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Abstract— This paper investigates the roles of smoothing in
planning of information-gathering paths for mobile sensors,
when the goal is to minimize the entropy of some variables
of interest at the final time of generated plan. The main
result is that smoothing simplifies the process of calculating
the information gathered up to some arbitrary time on the fly.
This enables quantification of the correct cost-to-go value when
applied to a receding-horizon approximation of the optimal
path planning problem. Numerical examples on simplified
weather forecasting, sensor scheduling, and target localization
validate the theoretical findings.

I. INTRODUCTION

One key problem for (mobile) sensor networks is to

create plans for maneuvering/locating the sensing resources

in order to extract information from the environment. A

typical goal is to reduce uncertainty in some quantities of

interest, called the verification variables (e.g., position and

velocity of targets [1]–[8], the pose of the sensor platform

itself, the forecast of weather over some region of inter-

est [9]–[13], or physical quantities under the ocean [14])

by designing measurement paths for (mobile) sensors over

some time window [0, τ ]. Mutual information is often used as

an information-theoretic metric for the uncertainty reduction.

The mutual information between the verification variables

and some measurement sequence over [0, τ ] represents the

difference between the prior and the posterior entropy of the

verification variables when conditioned on this sequence of

measurements. Thus, it explicitly quantifies the impact of

sensing on the entropy reduction of the quantity of interest.

Depending on the time when one is interested in the

value of the verification variables, two types of planning

problems can be posed: the tracking problem and the fore-

casting problem. The objective of the tracking problem is

to minimize the uncertainty in the verification variables at

time τ , i.e. at the end of the planning window, whereas

the forecasting problem is concerned with the uncertainty

in the verification variables at some time T in the far

future (T ≫ τ ). While most previous work [1]–[4,6,8] on

information-theoretic planning had addressed the tracking

problem, the present authors have proposed information-

theoretic methodologies for the forecasting problem [10]–

[13]. In particular, it was demonstrated in [12,13] that the

well-known conditional independence of past variables and

future variables given the present state provides key insights

to efficiently and correctly quantify the mutual information

for the forecasting problem. The smoothing approach, pro-

posed in these works enables the calculation of the mutual

H. -L. Choi and J. P. How are with the Dept. of Aeronautics and Astronau-
tics, MIT, Cambridge, MA 02139, USA, {hanlimc,jhow}@mit.edu

information between the verification variables at T and a

measurement path over [0, τ ] as the difference between the

unconditioned and conditioned mutual information between

the state at τ and the respective measurement path. The

results in [12,13] reduce the length of the time interval over

which the matrix differential equations must be integrated,

provide on-the-fly access to the accumulated information,

and correctly quantify the information-gathering rate.

This paper expands these roles of smoothing identified for

the forecasting problem to the tracking problem. In particu-

lar, it will be shown that the smoothing approach enables

correct quantification of cost-to-go values in a receding-

horizon approximation of the tracking problem. New insights

on the influence of the choice of the verification variables

and the presence of process noise on the mutual information

is discussed. Extensive numerical studies with three repre-

sentative informative planning problems are performed to

illustrate and verify the suggested roles of smoothing in the

tracking problems.

II. PROBLEM DEFINITION

A. Linear System Model

Consider the dynamics of objects/environment with finite

dimensional state vector Xt ∈ R
n described by the following

linear time-varying system:

Ẋt = A(t)Xt + Wt (1)

where Wt ∈ R
n is a zero-mean Gaussian process noise with

E[WtW
′
s] = ΣW δ(t − s), ΣW � 0, which is independent

of Xt. The prime sign (′) denotes the transpose of a matrix.

The initial condition of the state, X0 is normally distributed

as X0 ∼ N (µ0, P0), P0 ≻ 0.

The system (1) is observed by sensors with additive

Gaussian noise and admits the following measurement model

for Zt ∈ R
m:

Zt = C(t)Xt + Nt (2)

where Nt ∈ R
m is zero-mean Gaussian with E[NtN

′
s] =

ΣNδ(t − s), ΣN ≻ 0, which is independent of Xt and

Ws, ∀s. Also, a measurement history over the time window

[t1, t2] is defined as

Z[t1,t2] = {Zt : t ∈ [t1, t2]}. (3)

The verification variables are a subset of the state variables

that are of interest to define the performance measure, and

are defined as

Vt = MV Xt ∈ R
p (4)

where MV ∈ {0, 1}p×n, p < n with every row-sum of MV

being unity. Although this work is specifically focused the
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case where entries of MV are zero or one, the results can be

easily extended to a general MV ∈ R
p×n.

B. Optimal Tracking Problem

Using entropy as the metric of uncertainty, the uncertainty

reduction of the verification variables by measurements taken

along the path of the sensors can be represented by the

mutual information. Then, the optimal tracking problem can

be written as the following optimization problem:

max
Z[0,τ]

I(Vτ ;Z[0,τ ]) (OTP)

where I(Y1;Y2) represents the mutual information between

two random quantities Y1 and Y2 (e.g. random variables,

random processes, random functions). In other words, (OTP)

finds the best (continuous) measurement history over [0, τ ]
that achieves the largest entropy reduction of the verification

variables at τ .

In (OTP), it is assumed that the measurement at a given

time t is dependent on the location of the sensors at that

time: i.e. Zt = Zt(r(t)) where r(t) denotes the locations

of sensors at t. Given the measurement model in (2), this

represents the cases where either the observation matrix C(t)
and/or the measurement noise variance ΣN is a function of

sensor locations. This work specifically considers the first

case without loss of generality. Since the motion of sensor

platforms are constrained, the resulting path planning prob-

lem is to maximize the objective function in (OTP) subject to

various types of constraints induced by vehicle motion and

the specific applications. Receding-horizon approximations

of (OTP) will be discussed with further emphasis in section

IV.

III. QUANTIFICATION OF MUTUAL INFORMATION

For the linear system, the objective value for (OTP) can

be computed as

I(Vτ ;Z[0,τ ]) = 1
2 ldet PV (τ) − 1

2 ldet QV (τ) (5)

where ldet stands for log det, PV (τ) , Cov[Vτ ] and

QV (τ) , Cov[Vτ |Z[0,τ ]]; these two matrices can be written

as PV = MV PXM ′
V , and QV = MV QXM ′

V where PX

and QX are obtained by integrating (forward in time) the

following matrix differential equations:

ṖX(t) = A(t)PX(t) + PX(t)A′(t) + ΣW (6)

Q̇X(t) = A(t)QX(t) + QX(t)A′(t)

+ ΣW − QX(t)C(t)′Σ−1
N C(t)QX(t) (7)

with initial condition, PX(0) = QX(0) = P0. Notice that

(6) is Lyapunov equation and (7) is the Riccati equation for

Kalman-Bucy filters.

Since PX(τ) does not depend on the measurement,

(OTP) is equivalent to minimizing the posterior entropy

ldet(MV QX(τ)M ′
V ). Specifically, when MV = I , this

becomes equivalent to maximizing the ldet of the Fisher

information matrix at time τ , which was addressed in [1].

A. On-the-fly Information

In the process of computing the tracking mutual informa-

tion I(Xτ ;Z[0,τ ]) by integrating forward the Lyapunov and

Riccati equations in (6) and (7), the only two available matrix

quantities are PX(t) and QX(t). Using these, the mutual

information between the current state and the measurement

thus far, I(Xt;Z[0,t]) (and that between the current verifi-

cation variables and the measurement thus far, I(Vt;Z[0,t]))
can be calculated on the fly:

I(Xt;Z[0,t]) = 1
2 ldetPX(t) − 1

2 ldetQX(t) (FOI)

where the terminology FOI stands for the filter-form on-the-

fly information. However, this does not represent the infor-

mation gathered by Z[0,t] for the final verification variables

Vτ , which is I(Vτ ;Z[0,τ ]).
This accumulated information for Vτ can be quantified

by exploiting the smoothing approach proposed in [12,13].

Since Vτ and Z[0,t] are conditionally independent of each

other for a given Xt, the following expression for the

smoother-form on-the-fly information (SOI) can be obtained:

I(Vτ ;Z[0,t]) = I(Xt;Z[0,t]) − I(Xt;Z[0,t]|Vτ ) (SOI)

= 1
2

[
ldetSX|Vτ

(t) − ldetSX(t)
]

− 1
2 ldet

(
I + QX(t)(SX|Vτ

(t) − SX(t))
)

(8)

where SX|Vτ
(t) , Cov(Xt|Vτ )−1, which is computed by

integrating forward the following differential equation

ṠX|Vτ
= −SX|Vτ

(A + ΣW SX) − (A + ΣW SX)′SX|Vτ

+ SX|Vτ
ΣW SX|Vτ

. (9)

The initial condition is given by SX|Vτ
(0) = P−1

0|Vτ
, which

can be expressed as

P0|Vτ
= P0 − P0Φ

′
(τ,0)M

′
V PV (τ)−1MV Φ(τ,0)P0

where Φ(τ,0) is the state transition matrix from time 0 to τ .

At t = τ where the expression in (8) is not well-defined at

t = τ due to singularity of SX|Vτ
(τ), the value of SOI can

be simply computed by (5).

Moreover, the rate of (8) can be expressed as

d
dt
I(Vτ ;Z[0,t]) = 1

2tr
{
Σ−1

N CΠτ (t)C ′
}

. (10)

where Πτ , QX(SX|Vτ
−SX)[I+QX(SX|Vτ

−SX)]−1QX .

Notice that the quantity in (10) is non-negative (except at

t = τ where it is not defined), because the effect of the

future process noise over (t, τ ] is all encapsulated in SX|Vτ
.

To summarize, the smoothing approach allows the true

information accumulation and its rate, i.e., I(Vτ ;Z[0,t]) and
d
dt
I(Vτ ;Z[0,t]), to be available for all t < τ on the fly,

by utilizing an additional backward information SX|Vτ
that

captures the influence of the future process noise.

IV. INFORMATION FOR RECEDING-HORIZON

FORMULATIONS

Despite being theoretically important features, the on-the-

fly information quantities may not need to be used if the

goal is simply to solve the optimal path planning problems
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in (OTP). However, receding-horizon approximations of the

original optimization problem are often used due to supe-

rior computational efficiency and/or superior adaptability to

environmental changes. In this case the computation of on-

the-fly information plays a key role, because the effect of

a partial measurement history needs to be quantified for a

short-horizon subproblem. This section discusses how the

on-the-fly information in (8) can be used to determine the

cost-to-go functions of the receding-horizon formulations.

Consider a tracking decision for the horizon of [0, σ], σ <
τ when the ultimate goal is to maximize I(Vτ ;Z[0,τ ]). For

this problem, this work suggests the following formulation

based on the smoother-form on-the-fly information:

max
Z[0,σ]

I(Vτ ;Z[0,σ]) ≡ I(Xσ;Z[0,σ]) − I(Xσ;Z[0,σ]|Vτ ).

(S-RH)

In other words, the decision for the time window [0, σ]
maximizes the smoother-form on-the-fly information at the

end of the current planning horizon. Since the time derivative

of (SOI) is non-negative over [0, τ), the objective value of

(S-RH) increases as σ increases. It is insightful to contrast

(S-RH) to the following formulation based on the filter-form

on-the-fly information:

max
Z[0,σ]

I(Xσ;Z[0,σ]). (F-RH)

In other words, (F-RH) aims to minimize the entropy of the

current state Xσ , and the underlying premise of this formu-

lation is that an accurate estimate of the current states tends

to result in an accurate estimate of the future verification

variables.

The formulation (F-RH) is equivalent to the formulation

in [1] that maximizes ldetQ−1
X (σ) for the interval [0, σ].

Note that the objective value of (F-RH) is not necessarily

an increasing function of σ for ΣN > 0, because the rate

of FOI can be negative if the information dissipated by

the process noise dominates the information supplied by the

measurement [12,13,15,16], in particular, when ΣW is large.

When MV = I (i.e., Vτ = Xτ ) and there is no process

noise over (σ, τ ], (F-RH) becomes equivalent to (S-RH),

because then I(Xσ;Z[0,σ]|Xτ ) = 0 as there is no remaining

uncertainty in Xσ for a given Xτ . However, in general

I(Xσ;Z[0,σ]|Vτ ) > 0; therefore, the solutions to (S-RH) and

(F-RH) differ. Also, the objective value of (F-RH) always

overestimates that of (S-RH).

The difference between (S-RH) and (F-RH) can be ex-

plained in terms of information diffusion. It was shown in

[17] that

I(X[σ,s];Z[0,σ]) = I(Xσ;Z[0,σ]), ∀s > σ (11)

where X[t1,t2] , {Xs : s ∈ [t1, t2]}. This is because

the sufficient statistics for estimation of the future state

history X[σ,s] is X̂σ , E[Xσ|Z[0,σ]], which is identical to

that for estimating the current state Xσ based on the past

measurement history Z[0,σ].

The relation in (11) specifically holds for s ≥ τ . In

this case, the verification variables at τ become a subset

of the future state history: i.e., Vτ ⊂ X[σ,τ ]. Thus, what the

filter-form on-the-fly information quantifies is the influence

of the past measurement on the entire future, while the

smoother-form on-the-fly information pinpoints the impact

on some specified variables at some specific instant of time

in the future. In this sense, the smoothing term in (S-

RH), I(Xσ;Z[0,σ]|Vτ ) represents the portion of information

gathered by Z[0,σ] but will be diffused out to the space that

is orthogonal to Vτ :

I(Xσ;Z[0,σ]|Vτ ) = I(X[σ,τ ] \ Vτ ;Z[0,σ]|Vτ ) (12)

When MV = I , (12) specifically means the in-

formation diffused through the future process noise:

I(W(σ,τ ];Z[0,σ]|Xτ ) where W(σ,τ ] , {Ws : s ∈ (σ, τ ]}.

Note that I(W(σ,τ ];Z[0,σ]|Xτ ) can be non-zero, although

I(W(σ,τ ];Z[0,σ]) = 0 due to independence of Z[0,σ] and

W(σ,τ ]. These two become correlated to each other through

the conditioning on Xτ , which is correlated to both of them.

The formulations (S-RH) and (F-RH) are written for

the horizon starting from the initial time; extension to the

decisions for a later horizon [σk, σk+1] is straight-forward:

they simply consider the conditioned mutual information

conditioned on the previous measurement decision Z⋆
[0,σk].

V. NUMERICAL EXAMPLES

This section presents numerical results to compare the two

receding-horizon formulations discussed in section IV with

three illustrative examples each of which reflects important

aspects in the path planning problems.

A. Weather Forecasting

The first example is a simplified weather forecast problem

introduced in [12]. An important aspect of this example

is MV 6= I . The state variables represent some scalar

weather variable (e.g. temperature or pressure) at a total of

n grid points. With the underlying nonlinear weather model

– Lorenz-2003 chaos model with 72×17 grid space, a linear

time-invariant model is obtained to represent short time-scale

motion over some 4 × 3 local region, and process noise is

introduced to represent the linearization error.

The goal of path planning is to reduce the entropy in

the verification variables in 3 days (corresponding to some

weather variables at some p grid points), by designing a 6-hr

flight path for a single UAV sensor with constant speed v,

whose motion is described by

ẋs = v cos θ, ẏs = v sin θ, θ ∈ (−π, π]. (13)

Although [12] originally posed this problem as a forecasting

problem, this paper treats it as the decision for the first hori-

zon of the tracking problem: namely, τ=3days and σ=6hrs.

Two scenarios with different configurations of local re-

gion, correlation length scale parameters, vehicle speed, and

vehicle initial location, are considered. The performance of

four different strategies are compared to each other: two are

the receding-horizon formulations in (S-RH) and (F-RH).

The other two strategies steer a sensor to climb up to the

direction of the gradient of the information potential fields
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Fig. 1. Sensor trajectories for different strategies; x- and y-axis indicate
the longitudinal and latitudinal grid indices; the smoother form and the
filter form information fields are significantly different from each other for
scenario 2.

TABLE I

INFORMATION GATHERED DURING THE FIRST HORIZON: I(Vτ ;Z[0,σ])

Scenario S-RH S-RT F-RH F-RT

1 1.04 0.85 0.86 0.79

2 0.69 0.62 0.20 0.14

built on the basis of the rates of each on-the-fly information

quantities (see [12,13] for details). These two strategies based

on the information field are denoted as S-RT and F-RT.

Figs 1(a) and 1(b) illustrate the sensor trajectories from

the four strategies for scenario 1 overlaid with the smoother-

form and the filter-form information field at the initial

time, respectively. In both information fields, a dark region

represents an information-rich area. It can be seen that the

shapes of the two information potential fields are similar

in terms of the locations of information-rich regions; this

leads to reasonable performance of filter-based planning (F-

RH and F-RT) compared to smoother-based (S-RH and S-

RT) (Table I). In contrast, Figures 1(c) and 1(d) illustrate

the large difference between the information potential fields

in scenario 2. As a consequence, the paths generated using

S-RH and S-RT head southwards, while those from F-RH

and F-RT head north, which leads to significant performance

deterioration of the decisions based on the filter-form infor-

mation (Table I).

In summary, this example demonstrates that a decision

based on SOI and FOI can be very different depending on

the problem. In this example, the process noise turns out

not to be a dominant factor that causes the difference. The

dominating factors are the fact that τ ≫ σ and MV 6= I .

B. Sensor Scheduling

A sensor scheduling problem with some artificial dynam-

ics is considered as the second example; the key comparison

made with this example is on the overall performance of

solutions from S-RH and F-RH. The system matrices are

A =

[
0.1 −0.01

0.005 0.07

]
, P0 =

[
1 −0.6

−0.6 1

]

ΣW = diag(0, 3), ΣN = 1,

(14)

and τ = 5. The planning horizon is 1, and for each planning

cycle a decision is made either to measure the first state or

the second one. Thus, the true optimal solution (OPT) can

be found by simply enumerating all possible 32(=25) cases;

S-RH and F-RH solutions can also be found by enumeration.

Fig. 2 illustrates the switching sequences for the three

solutions. Observe that the three solutions are very different.

In particular, the filter-form receding horizon solution is

exactly opposite to the true optimal solution. Fig. 3 shows the

information accumulation in the three solutions, where both

the smoother-form accumulated information I(Xτ ;Z[0,σk])
and the filter-form accumulated information I(Xσk

;Z[0,σk])
for σk = 1, 2, . . . , 5 are shown for comparison. Looking at

the decisions for the first horizon: OPT and S-RF choose to

measure state 1, but F-RH selects state 2. While the filter-

form information indicates that measuring state 2 (follow

dotted red line with marker ×) is slightly larger than that

of measuring state 1 (follow dotted black line with marker

�), the smoother-form information indicates that the reward

for observing state 1 is much larger than the other. It can be

seen that the difference in this first decision leads to a larger

gap in the final performance.

One important characteristic of the system in (14) is

that a relatively large process noise is injected only to the

dynamics of the second state variable. F-RH keeps measuring

the second variable to compensate for the increase in the

uncertainty in state 2 by the impact of the process noise over

the time interval of size 1; however, in a long term view, the

dynamics of the two variables are coupled and the effect of

process noise is propagated to the first state variable. This

results in a situation that F-RH is far from optimal. S-RH

provides relatively good performance by taking account of

the effect of the future process noise in the decision for each

horizon.

C. Target Localization

The third example, which is adapted from [1], considers

localization of a target whose location is fixed in a nominal

sense using a mobile sensor. The main purpose of this

example is to validate the presented receding-horizon for-

mulation accounting for the nonlinearity in the measurement

and replanning based on the actual measurement data.

The state vector Xt is defined to represent the position

of the target, xtg and ytg . Since the target is assumed to be

stationary, the system matrix A = 02×2. The process noise

represents the drift of the target position in the x- and y-

directions;

ΣW = diag(0.22, 0.012)

is used. Note that the target is subject to a larger drift in x-

direction than y-direction. The sensor measures the bearing
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angle between the target and itself:

Zt = tan−1{(ytg − ys)/(xtg − xs)} + Nt (15)

where the sensor’s motion is described by (13). The target

location is tracked by a discrete extended Kalman filter

(EKF) using the bearing measurement taken with frequency

of 16Hz with noise standard deviation of 2.5deg. Although

the underlying estimator is discrete, the sensor planning

problem for a horizon [σk, σk+1] is posed in the continuous

domain by linearizing (15) around the state estimate at σk.

Then, the sensing noise intensity for this continuous plan-

ning becomes ΣN = 2.52(π/180)2/16. Once the plan for

[σk, σk+1] is made, the sensor executes it by moving along

the planned path and taking discrete measurements every

1/16 seconds. The decision for the next horizon, [σk+1, σk+2]

is made by incorporating the actual measurement up to σk+1.

The total length of the planning window is 14 seconds,

which is divided into 14 receding planning horizons. Also,

P0 = 0.52I is used.

Fig. 4 shows the trajectories for S-RH and F-RH solutions

with the true target locations over [0, τ ], which are very

different. The sensor moves mainly in y-direction in the S-

RH solution but in x-direction in the F-RH solution. It can

be seen in Fig. 5 that this difference in the path results in

very different characteristics in reducing the uncertainty of

the target location. The top two plots, which depict the time

history of the entropy in the target’s x- and y-positions, indi-

cate that the S-RH solution mainly reduces the uncertainty in

the estimate of ytg, while F-RH reduces that of xtg . In fact

the entropy in xtg increases along the S-RH path up to t=8s.

However, the bottom plot shows that the overall entropy does

decrease over time. Since the target motion is mostly a drift

in the x-direction, F-RH tries to reduce the uncertainty in xtg

due to the process noise. However, S-RH takes a different

approach of reducing the uncertainty in ytg and increasing

the correlation between the estimates of xtg and ytg. The

thinner lines in the bottom plot represent the summation of

the entropy of xtg and ytg , so a large gap between this

summation and the overall entropy (thicker lines) means

high correlation between two position estimates. By looking

at the overall entropy at τ=14s in the bottom plot of Fig.

5, it can be also seen that S-RH provides a slightly better

performance than F-RH in this example. Since both S-RH

and F-RH are suboptimal strategies and the (linear) model

used for planning is updated using the actual (nonlinear)

measurement in this example, consideration of the modeled

future process noise in S-RH does not necessarily lead to

significantly superior performance to F-RH. However, it is

important to note the characteristics of the two receding-

horizon formulations.

Fig. 6 illustrates the on-the-fly information (both S-Form

and F-Form) used for the planning. The glitches seen every

second are due to the modification of the linear model with

the actual measurement values. Comparing the filter-form

and the smoother-form information for the F-RH solution

(blue solid and blue dash-dotted lines), it can be seen that

the smoother-form information gathers a large amount of the

information in the final phase (after 12s), while the filter-

form assumes that it gathers almost a constant amount of

information every time step after 2s. This information from

the earlier time periods will experience the process noise

for a longer time, and thus tends to be discounted in the

smoother-form. Since in this example, the dynamics of xtg

and ytg are decoupled from each other, this discounting effect

is particularly prominent.

VI. CONCLUSIONS

This work discussed the roles of smoothing in solving

the tracking class of informative path planning problems.

It was demonstrated that the smoothing approach simplified

the process of keeping track of information accumulation on

the fly, by correctly calculating the information diffusion by
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the future process noise. Numerical simulations with weather

forecasting, sensor scheduling, and target localization exam-

ples indicated that smoothing offers significant advantages

when the process noise is large, or when the verification

variables are not the entire state.

ACKNOWLEDGMENT

This work is funded by NSF CNS-0540331 as part of the

DDDAS program with Dr. Suhada Jayasuriya as the program

manager.

REFERENCES

[1] B. Grocholsky, “Information-theoretic control of multiple sensor plat-
forms ,” Ph.D. dissertation, University of Sydney, 2002.

[2] B. Grocholsky, A. Makarenko, and H. Durrant-Whyte, “Information-
theoretic coordinated control of multiple sensor platforms,” in IEEE

Intl. Conf. on Robotics and Automation, Taipei, Taiwan, Sep. 2003,
pp. 1521–1526.

0 2 4 6 8 10 12 14
0

0.5

1

1.5

2

2.5

3

3.5

time (s)

A
c
c
u

m
u

la
te

d
 I

n
fo

rm
a

ti
o

n

 

 

F−Form Info for F−RH soln

S−Form Info for F−RH soln

F−Form Info for S−RH soln

S−Form Info for S−RH soln

Fig. 6. Smoother-form and filter-form on-the-fly information values used
for planning

[3] B. Ristic and M. Arulampalam, “Tracking a manoevring target using
angle-only measurements: algorithms and performance,” Signal Pro-

cessing, vol. 83, no. 6, pp. 1223–1238, 2003.
[4] G. M. Hoffmann and C. Tomlin, “Mutual information methods with

particle filters for mobile sensor network control,” in IEEE Conf. on

Decision and Control, 2006.
[5] S. Martinez and F. Bullo, “Optimal Sensor Placement and Motion

Coordination for Target Tracking,” Automatica, vol. 42, pp. 661–668,
2006.

[6] B. Grocholsky, J. Keller, V. Kumar, and J. Pappas, “Cooperative Air
and Ground Surveillance,” IEEE Robotics and Automation Magazine,
vol. 13(3), pp. 16–25, 2006.

[7] V. Gupta, T. H. Chung, B. Hassibi, and R. M. Murray, “On a stochastic
sensor selection algorithm with applications in sensor scheduling and
sensor coverage,” Automatica, vol. 42(2), pp. 251–260, 2006.

[8] J. L. Williams, J. W. Fisher III, and A. S. Willsky, “Approximate
dynamic programming for communication-constrained sensor network
management,” IEEE Trans. on Signal Processing, vol. 55(8), pp. 3995–
4003, 2007.

[9] S. Majumdar, C. Bishop, B. Etherton, and Z. Toth, “Adaptive sampling
with the ensemble transform Kalman filter. Part II: Field programming
implementation,” Monthly Weather Review, vol. 130, no. 3, pp. 1356–
1369, 2002.

[10] H.-L. Choi, J. P. How, and J. A. Hansen, “Ensemble-based adaptive
targeting of mobile sensor networks,” in American Control Conference,
2007.

[11] H.-L. Choi and J. P. How, “A multi-UAV targeting algorithm for
ensemble forecast improvement,” in AIAA Guidance, Navigation, and

Control Conference, 2007.
[12] ——, “Continuous motion planning for information forecast,” in IEEE

Conf. on Decision and Control, Cancun, Mexico, Dec. 2008, pp. 1721–
1728.

[13] ——, “Continuous trajectory planning of mobile sensors for informa-
tive forecasting,” Automatica, submitted.

[14] F. Hover, “Continuous-time adaptive sampling and forecast
assimilation for autonomous vehicles,” Presentation given to
WHOI Department of Applied Ocean Physics and Engineering,
http://web.mit.edu/hovergroup/pub/PPIDA.pdf, Oct.
2008.

[15] E. Mayer-Wolf and M. Zakai, “On a formula relating the Shannon
information to the Fisher information for the filtering problem,”
Lecture Notes in Control and Information Sciences 61, pp. 164–171,
1984.

[16] S. Mitter and N. Newton, “Information and entropy flow in the
Kalman-Bucy filter,” Journal of Statistical Physics, vol. 118, no. 112,
pp. 145–176, 2005.

[17] N. Newton, “Dual nonlinear filters and entropy production,” SIAM

Journal on Control and Optimization, vol. 45, no. 3, pp. 998–1016,
2006.

2159


