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Abstract— This paper presents an integrated adaptive
estimator-controller scheme for a class of systems with only
partially measured states. To estimate the non-measured states,
a fast adaptive estimator is applied. The estimation is used in the
L1 adaptive controller, which adapts to time-varying unknown
parameters and time-varying bounded disturbances in the
system without restricting their rate of variation. The results
demonstrate that the L1 adaptive controller has guaranteed
performance bounds for system’s both input and output, while
using the estimation of the regulated outputs. The approach
is used to control the bottom hole pressure of a well drilling
system, in which the measurement of the pressure is updated
at a low rate. Simulations verify the theoretical findings.

I. INTRODUCTION

This paper extends the results of [1], [2], [3] to the case,
when a part of the system states cannot be measured. When
the non-measured states satisfy certain mild assumptions,
they can be estimated by the fast adaptive estimator de-
veloped in [4]. The estimation is then directly used in the
standard L1 adaptive controller. This paper proves that by
replacing the true value of states with their estimates in
the L1 adaptive controller, the steady state and transient
performance of the closed-loop system can be systematically
improved by increasing the rate of adaptation, similar to the
full-state feedback case.

The integrated adaptive estimator-controller structure of
this paper can be efficiently used to control the managed
pressure drilling (MPD) system. During well drilling, a fluid
circulation system is used to maintain the pressure profile
along the well with specified lower and upper bounds and
carry out the cuttings. The drill fluid (mud) is pumped into
the drill string, which is a structure of a series of connected
pipes. The fluid then flows down to the drill bit, sprays out
through the bit, circulates back up the annulus, and finally
exits through a choke valve. The scheme of an oil well
drilling system is shown in Fig. 1.

The pressure balance between the well section and the
reservoir is critical to the drilling system [5]. The main
objective of MPD is to precisely control the well pressure
profile throughout the well, i.e. to maintain the pressure
above the pore or to collapse pressure below the fracture
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Fig. 1: Well drilling system scheme

or sticking pressure. This amounts to stabilizing the down-
hole pressure within its margins. Since nowadays many wells
are depleted with narrow pressure margin, to extract oil from
these wells efficiently requires more precise control of the
bottom hole pressure.

One of the main challenges of MPD control is the mea-
surement of the bottom hole pressure, which is updated at
low rate, and can be viewed as unmeasured state. Another
drawback is the uncertainty in the model for the bottom-hole,
due to uncertainties in the friction and mud compressibility
parameters. Moreover, the model parameters are subject to
significant changes among different stages of the drilling
process, i.e. from normal drilling to the pipe connection pro-
cess. These challenges motivate the design of an integrated
adaptive estimator and controller scheme. The guaranteed
performance bounds of L1 adaptive controller make it an
ideal candidate for addressing the high-precision control of
the bottom hole pressure.

The paper is organized as follows. Section II states some
preliminary definitions. Section III gives the problem for-
mulation. Section IV presents the fast estimator. Section V
presents the L1 adaptive controller and the uniform perfor-
mance bounds. Section VI applies the integrated estimator-
controller scheme to a well drilling system under different
operation conditions. Section VII concludes the paper.

II. MATHEMATICAL PRELIMINARIES

In this Section, we recall some basic definitions and facts
from linear systems theory [6], [7].

Definition 1: For a signal ξ(t) ∈ R
n, t ≥ 0,

its truncated L∞ norm and L∞ norm are defined as
‖ξt‖L∞

= maxi=1,..,n(sup0≤τ≤t |ξi(τ)|), and ‖ξ‖L∞
=

maxi=1,..,n(supτ≥0 |ξi(τ)|), where ξi is the ith component
of ξ.

2009 American Control Conference
Hyatt Regency Riverfront, St. Louis, MO, USA
June 10-12, 2009

WeC18.6

978-1-4244-4524-0/09/$25.00 ©2009 AACC 1958



Definition 2: The L1 norm of a stable proper single–input
single–output system H(s) is defined to be ‖H(s)‖L1

=∫ ∞

0 |h(t)|dt, where h(t) is the impulse response of H(s).
Definition 3: For a stable proper m input n output

system H(s) its L1 norm is defined as ‖H(s)‖L1
=

maxi=1,··· ,n

∑m

j=1‖Hij(s)‖L1
, where Hij(s) is the ith row

jth column element of H(s).
Lemma 1: For a stable proper MIMO system H(s) with

input r(t) ∈ R
m and output x(t) ∈ R

n, we have ‖xt‖L∞
≤

‖H(s)‖L1
‖rt‖L∞

, ∀ t > 0.
Lemma 2: For a cascaded system H(s) = H2(s)H1(s),

where H1(s) is a stable proper system with m inputs and
l outputs and H2(s) is a stable proper system with l inputs
and n outputs, we have ‖H(s)‖L1

≤ ‖H1(s)‖L1
‖H2(s)‖L1

.
Lemma 3: If (A , b) is controllable and (sI − A)−1b is

strictly proper and stable, there exists c ∈ R
n such that

c�(sI − A)−1b is minimum phase with relative degree one.

III. PROBLEM FORMULATION AND DEFINITIONS

A. Problem Formulation

Consider the following system dynamics with only partly
measured states:

ẋ(t) = Amx(t) + b(μ(t) + θ�(t)x(t) + σ0(t)) , (1)

μ(s) = F (s)u(s) , (2)

ż(t) = A1z(t) + x(t) , (3)

y(t) = c�x(t) , x(0) = x0 , z(0) = z0 , (4)

where x ∈ R
n is the system state whose measurement is

updated at a significantly low rate, and thus can be treated
as a non-measured state, z ∈ R

n is the system state that
is continuously measured, u ∈ R is the control signal, y ∈
R is the regulated output, b, c ∈ R

n are known constant
vectors, Am and A1 are known n × n Hurwitz matrices,
(Am, b) is controllable, θ(t) ∈ R

n is a vector of time-varying
unknown parameters, σ(t) ∈ R is a time-varying disturbance,
and F (s) is an unknown stable transfer function that presents
the uncertainties due to the unmodeled actuator dynamics.

Assumption 1: The unknown time-varying parameters and
the disturbance are uniformly bounded: θ(t) ∈ Θ, |σ0(t)| ≤
Δ, ∀t ≥ 0, where Θ is a known compact set, and
Θ and Δ are known conservative bounds. Let L �

maxθ(t)∈Θ

∑n

i=1 |θi(t)|, with θi being the ith element of θ.
Assumption 2: θ(t) and σ0(t) are continuously differen-

tiable and their derivatives are uniformly bounded:‖θ̇(t)‖2 ≤
dθ < ∞, |σ̇0(t)| ≤ dσ < ∞, ∀t ≥ 0.

Assumption 3: There exists Lf such that ‖F (s)‖L1
≤ Lf .

The control objective is to design an adaptive controller
to ensure that y(t) tracks a given bounded reference signal
r(t) both in transient and steady state, while all other error
signals remain bounded.

B. Definitions

The design of the L1 adaptive controller involves a gain
k ∈ R

+ and a strictly proper transfer function D(s) =

1
s
D̄(s), where D̄(s) is proper and stable, which leads to

a strictly proper stable low-pass filter:

C(s) = kF (s)D(s)/(1 + kF (s)D(s)) (5)

with DC gain C(0) = 1. The simplest choice is D(s) =
1/s, which yields C(s) = kF (s)/(s + kF (s)). Similarly,
the design of the fast estimator involves a low-pass filter
C1(s) with C1(0) = 1, e.g., C1(s) = c

s+c
, where c > 0.

For system in (1)-(4), define H(s) = (sI − Am)−1b,
G(s) = H(s)(1 − C(s)) . It follows from Lemma 3 that
there exists co ∈ R

n such that

c�o H(s) = Nn(s)/Nd(s) , (6)

where deg(Nd(s)) − deg(Nn(s)) = 1, and both Nn(s) and
Nd(s) are stable polynomials. For the proof of stability and
performance bounds, the choice of D(s) and k needs to
ensure that:

‖G(s)‖L1
L < 1 . (7)

For arbitrary γ0 > 0, define

γ1 � Cm/(1 − GmL)γ0 + β1 , γ2 � Caγ0 + LCnγ1, (8)

where Cm = maxF (s) ‖C(s)‖L1
, Gm = maxF (s) ‖G(s)‖L1

,

Ca =maxF (s)

∥∥∥C(s)
F (s)

1
c�

o
H(s)

c�o

∥∥∥
L1

, Cn =maxF (s)

∥∥∥C(s)
F (s)

∥∥∥
L1

,

and β1 > 0 is an arbitrary constant which satisfies 0 < β1 <
γ1. We will prove that by increasing the adaptive gain, γ0

can serve as an upper bound for the prediction error.
Let r0(t) be the signal with its Laplace transformation

r0(s) = (sI − Am)−1x0. Since Am is Hurwitz, ‖r0‖L∞
is

finite. For arbitrary γ0 > 0, and bounded reference signal
r(t) ∈ R, define ρ = ρr + γ1 , ρu = ρur

+ γ2, where

ρr � (‖G(s)‖L1
Δ + kg‖H(s)C(s)‖L1

‖r‖L∞
+

‖r0‖L∞
)/(1 − ‖G(s)‖L1

L) , (9)

ρur
� ‖C(s)/F (s)‖

L1

(Lρr + Δ + kg‖r‖L∞
) , (10)

and kg is defined as kg = −1/(c�A−1
m b).

IV. ADAPTIVE ESTIMATOR

In equation (3), we treat x(t) as a time-varying parameter
and apply the fast estimator in [4] to get the estimation of
x(t). The fast estimator consists of state predictor, adaptive
law and low-pass filter. The state predictor is given by:

˙̂z(t) = A1ẑ(t) + x̂e(t) , ẑ(0) = z0, (11)

which has the same structure as the system in (3), except
that the unknown parameter x(t) is replaced by its estimation
x̂e(t) , which is governed by the following adaptation law:

˙̂xe(t) = Γ1Proj(x̂e(t),−P1z̃(t)) , x̂e(0) = x̂0, (12)

where z̃(t) � ẑ(t)−z(t), Γ1 > 0 is the adaptation gain, P1 =
P�

1 is the solution of the algebraic equation A�
1 P1+P1A1 =

−Q1, Q1 > 0, Proj(·, ·) is the projection operator which
keeps x̂e(t) within the pre-specified bound ‖x̂e(t)‖∞ ≤ ρ
[8]. The final estimation xe(t) for x(t) is given by:

xe(s) = C1(s)x̂e(s) . (13)
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To streamline the subsequent analysis, we need to intro-
duce several notations. Define B1 = 4nρ2 + 4nρdλmax(P1)

λmin(Q1)
,

H1(s) = (sI−A1)
−1, d = ‖Am‖L1

ρ+ |b|(Lfρu +Lρ+μσ).
Let μ0 > 0 be an arbitrarily small positive constant. Next

we show that if the choice of Γ1 and C1(s) verifies:

‖C1(s)H
−1
1 (s)‖L1

√
B1

Γ1λmin(P1)
+ ‖1 − C1(s)‖L1

ρ ≤ μ0 ,

(14)
then the norm of the estimation error is bounded by μ0.

Lemma 4: For the system in (1)-(3), and the adaptive
estimator given in (11)-(13), for any μ0 > 0 if

‖xt‖L∞
≤ ρ , ‖ut‖L∞

≤ ρu , (15)

and Γ1 and C1(s) satisfy the design constraint in (14), then:

‖(xe − x)t‖L∞
≤ μ0 . (16)

Proof. The proof is similar to Theorem 3.4 in [4]. �

V. L1 ADAPTIVE CONTROLLER DESIGN AND ANALYSIS

A. Controller Design

Using the estimation xe(t) for feedback, we design the L1

adaptive controller, which consists of state predictor, adaptive
law and control law. The state predictor is given by:

˙̂x(t) = Amx̂(t) + b(ω̂(t)u(t) + θ̂�(t)xe(t) + σ̂(t)) ,

ŷ(t) = c�x̂(t) , x̂(0) = x0 , (17)

where t = 0 is the time instant when the measurement of
x(t) is available.

The parameter estimations ω̂(t), θ̂(t) and σ̂(t) are gov-
erned by the following adaptive laws:

˙̂ω(t) = ΓcProj(ω̂(t),−(x̂(t) − xe(t))
�Pbu(t)) , (18)

˙̂
θ(t) = ΓcProj(θ̂(t),−(x̂(t) − xe(t))

�Pbxe(t)) , (19)
˙̂σ(t) = ΓcProj(σ̂(t),−(x̂(t) − xe(t))

�Pb) , (20)

ω̂(0) = ω̂0 , θ̂(0) = θ̂0 , σ̂(0) = σ̂0 ,

where P = P� > 0 is the solution of the algebraic equation
A�

mP + PAm = −Q , Q > 0, Γc > 0 is the adaptation
gain. The projection operators keep ω̂(t), θ̂(t) and σ̂(t) in
the pre-specified compact sets [ωl, ωu], Θ and [−σb, σb],
respectively, where ωl and ωu are chosen to be nonzero
constants with the same sign, and σb is given by

σb = Δ + ‖F (s) − (ωl + ωh)/2‖L1
ρu + Lμ0 , (21)

where μ0 is the solution of the quadratic function

4‖Pb‖Lμ2
0 + 2μ0‖Pb‖(2‖F (s)− (ωl + ωh)/2‖L1

ρu + 2Δ

+ (ωu − ωl)ρu + 2Lρ) = (λmax(P )γ2
0 − β2)/Λ , (22)

while Λ = λmax(P )/λmin(Q), and 0 < β2 < λmax(P )γ2
0 .

The control signal u(t) is generated through the feedback
of the following system:

χ(s) = D(s)r̄(s) , u(s) = −kχ(s) , (23)

where r̄(t) = ω̂(t)u(t) + θ̂�(t)x̂(t) + σ̂(t) − kgr(t).
The L1 adaptive controller consists of (17)-(20) and (23),

subject to (7).

B. Closed-loop Reference System

First we consider the closed-loop reference system with
its control signal and system response defined as:

ẋref (t) =Amxref (t) + b
(
μref (t) + θ�(t)xref (t) + σ0(t)

)
,

μref (s) =F (s)uref (s) , xref (0) = x0 , (24)

uref (s) = − kD(s)r̄ref (s) , yref (t) = c�xref (t) ,

where r̄ref (s) is the Laplace transformation of r̄ref (t) =
μref (t) + θ�(t)xref (t) + σ0(t) − kgr(t). The next Lemma
establishes stability of the closed-loop reference system (24).

Lemma 5: For the closed-loop reference system in (24),
subject to the L1-norm condition in (7), we have

‖xref‖L∞
≤ ρr , ‖uref‖L∞

≤ ρur
, (25)

where ρr and ρur
are defined in (9)-(10)

Proof. The proof is similar to Lemma 1 in [9]. �

C. Equivalent Linear Time-Varying System

In this section, we demonstrate that the system with un-
modeled actuator dynamics in (1) can be transformed into an
equivalent linear system with unknown time-varying param-
eters. Define ρω = ‖ksD(s)‖L1

(ρuωm+Lρ+σb+kg‖r‖L1
),

where ωm = max{|ωl|, |ωh|}. Since sD(s) = D̄(s) is stable
and proper, ‖ksD(s)‖L1

is finite.
Lemma 6: Let μ(s) = F (s)u(s), where F (s) is a stable

unknown transfer function.
(i) If ‖ut‖L∞

≤ ρu, there exist ω and σ̄(τ) over [0, t]
such that μ(τ) = ωu(τ) + σ̄(τ), where ωl < ω < ωh and
|σ̄(τ)| < ‖F (s) − (ωl + ωu)/2‖L1

ρu.
(ii) If in addition to (i) , ‖u̇t‖L∞

≤ ρω, then σ̄(τ) is
differentiable and for any 0 ≤ τ ≤ t, | ˙̄σ(τ)| ≤ ‖F (s) −
(ωl + ωu)/2‖L1

ρω.
Proof. The proof is similar to Lemma 2 in [9]. �

Remark 1: For the L1 adaptive controller in (17)-(20),
(23), suppose ‖xt‖L∞

≤ ρ and ‖ut‖L1
≤ ρu. Since the

projection operators ensure that for any 0 ≤ τ ≤ t, θ ∈ Θ,
ω(τ) ≤ |ωm|, and |σ̂(τ)| ≤ σb, we have ‖r̄t‖L∞

≤
ωmρu +Lρ+σb +kg‖r‖L∞

. The control law in (23) implies
u(s) = −kD(s)r̄(s), and hence, su(s) = −ksD(s)r̄(s). It
follows from the definition of ρω that ‖u̇t‖L∞

≤ ρω.
Remark 2: If ‖ut‖L1

≤ ρu, it follows from Lemma 6 (i)
that the system in (1) can be rewritten over [0, t] as

ẋ(τ) = Amx(τ) + b(ωu(τ) + θ�(τ)x(τ) + σ(τ)) , (26)

where σ(τ) = σ0(τ) + σ̄(τ) satisfies |σt| ≤ Δ + ‖F (s) −
(ωh + ωl)/2‖L1

ρu. Also, if ‖u̇t‖L1
≤ ρω, the condition

in Lemma 6 (ii) ensures ‖σ̇t‖L∞
≤ dσ + ‖F (s) − (ωh +

ωl)/2‖L1
ρω.

D. Prediction Error Signal

To prove the uniform transient tracking between the
closed-loop system with the estimator and L1 adaptive
controller and the reference system in (24), we first need to
quantify the prediction error performance. Let x̃(t) = x̂(t)−
x(t) be the prediction error, γ0 be the desired performance
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bound for ‖x̃‖L∞
, and μ0 be the desired bound for the

estimation error introduced in (22).
In preparation for the development that follows, we intro-

duce the following notations: Λ = λmax(P )
λmin(Q) , κ1 = 4σ2

b +

(ωu − ωl)
2 + 4L maxi |θi|, κ2 = 4Ldθ + 4σbdσ1

, κ3 =
2μ0‖Pb‖((ωu −ωl)ρu + 2Lρ + 2σb), where σb is defined in
(21), and dσ1

= ‖F (s) − (ωh + ωl)/2‖L1
ρω + dσ + dθμ0 +

2Lρ is the upper bound for ‖(σ̇1)t‖L∞
.

Lemma 7: For the system in (1)-(4), the adaptive estima-
tor (11)-(13) satisfying the design condition (14), and the
L1 adaptive controller in (17)-(20) and (23), subject to (7),
if ‖xt‖L∞

≤ ρ, ‖ut‖L∞
≤ ρu, and the adaptive gain Γc

verifies

Γc > (Λκ1 + κ2)/(λmin(P )γ2
0 − Λκ3) , (27)

then the prediction error is bounded ‖x̃t‖L∞
≤ γ0.

Proof. The proof is given in Appendix.

E. Transient and Steady State Performance

We notice that the reference system is not implementable,
since it uses the unknown parameters. This closed-loop
system is only used for analysis purposes. Next we prove sta-
bility and transient performance of the integrated estimator-
controller closed-loop system with respect to this reference
system.

Theorem 1: Given the system in (1)-(4), the adaptive
estimator in (11)-(13) and the L1 adaptive controller in (17)-
20) and (23), subject to (7), if ‖x0‖∞ ≤ ρr, and the design
constraints in (14) and (27) hold, then

‖x̃‖L∞
≤ γ0 , (28)

‖x − xref‖L∞
< γ1 , (29)

‖u − uref‖L∞
< γ2 . (30)

Proof. The proof is given in Appendix.

VI. APPLICATION TO WELL DRILLING SYSTEM

A. Plant Model

We use a newly developed third order nonlinear model in
[10] to describe the dynamics of the well drilling system. The
model has been shown by experiments to be simple and have
acceptable fidelity level for calculating the non-measured
states and for parameter estimation [11]. Let ppump denote
the pressure on the pump side, pchoke denote the pressure
on the choke side, qbit denote the flow rate through the bit,
and pbit denote the bottom hole bit pressure, which is the
pressure to be controlled. The system dynamics are given by:

Vd

βd

ṗpump(t) = qpump − qbit(t) , (31)

Va

βa

ṗchoke(t) = − Kczc(t)

√
2

ρa0
(pchoke(t) − p0)

− V̇a + qbit(t) + qres + qback(t) , (32)

Mq̇bit(t) = ppump(t) − pchoke(t) − Fa(qbit(t) + qres)
2

− Fdq
2
bit(t) + (ρd0 − ρa0)ghbit , (33)

pbit(t) = pchoke(t) + Maq̇bit(t) + Faq2
bit(t)

+ ρa0ghbit . (34)

with ppump(0) = pp0, pchock(0) = pc0, and qbit(0) = qb0.
The input signal zc(t) has the following dynamics

żc(s) = F (s)uc(s) , (35)

where F (s) presents the unmodeled dynamics for choke
valve, and uc is the choke opening signal.

Due to the measurement constraints, qbit(t) and pbit(t)
are updated at a low rate, and thus are viewed as non-
measured signals for controller design. All the coefficients
except βd and Vd are unknown and time-varying, with known
conservative bounds. Plugging (33) into (34), and taking
derivatives on both sides, we write the dynamics of pbit as:

ṗbit(t) =
1

M
[Mdṗc(t) + 2(MFa − MaFd)qbit(t)q̇bit(t)

+ Maṗp(t) − 2MaFa(qbit(t) + qres(t))q̇bit(t)]

=
Ma

M

βd

Vd

(qpump(t) − qbit(t)) +
Md

M

βa

Va

[qbit(t) − V̇a

+ qres(t) + qback(t) − Kczc

√
2

ρa0
(pchoke(t) − p0)]

+
2

M
[qbit(t)(MdFa − MaFd) − qres(t)MaFa]

[ppump(t) − pchoke(t) − Fdq
2
bit(t) + (ρd0 − ρa0)ghbit

− Fa(qbit(t) + qres(t))
2] .

(36)

B. Estimator Design

Since qbit can be viewed as a time-varying parameter in the
ppump dynamics in (31) , and pbit is the linear combination
of qbit and q2

bit in (34) , we can estimate pbit(t) indirectly
by two steps. First we apply the fast estimator (11)-(13) to
(31). The estimator for qbit is given by

Vd

βd

˙̂ppump(t) = a2p̃pump(t) + qpump(t) − q̂bit(t) , (37)

˙̂qbit(t) = Γ2Proj(q̂bit(t) , p̃pump(t)) , (38)

q̄bit(s) = C2(s)q̂bit(s) , (39)

where p̃pump = p̂pump − ppump, a2 < 0, Γ2 > 0 is
the adaptation gain, and C2(s) is a low-pass filter. Notice
that we modify the state predictor so that subtracting (31)
from (37) yields the expected prediction error dynamics
Vd

βd

˙̃ppump = a2p̃pump−(q̂bit−qbit). From (16) we can render
the estimation error arbitrarily small by increasing Γ2 and the
bandwidth of C2(s).

Notice that (34) can be written as

pbit = θ1ppump(t)+θ2pchock(t)+θ3qbit(t)+θ4q
2
bit(t)+θ5 ,

where θi , i = 1, . . . , 5, are unknown constants. Estimation of
pbit can be achieved by the RLS algorithm, which is given by

p̄bit(t) = pbit(ti) , t = ti ,

p̄bit(t) = θ̂1(i)ppump(t) + θ̂2(i)pchoke(t) + θ̂3(i)q̄bit(t)

+ θ̂4(i)q̄
2
bit(t) + θ̂5(i) , ti < t < ti+1. (40)
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The parameters θ̂i are updated by the RLS algorithm

L(i) =
P (i − 1)φ(i)

λ + φ�(i)P (i − 1)φ(i)

θ̂(i) = θ̂(i − 1) + L(i)(ωei
(i) − φ�(i)θ̂(i − 1))

P (i) =
1

λ

(
P (i) −

P (i − 1)φ(i)φ�(i)P (i − 1)

λ + φ�(i)P (i − 1)φ(i)

)
,

where φ(i) = [ppump(ti) pchoke(ti) qbit(ti) q2
bit(ti) 1]�.

P (0) = pI5×5 and λ ∈ (0, 1). The parameter p is chosen
large (106), while λ is chosen between 0.95 and 0.99.

C. L1 Adaptive Controller

The dynamics of pbit in (36) can be written as:

ṗbit(t) = ampbit(t) + ωzc(t) + θ(t)pbit(t) + σ(t), (41)

where am < 0 and θ(t), ω and σ(t) are bounded unknown
parameters. The L1 adaptive controller has the following
structure.

The state predictor is given by:

˙̂x(t) = amx̂(t)+ b(ω̂(t)u(t)+ θ̂�(t)x̄(t)+ σ̂(t)) , x̂(0) = x0

(42)
The adaptive laws in equations (18)-(20) take the form:

˙̂ω(t) = ΓcProj(ω̂(t),−(x̂(t) − x̄(t))Pbu(t)) , (43)
˙̂
θ(t) = ΓcProj(θ̂(t),−(x̂(t) − x̄(t))Pbx̄(t)) , (44)
˙̂σ(t) = ΓcProj(σ̂(t),−(x̂(t) − x̄(t))Pb), (45)

The control low, following (23), takes the form:

zc(s) = kχ(s) , χ(s) = D(s)ru(s),

where k > 0, ru(s) is the Laplace transformation of ru(t) =
ω̂(t)zc(t) + r̄(t), r̄(t) = θ̂(t)pbit(t) + σ̂(t) − kgr(t), kg =
−am, while D(s) = 1/s.

Remark 3: If D(s) = 1/s, the control law becomes
żc(t) = −k(ω̂(t)zc(t) + θ̂(t)pbit(t) + σ̂(t) − kgr(t)).
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Fig. 2: Drilling under normal condition, r = 275 barg.
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Fig. 3: Estimator performance, zc = 25%.
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Fig. 4: Control during pipe-connection (qpump drops).

D. Simulation Results

In this section we give the simulation results of the
integrated estimator-controller scheme for the system intro-
duced in (VI-A). The parameters are given in Section IV
of [11], and the unmodeled actuator dynamics is given by
F (s) = 1/(s2 + 1.4s + 1). In the implementation of the
estimator and the L1 adaptive controller, we set A1 = −1,
Am = −0.2 , b = 1, C1(s) = 1000

s+1000 , D(s) = 1
s

, k = 2,
Γ1 = 5000, Γc = 10000, and the bounds for the parameters
are chosen to be: ωl = 0.1, ωu = 1, dθ = 10, μσ = 1.2.

The simulations are done under two scenarios. First we
consider the drilling under normal conditions, when qres =
0. The initial steady state value of pbit is 263 barg, and the
final reference pressure is 275 barg. The pressure set is done
in 3 steps. The results are shown in Fig. 2. The performance
of open-loop estimators for qbit and pbit is shown in Fig 3.

The second scenario is the pipe connection, during which
the pumping of fluid is first stopped, then a new pipe
segment is mounted to the drill string, and finally the pump is
restarted. To demonstrate the performance of the controller,
we simulate the scenario of power loss, an even more severe
scenario, as compared to a sudden drop of qpump. We see
from Fig. 4 that with the sudden drop of qpump from 1000
l/min to nearly 0 l/min in 10 seconds at time instant
t = 40s, the L1 adaptive estimator and controller regulate the
bit pressure with desired transient and steady performance.

1962



VII. CONCLUSION

The paper presents integrated estimator-controller scheme
applicable for MPD control system. The L1 adaptive con-
troller achieves guaranteed performance bounds for system’s
input and output signals in the presence of time-varying
parameters and disturbances, with the state being sampled
at a significantly low rate.
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APPENDIX

Proof of Lemma 7. Let σ1(τ ) = σ(τ ) + θ�(τ )(x(τ ) − xe(τ )).
Then (26) can be written as

ẋ(τ ) = Amx(τ ) + b(ωu(τ ) + θ�(τ )xe(τ ) + σ1(τ )) . (46)

From (46) and (17) we have the prediction error dynamics

˙̃x(τ ) = Amx̃(τ ) + b(ω̃(τ )u(τ ) + θ̃�(τ )xe(τ ) + σ̃1(τ )) , (47)

where ω̃(τ ) = ω̂(τ ) − ω(τ ), θ̃(τ ) = θ̂(τ ) − θ(τ ), and σ̃1(τ ) =
σ̂(τ ) − σ1(τ ). From Remark 1, ‖u̇t‖L∞

≤ ρω.
Now consider the Lyapunov function V (τ ) = x̃�(τ )P x̃(τ ) +

1
Γ
(θ̃�(τ )θ̃(τ ) + ω̃2(τ ) + σ̃2

1(τ )). The projection based adaptive
law ensures the following upper-bound V̇ (τ ) ≤ −x̃�(τ )Qx̃(τ ) −
2
Γ
(θ̃�(τ )θ̇(τ )+ σ̃1(τ )σ̇1(τ )) + 2(xe(τ )− x(τ ))�Pb(ω̃(τ )u(τ )+

θ̃�(τ )xe(τ ) + σ̃1(τ )). From the definitions of Λ, κ1, κ2 and κ3,
we have the bound ‖[− 2

Γ
(θ̃�θ̇ + σ̃1σ̇1) + 2(xe − x)�Pb(ω̃u +

θ̃�xe + σ̃1)]t‖L∞
≤ κ3 + κ2

Γc
, ‖(θ̃�θ̃ + ω̃2 + σ̃2

1)t‖L∞
≤ κ1.

If V (τ ) > Λ(κ3+κ2/Γc)+κ1/Γc, then x̃�(τ )P x̃(τ ) > Λ(κ3+
κ2/Γc), so x̃�(τ )Qx̃(τ ) ≥ λmin(Q)

λmax(P )
x̃�(τ )P x̃(τ ) > κ3 + κ2/Γc.

Consequently V̇ (τ ) < 0. Since x̂ is initialized at the time instance
that the measurement of x is available, x̃(0) = 0, so V (0) <
Λ(κ3 +κ2/Γc)+κ1/Γc. Thus we have V (τ ) < Λ(κ3 +κ2/Γc)+
κ1/Γc for 0 ≤ τ ≤ t.

From the choice of μ0 in (22), Λκ3 = λmax(P )γ2
0 − β2 <

λmax(P )γ2
0 . If the adaptive gain Γc satisfies (27), we have Λ(κ3 +

κ2/Γc)+κ1/Γc < λmax(P )γ2
0 , and thus x̃�(τ )x̃(τ ) ≤ V (τ)

λmax(P )
<

γ2
0 . Consequently we have ‖x̃t‖L∞

< γ0.
Proof of Theorem 1. We prove the theorem by contradiction.
Assume (29) or (30) do not hold. Then since ‖x(0)−xref(0)‖∞ =
0 ≤ γ1, u(0)− uref (0) = 0, and x, xref , u, uref are continuous,
there exists t ≥ 0 such that

‖x(t) − xref (t)‖∞ = γ1 , or ‖u(t) − uref (t)‖∞ = γ2 (48)

while ‖(x − xref )t‖L∞
≤ γ1, ‖(u − uref )t‖L∞

≤ γ2. Since
Lemma 5 implies that ‖xref‖L∞

≤ ρr, ‖uref‖L∞
≤ ρur

, we
have ‖xt‖L∞

≤ γ1 + ρr = ρ, ‖ut‖L∞
≤ γ2 + ρur = ρu. It

follows from Remark 1 that ‖u̇t‖L∞
≤ ρω. Thus from Lemma 7

we have ‖x̃t‖L∞
≤ γ0.

Let r̃(τ ) = ω̃(τ )u(τ ) + θ̃�(τ )xe(τ ) + σ̃1(τ ), r1 =
θ�(τ )xref(τ ) + σ0(τ ), r2(τ ) = θ�(τ )x(τ ) + σ0(τ ). It follows
from (23) and Lemma 6 that u(s) = −kD(s)(r̃(s) + r2(s) −
kgr(s) + ωu(s) + σ̄(s)). It follows from (2) and (5) that

μref (s) = − C(s)(r1(s) − kgr(s)) , (49)

μ(s) = − C(s)(r2(s) − kgr(s) + r̃(s)) . (50)

Then the system in (1) consequently takes the form

x(s) = G(s)r2(s)+H(s)C(s)(kgr(s)− r̃(s))+(sI−Am)−1x0 .
(51)

Let e(τ ) = x(τ ) − xref (τ ). Then by (51) we have

e(s) = G(s)r3(s) − H(s)C(s)r̃(s) , e(0) = 0 , (52)

where r3(s) is the Laplace transformation of r3(τ ) = θ�(τ )e(τ ).
Lemma 1 gives the following bound:

‖et‖L∞
≤ ‖G(s)‖L1

‖(r3)t‖L∞
+ ‖(r4)t‖L∞

, (53)

where r4(t) is the signal with its Laplace transformation being
r4(s) = C(s)H(s)r̃(s). From (47) we have x̃(s) = H(s)r̃(s),
which leads to r4(s) = C(s)x̃(s), and hence ‖(r4)t‖L∞

≤
‖C(s)‖L1

‖x̃t‖L∞
. By definition of L we have ‖r3t‖L∞

≤
L‖et‖L∞

. From (53) we have ‖et‖L∞
≤ ‖G(s)‖L1

L‖et‖L∞
+

‖C(s)‖L1
‖x̃t‖L∞

. The upper bound from Lemma 7 and the L1-
norm upper bound from (7) lead to the following upper bound

‖et‖L∞
≤ ‖C(s)‖L1

/(1 − ‖G(s)‖L1
L)γ0 , (54)

which along with (8) leads to

‖et‖L∞
≤ γ1 − β1 < γ1 . (55)

Thus from (49) and (50) we have u(s) − uref (s) =
(μ(s) − μref (s))/F (s) = −r3(s)C(s)/F (s) − r5(s), where
r5(s) = C(s)/F (s)r̃(s). Hence it follows from Lemma 1 that

‖(u−uref )t‖L∞
≤ L‖

C(s)

F (S)
‖L1

‖(x−xref)t‖L∞
+‖(r5)t‖L∞

.

(56)
By (6), r5(s) = C(s)

F (s)
1

c�
o

H(s)
c�o H(s)r̃(s) = C(s)

F (s)
Nd(s)
Nn(s)

c�o x̃(s).

Since C(s)
F (s)

is stable and strictly proper, the complete system
C(s)
F (s)

1
c�

o
H(s)

is proper and stable, which implies that its L1 norm
exists and is finite. Hence, we have

‖(r5)t‖L∞
≤

∥∥∥∥C(s)

F (s)

1

c�o H(s)
c�o

∥∥∥∥
L1

‖x̃t‖L∞
. (57)

Combining (55), (56) , (57) we have

‖(u − uref )t‖L∞
≤ L

∥∥∥∥C(s)

F (s)

∥∥∥∥
L1

(γ1 − β1) (58)

+

∥∥∥∥C(s)

F (s)

1

c�o H(s)
c�o

∥∥∥∥
L1

γ0 < γ2

We notice that the upper bounds in (55) and (58) contradict the
equality in (48), which proves (29)-(30). Since the bounds in (29)-
(30) hold uniformly in t, Lemma 7 implies (28).
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