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Abstract— This paper investigates the problem of state es-
timation for nonlinear discrete-time dynamic systems. The
estimator is parameterized as a linear combination of chosen
basis functions. We seek the parameter that minimizes the
mean squared estimation error (MSE); however, computing this
objective is intractable. Hence, the MSE is approximated using
the Scaled Unscented Transform (SUT), which yields a discrete
least-squares optimization problem. Tikhonov regularization is
used to avoid overfitting the data supplied by the SUT. A double
pendulum example is used to compare this estimation strategy
to the Unscented Kalman Filter.

I. INTRODUCTION

In state estimation, the optimal estimate is given by the

conditional probability density function of the state given

past measurements [3]. Except for a few special cases, this

conditional density cannot be computed directly. Hence, we

seek a solution that provides a suboptimal estimate at a

modest computational cost. To this end, we parameterize the

estimator as a linear combination of chosen basis functions

and interpret state estimation as weighted statistical linear

regression [7], [8]. With mean squared error as the cost, the

optimal parameter is a minimizer of a linear least-squares

problem. However, computing the problem data involves

high-dimensional integrals, so in Sections II-B and II-C,

these integrals are approximated by finite sums using the

Scaled Unscented Transformation (SUT) [4], [10]. Because

the estimator basis is arbitrary, we risk overfitting the data

produced by the SUT. Section II-D discusses how to regular-

ize the estimation scheme to avoid overfitting. In the sequel,

our estimation scheme is referred to as a Linear Regression

Filter (LRF).

In Section III, a double pendulum example is used to

compare the performance of the LRF to that of the Unscented

Kalman Filter (UKF) [4]. An unknown time-varying param-

eter is added to the double pendulum model in Section III-C,

and the LRF and UKF are compared on this modified system.

In Section IV, we explore the use of kernel ridge re-

gression to minimize the same squared error cost over the

regression points provided by the SUT. This allows us

to search for estimators in high-dimensional reproducing

kernel Hilbert spaces, while maintaining fixed computational

complexity. The performance of this kernel-based method is
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compared to that of the LRF using the example of Section

III.

II. ESTIMATION METHODOLOGY

A. General Framework (Static Case)

Let W be a random vector taking values in R
s. Given

functions f : R
s → R

n and g : R
s → R

m, define the random

vectors X = f(W ) and Y = g(W ). Assume the density of

W , denoted pw, is known and Y is measured. The goal is to

estimate X from Y . The estimator is represented in terms of

the basis B = {ϕ1, . . . , ϕb}, where ϕj : R
m → R

n. Hence,

each θ ∈ R
b defines an estimator Φθ =

∑b
j=1 θjϕj , whose

mean squared error is given by

J(θ) = E

[

‖Φθ(Y ) − X‖2
2

]

=

∫

‖Φθ(g(w)) − f(w)‖2
2 pw(w) dw,

(1)

and the estimation error variance is given by

Px = E

[

(

Φθ

(

g(W )
)

− f(W )
)(

Φθ

(

g(W )
)

− f(W )
)T

]

.

Intuitively, Φθ should approximate f ◦ g−1. However, in

a typical estimation problem, m < n < s, so g−1 does not

exist. Therefore, we seek for an estimator that minimizes the

mean squared error over the distribution of W .

Note that if f and g are linear, pw is a Gaussian density,

and B is a basis for all affine functions of the measurement

Y , then minimizing (1) yields the Kalman filter.

B. Simplifying Approximations

The cost (1) is simplified by approximating pw as a

weighted sum of Dirac delta functions. Let S = {wj}σ
j=1

be a subset of R
s and A = {αj}σ

j=1 be a set of nonnegative

weights such that pw is approximated by p̂w =
∑σ

j=1 αjδwj
.

Substituting p̂w for pw in the cost (1) yields

Ĵ(θ) =
σ

∑

j=1

αj ‖Φθ(g(wj)) − f(wj)‖
2
2

=
σ

∑

j=1

αj

∥

∥

∥

∥

b
∑

ℓ=1

θℓϕℓ(g(wj)) − f(wj)

∥

∥

∥

∥

2

2

= ‖Gθ − F‖2
2 ,

(2)

where G ∈ R
σn×b and F ∈ R

σn. Hence, finding θ̂ that

minimizes Ĵ is a linear least-squares problem. The resulting
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estimate of X given the measurement Y = y is x̂ = Φ
θ̂
(y),

and the approximate estimation error variance is

Px̂ =
σ

∑

j=1

αj

(

Φ
θ̂
(g(wj)) − f(wj)

)(

Φ
θ̂
(g(wj)) − f(wj)

)T

.

C. Choosing Regression Points

Of course, the resulting estimator Φ
θ̂

depends on the

particular choice of regression points S and weights A.

In this paper, we use the Scaled Unscented Transformation

(SUT) [5], [10] to approximate pw. This method achieves

good performance with only 2s + 1 regression points. How-

ever, in order for (2) to be be overdetermined (i.e., more

regression points than parameters), there must be more than

b/m regression points.

If W can be decomposed as W = [W1 ; W2], where W1

and W2 are independent, then the density factors as pw =
pw1

pw2
. A reasonable method to generate more regression

points is to apply the SUT to pw1
and pw2

separately to

get (S1,A1) and (S2,A2) and take the set of regression

points to be S = S1 × S2. For each (wi, wj) ∈ S, define

the corresponding weight to be αiαj , where αi ∈ A1 and

αj ∈ A2. If W1 and W2 have dimensions s1 and s2, this

method yields a set of 4s1s2 + 2(s1 + s2) + 1 regression

points, whose weights are still statistically meaningful.

D. Regularization

The basis B should be rich enough that Φθ◦g approximates

f well over the distribution of W for some θ ∈ R
b.

However, if the basis is too rich, the estimator Φθ may

be highly nonnlinear and may overfit the relatively small

number of regression points provided by the SUT. To allow

for a sufficiently complex basis B while avoiding overfitting,

we use Tikhonov regularization [2]. The regularized cost

function is

ĴL(θ) = ‖Gθ − F‖2
2 + λ ‖Lθ‖2

2 , (3)

where λ > 0 and L ∈ R
b×b. Since the optimal solution

is θ̂ = (GT G + λLT L)−1GT F , the matrix L also makes

computing θ̂ better conditioned.

E. Application to Dynamic Systems

Consider a discrete-time dynamic system of the form

Xk+1 = f(Xk, Vk), X0 ∼ N (x0, Px0
),

Yk = g(Xk, Vk), Vk ∼ N (0, Pvk
),

(4)

where Vk and Xk are independent for all k ≥ 0. One time

step of this system fits the general framework of Section II-A

with W = [Xk ; Vk], X = Xk+1, and Y = Yk. The LRF is

iteratively applied to the system (4) as follows:

1) Use the SUT to get regression points that approximate

the densities of Xk and Vk.

2) Use the regression points to compute G and F .

3) Find θ̂ that minimizes ĴL.

4) Measure Yk = yk.

5) Estimate x̂k+1 and Px̂k+1
using Φ

θ̂
and yk.

6) Assume Xk+1 ∼ N (x̂k+1, Px̂k+1
).

7) Increment k and repeat Step 1.

III. DOUBLE PENDULUM EXAMPLE

A. System Dynamics & Discretization

A simple double pendulum system is used to compare the

effectiveness of the LRF to that of the UKF. Assuming that

each link has unit mass and unit length, the equations of

motion are θ̇1 = ω1, θ̇2 = ω2,

ω̇1 =
ω2

1γβ + g sin θ2β + ω2
2γ − 2g sin θ1

2 − β2
+ d1

ω̇2 =
ω2

2γβ − 2(g sin θ1β + ω2
1γ − g sin θ2)

β2 − 2
+ d2,

where g = 9.81, β = cos(θ2 − θ1), and γ = sin(θ2 − θ1).
Here, d1 and d2 are exogenous disturbances. The measured

outputs are y1 = θ1 + n1 and y2 = ω2 − ω1 + n2, where

n1 and n2 are measurement noises. To express this model in

the form of (4), define X = [θ1 ω1 θ2 ω2]
T , Y = [y1 y2]

T ,

and V = [d1 d2 n1 n2]
T . Also, let f and g be such

that Ẋ = f(X, V ) and Y = g(X, V ). We define fh to

be the discretization of f using the fourth-order Runge-

Kutta scheme with stepsize h. Hence, if Xk = x(kh) and

Yk = y(kh) for k ∈ N, the discretized system has the desired

form of equations (4). The unknown initial condition of the

system is modeled as a random vector X0 ∼ N (x0, Px0
) and

the unknown disturbance V is modeled as an i.i.d. random

sequence Vk ∼ N (0, Pv).

B. Numerical Results

Define x0 = [3.1, 3.1, 0.8, −5.5]T , Px0
= 0.7I , and

Pv = diag([1, 1, 0.5, 0.5]). Spanning the set of all third-

order polynomials, the basis is given by

B = {yα1

1 yα2

2 ej | α1, α2 ≥ 0, α1 + α2 ≤ 3, j = 1, . . . , 4},

where ei is the ith column of the 4-by-4 identity matrix. The

regularization parameters λ and L are chosen to minimize

the contribution of high-degree polynomials in the estimator.

In particular, we take λ = 1 and Ljj = (α1 + α2)
0.5, where

ϕj(y) = yα1

1 yα2

2 ei. The off-diagonal entries of L are zero.

We integrate the system for N = 80 time steps with a

stepsize of h = 0.025. Figure 1 shows that LRF and UKF

produce similar results for a single trial. However, Figure 2

shows the norm of the estimation error (i.e., ‖xk − x̂k‖2)

averaged over 50 independent trials. From this figure, we

see that the LRF usually outperforms the UKF. Because

the LRF with no regularization consistently exhibits poor

performance, only the regularized case is considered here.

C. Estimating an Unknown Parameter

To further demonstrate the performance of the LRF, we

consider the double pendulum example with an unknown

time-varying friction parameter ck. The modified system

dynamics are

Xk+1 = fh(Xk, Vk) + [0, ck∆ωk
, 0, −ck∆ωk

]T ,

where ∆ωk
:= X

(2)
k − X

(1)
k . To apply the LRF and UKF,

we extend the state vector to Xext
k = [Xk; ck] and model the

dynamics of ck as ck+1 = ck + µ2
k, where µk ∼ N (0, 0.05).
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Fig. 1. States of the double pendulum and their estimated values. Legend:
True (red, — ), LRF (blue, – – ), UKF (black, · · · ).
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Fig. 2. Estimation error ‖xk − x̂k‖2
averaged over 50 independent

simulations. Legend: LRF (blue, — ), UKF (black, · · · ).

Again, the system is simulated for N = 80 time steps with a

stepsize of h = 0.025. Figures 3 and 4 show the results when

the true value of ck varies from 0 to 1 continuously, while

Figures 5 and 6 show the results when the true value of ck

varies from 0 to 1 in three discrete steps. The data shown

in Figures 4 and 6 are the values of
∥

∥[xk, ck]T − x̂ext
k

∥

∥

2
averaged over 50 independent simulations. In both cases, the

LRF performs better than the UKF.
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Fig. 3. States of the double pendulum with friction and their estimated
values. Legend: True (red, — ), LRF (blue, – – ), UKF (black, · · · ).

IV. KERNEL RIDGE REGRESSION

Computing θ̂ that minimizes ĴL involves solving a σn-

by-b least-squares problem. Hence, the computational com-

plexity of the LRF increases with the size of the basis B.
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Fig. 4. Estimation error
‚

‚[xk, ck]T − x̂ext

k

‚

‚

2
averaged over 50 indepen-

dent simulations. (continuously varying friction parameter) Legend: LRF
(blue, — ), UKF (black, · · · ).
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Fig. 5. States of the double pendulum with friction and their estimated
values. Legend: True (red, — ), LRF (blue, – – ), UKF (black, · · · ).
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Fig. 6. Estimation error
‚

‚[xk, ck]T − x̂ext
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2
averaged over 50 inde-

pendent simulations. (discretely varying friction parameter) Legend: LRF
(blue, — ), UKF (black, · · · ).

However, if we use kernel ridge regression (KRR) to find an

estimator that minimizes the squared error over the regression

points provided by the SUT, then the computational complex-

ity of the estimator is fixed. Although the estimator takes

values in R
n, we can estimate each of the n components

separately. Thus, we present KRR for the scalar-valued case

with the understanding that the procedure is repeated for each

component.

Let H be a reproducing kernel Hilbert space (RKHS) with

positive definite kernel K : R
m×R

m → R. Given regression

points S and weights A from the SUT, our goal is to find

ϕ ∈ H that minimizes

min
ϕ∈H

1

2

σ
∑

j=1

αj ‖ϕ(g(wj)) − f(wj)‖
2
2 +

λ

2
‖ϕ‖2

H
. (5)

By the Representer Theorem [6], the optimal ϕ ∈ H is
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of the form ϕ̂( · ) =
∑σ

j=1 θjK( · , g(wj)). Note that this

expression does not depend on the dimension H. Let z =
[f(w1), . . . , f(wσ)]T and A = diag({α1, . . . , ασ}). Also, let

K ∈ R
σ×σ be given by Kij = K(g(wi), g(wj)). Substituting

ϕ̂, z, A, and K into (5) yields

min
θ∈Rσ

1

2
‖A(z − Kθ)‖2

2 +
λ

2
θT Kθ. (6)

Because K is a positive definite kernel, the matrix K is

positive definite and (6) is a convex quadratic program. It

is easily shown that an optimal solution to (6) is

θ̂ = (KA2K + λK)−1KA2z (7)

Therefore, applying KRR requires that we solve a σ-by-σ
linear system of equations for each of the n components of

our estimator, regardless of the dimension of H.

To compare this kernel-based approach with the LRF,

we use the inhomogeneous polynomial kernel K(x, y) =
(xT y +1)d, where d is the degree [9]. The KRR-based filter

is applied to the system of Section III-B with d = 3 and

λ = 0.1. Figure 7 shows the state estimates for a single

trial and Figure 8 shows the value of ‖xk − x̂k‖2 averaged

over 50 trials. From these figures, it is clear that the LRF

performs better than the KRR-based method. The estimates

produced by the KRR-based filter are very sensitive to the

value of the regularization parameter λ. It is likely that a

time-dependent parameter λk that depends on the variance

of the noises and the estimation error will produce better

performance. However, further research is needed to develop

such a regularization scheme.
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Fig. 7. States of the double pendulum and their estimated values. Legend:
True (red, — ), LRF (blue, – – ), Kernel Ridge Regression (black, · · · ).
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Fig. 8. Estimation error ‖xk,−x̂k‖2
averaged over 50 independent

simulations. Legend: LRF (blue, — ), Kernel Ridge Regression (black, · · · ).

V. CONCLUSIONS & FUTURE WORK

Within the framework of Section II-A, one step of the

UKF can be interpreted as weighted statistical regression

over a particular set of regression points. Using the same

regression points but allowing nonlinear basis functions, our

Linear Regression Filter is a natural extension of the UKF. If

the nonlinear estimator basis functions are chosen carefully,

the LRF achieves better performance than the UKF with a

slight increase in cost.

Kernel ridge regression allows us to consider an even

larger class of estimators that lie in reproducing kernel

Hilbert spaces. However, the performance of this kernel-

based approach is very sensitive to the particular value of the

regularization parameter used. Further research is required to

develop a regularization scheme that takes into account the

statistics of the estimation error and noises at each time step.

Because the LRF assumes that x̂k is a Gaussian random

vector at each time step, any algorithm that uses the Kalman

filter can be extended to nonlinear systems by simply re-

placing the Kalman filter with the LRF. For example, the

LRF can be applied to nonlinear systems with Markovian

switching parameters by replacing the Kalman filter in the

Interacting Multiple Model algorithm [1] with the LRF.
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