C0,0C

M

y,3

y,3y,3

y,3y,3y,3

p

⋯

⋮⋱⋰⋮

⋯

⋯

where p>q 

For a set of noisy data, the model order selected by this 

approach may be undetermined or overdetermined, 

depending on selection of the threshold. To improve the 
robustness of the order selection, they proposed a 

combination of the SVD and the product of diagonal 

entries (PODE) test. 

B.  The proposed approach  

The above methods give correct results when cumulants 

are known. However, in practice, the cumulants are 
estimated from data. Consequently, the exact cumulants 

are unknown and they can not be estimated correctly. In 

fact, we propose another formulation of this method which 

uses more cumulants. This formulation is based on the 

following cumulants matrix: 

( ) ( ) ( )
( )

( ) ( )

3, 3, 3,

3,

3, 3,

0,0 0,1 0,

1,0 0

,0 0 ,

y y y

y

p

y y

C C C p

C
M

C p C p p

 
 
 =
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 
  

⋯

⋱ ⋱

⋮ ⋱ ⋱ ⋮

⋯

 

For a FIR model of order q, matrix ( )qp for M p >  has 

the following form:  
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In fact, the order of a FIR model can be easily deduced 

using the index of the first null row (or column) in 

matrix pM . But, this solution depends on the threshold 

selection [17], [19]. To overcome this problem and to 

improve the quality of estimation, we suggest the use of 

the following normalized confidence variable: 

( )( ) ( )( )

( )( )pM

pM

pM
max

k
k

λ

λ
λ =

 

where 

( ) ( )( )
2

,
1

p

k

M p t l
l t

k Mλ
=

 
=  

 
∑ ∑ ,    

( ),p t l
M  is tth row and lth column element of Mp. 

It is easy to show that the normalized variable ( ) ( )k
pM

λ  

converge to one for 1+≥ qk  if  1+≥ qp . 

Remark 
The proposed method use only third order cumulants. 

Consequently, it yields consistent estimation when the 

output is contaminating by Gaussian colored noise. In 

addition, it presents the advantages of not depending on 

threshold selection as in the methods of [5] and [18]. 

VI. SIMULATION RESULTS 

We now present simulation example to illustrate the 

performance of the proposed approaches for model order 
and parameters identification of FIR systems. 

A. The simulated model 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )














+

±±

±±

−+−+−+−−

−+−+−−−+

+

    3-k0.5w2-k0.25w-1-k0.5w+kw=kv

84470.4019,-0.j   37461.0667,-0.j   0.2330-

0.8378,j 5190.2081,0.6j  1.0581  ,2.2600-  : zeros

10ke9.09ke37.18ke7.07ke5.2

6ke36.05ke98.04ke5.13ke25.1

2-k2.2e-1-k0.9eke=kx

 

B. The simulation conditions 

The simulations are performed under the following 

conditions: 

- The input signal e(n) is zero mean, exponentially 

distributed and independent and identically distributed 

sequence with γ2,e=1, γ3,e=2, γ4,e=6. 
- The additive colored noise v(n) is simulated as the output 

of MA(p) model deriving by a Gaussian sequence w(n). 
- The Signal to Noise Ratio (SNR) is defined as: 

( )
( ){ }
( ){ }






=

nvE

nxE
SNR dB 2

2

10log10

 
- The parameter were obtained from 50 Monte Carlo runs, 

where N data are used to estimate the third and the fourth 

order cumulants. 

The mean (µ), the standard deviation (σ), the mean square 

error (ρ) and the normalized mean square error (NMSE) 

values are considered to study the performance of each 

method. 

C. Model order estimation 

In this section, we present simulation results illustrating 

the use of the proposed method for the identification of 

model order. For comparison, the methods presented in 

[17] and [19] were also implemented using the same data. 

We observe from the obtained results, presented in table 

II, that the SVD and the ( )0,
3

qC
y

 methods [17] and [19] 

give results having very high standard deviation (σ) very 

high. Consequently, the model order identified by these 

approaches may be undetermined or overdetermined, 

depending on the selection of the threshold. However, the 

proposed method yields the correct model order for the 

three considered examples (see also Figure 1). 
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Fig 1. Model order identification, N=10000, SNR=10dB 

D. FIR model identification 

This section presents simulation studies allowing 

comparing the performance of the following approaches 

for the identification of the FIR model: 

- The least squares approach; 

- The sequential quadratic programming (SQP) to 

solve problems P1 and P3 [24]; 

- Quasi-Newton BFGS method to solve P2 [26]. 

Figure 2 shows the obtained results which lead to the 

following observations:  

- The performance of all the methods improves when 

SNR increases. 

- PR2 yields bad results in terms of standard deviations 

and mean square errors for model 1 which is a second 

model order. This is, however, expected since the 

Problem P2 is a non-convex problem and consequently 

cannot guaranty that it’s a global minimum.  

- The PR1 approach, generally, outperforms that of PR2. 

- For all the values of the considered SNR, the mean, the 

standard deviation, the mean square error and the 

normalized mean square error (NMSE) values are 

much lower in the PR3 method than in the LSA, PR1 

and PR2 methods. 

- It can be noted from the above presented numerical 

results and the previous observations made that the 

performance of the proposed method (PR3) shows a 

significant improvement even in a system having a 

large order and an output which is contaminated by 

noise with higher variance. 
TABLE II 

MODEL ORDER IDENTIFICATION N=10000, 50 MONTE CARLO RUNS 
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Fig 2. NMSE variation for ABM method, N=10000 

VII. CONCLUSION 

In this paper, we have addressed the problem of 

identification of FIR models using HOS. In fact, we have 

presented the main linear algebra methods. This 

presentation shows that the use of all available cumulants 

increases the redundancy in the parameters vector.  To 

overcome this problem, we have suggested considering the 

obtained system as a set of nonlinear equations which can 

be solved using optimization algorithms. In fact, we have 

developed three optimization problems. The first one 

consists in minimizing a least squares function which 

includes a constraint to take the interdependence of 

estimated parameters into account. The second approach 

concerns the resolution of a nonlinear problem without 

constraints. The last one represents a nonlinear 

optimization problem with inequality constraints. 

Moreover, a new algorithm for identifying the model order 

for FIR model is presented. Numerical simulation results 

are presented to demonstrate the performance of the 

proposed approaches. 
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